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Abstract. In this paper, we consider various approaches to primality testing

and then ask whether an effective deterministic test for prime numbers can be

found in the Fibonacci numbers.

Introduction
Prime numbers play an important role in encryption and cyber-security. They
protect digitial data, including personal data and bank details. Testing whether a
number is prime or not, is therefore becoming increasingly important for mathe-
maticians and for those working in digitial security.

The study of prime numbers and their properties go back to the ancient Greek
mathematician Pythagoras (570-495 BC) who understood the idea of primality.
But a primality test is a test to determine whether or not a number is prime. This
is different from finding a number’s constituent prime factors (also known as prime
factorization). A number is said to be prime if it is divisible only by 1 and itself.
Otherwise it is composite. When the numbers are small, it is relatively easy to
determine whether a number is prime. But as they get exponentially larger they
get harder to determine.

So the pressing question is what makes an efficient algorithm? The following
characteristics make an efficient algorithm - general, deterministic, unconditional,
and polynomial :1

General. An algorithm that is general works for all numbers. Algorithms that are
not general only work on certain numbers (e.g. the Lucas-Lehmer test for Mersenne
numbers).
Deterministic. A deterministic test (e.g. the Lucas-Lehmer Test) will tell us
with absolute certainty whether a number is prime or not every time it is run.
The most basic form of deterministic test was discovered by Greek mathemati-
cian Eratosthenes (276-195 BC), who devised an algorithm now called the ‘Sieve
of Eratosthenes’. However, such tests usually involve complex and time-consuming
alogorithms. By contrast, probabilistic tests (e.g. the Miller-Rabin test), tend to
be much faster but only give us probable results. The reason for this is that certain
rogue composite numbers falsely pass the test. These composites, called pseudo-
primes, thus mask their true composite nature, and make the test unreliable. For
this reason, probabilistic tests are often adapted to make them more accurate, but
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the changes themselves end up slowing the test down.
Unconditional. An unconditional algorithm is one whose correctness does not
depend on any unproven hypotheses. For example, there are conditional primality
tests that are correct only if the Extended Riemann Hypothesis is true.
Polynomial Time. A polynomial time algorithm is one with computational com-
plexity that is a polynomial function of the input size, with a polynomial function
of log2 n. Polynomial time is preferable to exponential time.

The only test to possess all four characteristics is the AKS primality test, as we
shall see.

Early Primality Testing
But first, let us briefly consider some of the familiar tests, and then we will see
if any can be improved on. In early mathematics, it was thought that Mersenne
Primes of the form 2n − 1 were prime when n is also prime. This certainly holds
true for the first few values of n:

22 − 1 = 3

23 − 1 = 7

25 − 1 = 31

27 − 1 = 127.

However, it does not hold for all primes n. For example,

211 − 1 = 2047 = 23.89.

In 1640, Fermat showed that it also does not hold for n = 23 and n = 37:

223 − 1 = 8388607 = 47.178481

237 − 1 = 137438953471 = 223.616318177.

Thus, this test is probabilistic.

Fermat’s Little Theorem
But in the same year Fermat proved that for the number an−a, if n is prime, then
for any co-prime integer a, the number an − a is divisible by n. This is known as
Fermat’s Little Theorem. So for the first few, where a = 2, we get:

22 − 2 = 2.1

23 − 2 = 3.2

25 − 2 = 5.6

27 − 2 = 7.18

211 − 2 = 11.186

213 − 2 = 13.630

217 − 2 = 17.7710

So for all prime exponents to infinity, an − a is divisible by the prime exponent
that produced them. And it is true for any value of a when coprime with n. It
is thus the basis for the Fermat primality test and is one of the fundamental re-
sults of elementary number theory. However, the converse is not true. This test
also produces pseudoprimes. For example, the number 2341 − 2 is divisible by 341
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(=11.31). Thus 341 is the smallest base-2 Fermat pseudoprime, i.e. a = 2. And
yet, in other bases (e.g. a=5) it shows up to be composite.

Sadly, using different bases does not solve this problem. There are even more
resilient pseudoprimes that resist being exposed which falsely pass the test for every
base (while a and n are co-prime). For example, 561 (=3.11.17). Such numbers
are called Carmichael numbers and there are infinitely many of them! The Miller-
Rabin Test makes some improvements to Fermat’s test, but even this test can be
fooled. For example, the third Carmichael number 1729 is pseudoprime.

AKS primality test
More recently, M. Agrawal and colleagues made significant advances in primality
testing. In August 2002, they announced a deterministic algorithm for determining
if a number is prime that runs on polynomial time much faster than the exponential
time of Fermat’s test (Agrawal et al. 2004). This test is known as the Agrawal-
Kayal-Saxena primality test, or AKS primality test. It states, very basically, that
given an integer n ≥ 2 and integer a is coprime with n, then n is prime if and only
if the following polynomial congruence holds:

(x + a)n ≡ (xn + a) (mod n).

It is similar to Fermat’s Little Theorem, and similarly can be proved using the
binomial theorem, but is still considered impractical.

