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Abstract. We present a graph to illustrate a chain of events within the theory of special relativity. This 
spacetime diagram provides both the so-called proper time and calendar time, in addition to one space 
parameter. All parameters of the graph are given in time units, and we also relate the graph to a time 
vector in two dimensions. The graph depicts objects (events) having a piecewise constant velocity. It is 
exemplified by various versions of the ‘traveling twin paradox’.  

Keywords: Spacetime diagram, event graph, time vector, internal clock, traveling twin, simultaneity, µ-
mesons.  

1 Introduction 
Previously we have introduced a time vector in the theory of special relativity (TSR); cf. Hokstad (2018, 
2019). Here we build on this work and present a graph to describe the movements of an object with 
piecewise constant velocity. In its simplest form, this was also suggested by Epstein (1987). 

This ‘event graph’ is a spacetime diagram, analogous e.g. to the ‘worldline’ of Minkowski; cf. Petkov 
(2012). However, we use the so-called ‘proper time’ and the position as the two main parameters of the 
diagram; also providing the ‘calendar time’. Starting out from the time vector, we give all these 
parameters in time units. 

We apply the approach to various versions of the ‘traveling twin’ example, providing the basis for a 
short discussion on the simultaneity of events. The case of the µ-mesons is also used as an illustration, 
leading to a comment on the interpretation of this case. 

2 Basic notation and the time vector 

We start out from the following basic situation: There is a Reference Frame (RF), denoted K, having 
one space coordinate, x. This has synchronized, stationary clocks located at virtually any position. 
Further, there is an object moving at velocity, w relative to K, along the x-axis. The object starts out 
from the origin of K, when the clock at this position on K reads 0. All events are given relative to this 
‘point of initiation’ (p.o.i.).  

Also (we imagine that) this moving object brings with it a clock, and when the object passes the origin 
at time 0, this clock is synchronized with the clock on K at this position.  

We introduce three fundamental parameters related to the movement of this object. First: 

τ = Clock reading of the clock following the moving object. We would say that this is the ‘internal 
time’ of the object/event, but usually, this is referred to as the ‘proper time’.  

Further, we have two parameters (t, x), which specify an event on the chosen RF, K: 

𝑥 = Position of the moving object relative to K, (when the passing clock reads τ); 

𝑡 = Clock reading of the clock permanently located at position 𝑥 on K, when the moving clock reads 
τ; (this t is usually referred to as ‘calendar time’). 

It is well-known that the proper time, τ is independent of which RF we choose as the basis for our 
observations. So we consider this clock reading, τ of the embedded (‘internal’) clock as the most 
fundamental parameter. 

In contrast, the (𝑡, 𝑥) parameters, will of course depend on which RF we have chosen for describing the 
observations. Now, we also have the relation 
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𝑤 = 𝑥/ 𝑡, i.e. the velocity of the object relative to the RF, K. 

Further, 

c = speed of light, 

Then - according to the so-called time dilation in TSR, we have (e.g. Mermin (2005)) that: 

                                                  𝜏 = ඥ𝑡ଶ − (𝑥/𝑐)ଶ = 𝑡ඥ1 − (𝑤/𝑐)ଶ                                                  (1) 

We proceed to introduce a time vector related to an event (t, x): 

                                                           𝑡 = ቀ ఛ
௫/

ቁ = ቀ
௪/

ඥଵି(௪/)మ
ቁ 𝑡                                                                           (2) 

The absolute value of this vector equals  

                                                           │𝑡│ = 𝑡 = ඥ𝜏ଶ + (𝑥/𝑐)ଶ                                                           (3) 

We note that all the three parameters τ, 𝑡 and 𝑥/𝑐 represent time. In particular, 𝑥/𝑐 equals the time 
required for light to traverse the distance x from the origin to the location of the event. We can also see 
t as the event’s total ‘distance’ (in time) from the given p.o.i., where eq. (3) represents a decomposition 
of this t into its two components, 𝜏 and x/c. 

This time vector, (2), actually comprises the information of all the above four fundamental parameters 
of