Fibonacci
Here, we come to Fibonacci and primality testing. But how, one may ask, does
Fibonacci fit in with all this? The Fibonacci sequence begins as follows:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34...

In this sequence, starting with 0 and 1, each term is found by adding the previous
two numbers. Formally, it is the sequence of numbers Fn

∞
(n=1) defined by the linear

recurrence equation, where F0 = 0 and F1 = F2 = 1:

Fn = F(n−1) + F(n−2).

Existing Fibonacci primality tests
Fibonacci primality tests already exist, but usually test only for Fibonacci primes.2

A Fibonacci prime is a Fibonacci number Fn that is also a prime number, e.g.
2,3,5,13,89.... It is also known that every Fibonacci prime must also have a prime
index (i.e. n is prime), with the exception of F4 = 3. However, the converse is not
true. Not every prime index p gives a prime Fp (e.g. F19 = 4181 = 37.113). So this
test is not general, and it is not deterministic.

John Selfridge combines two tests conjecturing that if p is an odd number, and
p ≡ ± (mod 5), then p will be prime if both of the following hold:3

2p − 1 ≡ 1 (mod p),

2For further reading, John Brillhart, Note on Fibonacci Pri-
mality Testing, https://www.fq.math.ca/Scanned/36-3/brillhart.pdf,
https://people.csail.mit.edu/vinodv/COURSES/MAT302-S13/pomerance.pdf and Carl Pomer-

ance, Primality Testing: Variations on a theme of Lucas.
3https://en.wikipedia.org/wiki/Primality-testHeuristic-tests.



4 JULIAN BEAUCHAMP

Fp+1 ≡ 0 (mod p),

where Fk is the kth Fibonacci number. The first condition is the Fermat primality
test using base 2.

However, we wish to go further and find an even simpler general and determin-
istic test.

A Promising Prime Pattern in the Fibonacci Sequence
Dr. R. Knott of Surrey University has highlighted one promising pattern in the
primes, in a sequence of Fibonacci index numbers n where Fn can be divided by
n–1 (also http://oeis.org/A100993):

2, 3, 4, 8, 14, 18, 24, 38, 44, 48, 54, 68, 74, 84, 98, 104, ...4

So for example, F14 = 377, and 377 is divisible by n− 1 = 13. Now, if you subtract
1 from every element in the sequence, you get:

1, 2, 3, 7, 13, 17, 23, 37, 43, 47, 53, 67, 73, 83, 97, 103, ...

It looks like we have found a way to produce all the primes that end in 3 or 7!

Knott then gives a second list, a sequence of Fibonacci index numbers n where
Fn can be divided by n + 1 (also http://oeis.org/A100992):

10, 18, 28, 30, 40, 58, 60, 70, 78, 88, 100, 108, 130, 138, ...

For example, F30 = 832040, and 832040 is divisible by n + 1 = 31. This time, we
add 1 to each element to get:

11, 19, 29, 31, 41, 59, 61, 71, 79, 89, 101, 109, 131, 139, ...

Indeed, this time we find all the primes that end in 1 or 9! This is remarkable. If
we combine the two algorithms we appear to have an unconditonal algorithm that
produces all primes (apart from 5, the only prime that does not end in 1,3,7,9).
Unfortunately, it is rarely that simple! Although all the numbers in the first list are
one more than a prime (i.e. where n− 1 is prime), this is not true in general. Once
again, a pseudoprime snags the system. The smallest such pseudoprime is F324,
which has a composite factor 323 = 17.19. Nevertheless, the algorithm is so simple,
it could still be faster than exponential time, and perhaps even than polynomial
time (depending on the speed of generating Fibonacci numbers). It is general, but
not deterministic.

A General and Deterministic Fibonacci Test?
But what if we are dividing by the wrong numbers? What if, instead of dividing
Fn by n± 1 (i.e. where n is composite), we divided Fn±1 by n?

The table below gives the results up to n = 75. In the first column, n, the prime
values of n are highlighted in bold; the second column is the Fibonacci sequence; the
third and fourth rows are the results for Fn+1

n and Fn−1
n respectively to 2 decimal

places (integer results for n = p are marked in bold, and for n = 2p are marked
with [ ]*); the last column shows whether 1 was added or subtracted. Note that
the only 2 cases for which this does not work is n = p = 5, n = 2p = 10.

4http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibmaths.htmlsection2
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n Fn
Fn+1

n
Fn−1

n ≡ ±1
(mod p)

1 1 2.00 (trivial) 0.00 -
2 1 1.00 0.00 +1
3 2 1.00 0.33 +1
4 3 [1.00]* 0.50 +1
5 5 1.20 0.80 -
6 8 1.50 1.17 -
7 13 2.00 1.71 +1
8 21 2.75 2.50 -
9 34 3.89 3.67 -
10 55 5.60 5.40 -
11 89 8.18 8.00 −1
12 144 12.08 11.92 -
13 233 18.00 17.85 +1
14 377 [27.00]* 26.86 -
15 610 40.73 40.60 -
16 987 61.75 61.63 -
17 1597 94.00 93.88 +1
18 2584 143.61 143.50 -
19 4181 220.11 220.00 −1
20 6765 338.30 338.20 -
21 10946 521.29 521.19 -
22 17711 805.09 [805.00]* -
23 28657 1246.00 1245.91 +1
24 46368 1932.04 1931.96 -
25 75025 3001.04 3000.96 -
26 121393 [4669.00]* 4668.92 -
27 196418 7274.78 7274.70 -
28 317811 11350.43 11350.36 -
29 514229 17732.07 17732.00 −1
30 832040 27734.70 27734.63 -
31 1346269 43428.06 43428.00 −1
32 2178309 68072.19 68072.13 -
33 3524578 106805.42 106805.36 -
34 5702887 [167732.00]* 167731.94 -
35 9227465 263641.89 263641.83 -
36 14930352 414732.03 414731.97 -
37 24157817 652914.00 652913.95 +1
38 39088169 1028636.05 [1028636.00]* -
39 63245986 1621691.97 1621691.92 -
40 102334155 2558353.90 2558353.85 -
41 165580141 4038540.05 4038540.00 −1
42 267914296 6378911.83 6378911.79 -
43 433494437 10081266.00 10081265.95 +1
44 701408733 15941107.59 15941107.55 -

Continued on next page
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Continued from previous page

n Fn
Fn+1

n
Fn−1

n ≡ ±1
(mod p)

45 1134903170 25220070.47 25220070.42 -
46 1836311903 [39919824.00]* 39919823.96 -
47 2971215073 63217342.00 63217341.96 +1
48 4807526976 100156812.02 100156811.98 -
49 7778742049 158749837.76 158749837.71 -
50 12586269025 251725380.52 251725380.48 -
51 20365011074 399313942.65 399313942.61 -
52 32951280099 633678463.46 633678463.42 -
53 53316291173 1005967758.00 1005967757.96 +1
54 86267571272 1597547616.17 1597547616.13 -
55 139583862445 2537888408.11 2537888408.07 -
56 225851433717 4033061316.39 4033061316.36 -
57 365435296162 6411145546.72 6411145546.68 -
58 591286729879 10194598791.03 [10194598791.00]* -
59 956722026041 16215627560.03 16215627560.00 −1
60 1548008755920 25800145932.02 25800145931.98 -
61 2504730781961 41061160360.03 41061160360.00 −1
62 4052739537881 65366766740.03 [65366766740.00]* -
63 6557470319842 104086830473.70 104086830473.67 -
64 10610209857723 165784529026.94 165784529026.91 -
65 17167680177565 264118156577.94 264118156577.91 -
66 27777890035288 420877121746.80 420877121746.77 -
67 44945570212853 670829406162.00 670829406161.97 +1
68 72723460248141 1069462650707.97 1069462650707.94 -
69 117669030460994 1705348267550.65 1705348267550.62 -
70 190392490709135 2719892724416.23 2719892724416.20 -
71 308061521170129 4338894664368.03 4338894664368.00 −1
72 498454011879264 6922972387212.01 6922972387211.99 -
73 806515533049393 11048157986978.0011048157986977.97 +1
74 1304969544928657 [17634723580117.00]* 17634723580116.97 -
75 2111485077978050 28153134373040.68 28153134373040.65 -

This has been successfully tested up to 5,000 primes by R. Knott using Mathe-
matica. So using only the Fibonacci sequence, it appears to test for primes with
100% accuracy, without pseudoprimes. Thus we wish to conjecture that (except for
p = 5) if p is prime, then p will always divide Fp + 1 (if Fp terminates in digits 3 or
7) or will divide Fp − 1 (if Fp terminates in digits 1 or 9). The only composite it
holds true for is 2p, where 2p divides F2p±1 (under equivalent conditions). In other
words, for all p, Fp ≡ ±1 (mod p), F2p ≡ ±1 (mod 2p). For all other composites,
Fn 6≡ ±1 (mod n).

Conversely if Fn + 1 is divisible by n (when Fn terminates in digits 3 or 7) then
n is prime, and if Fn−1 is divisible by n (when Fn terminates in digits 1 or 9) then
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n is prime.

Let us test, for example, the number 323 which we now know to be composite
(ie = 17.19). We saw that where Fn has a factor n − 1, F324 is the smallest value
of n with a composite factor. Our new test does not mistake 323 for a prime (note
the hiding decimal point!):

F323 + 1

323
= 653993316759722586433249249238274010

38052685805385323789473.684210526315789473

68421052631578947368421052631578947368421052631578947

If we test the composite 341, Fermat’s Little Theorem’s first pseudoprime, this
too is not fooled by the algorithm:

F341 − 1

341
= 2412936784055600867605299525377842858648853410791274276

58682660633372.2580645161290322580645161290322580645161290322580645161290323.

These brief examples do not prove our conjecture, but do help reinforce the suspi-
cion.

Conclusion
All this raises several questions. First, most importantly, can this primality test be
proven? Does the test produce any pseudoprimes that our own tests have not yet
shown? Or, indeed, are there any primes for which the test does not hold true?
And what we would really like to know is what are the deeper underlying properties
of the Fibonacci sequence that allow us to test like this?
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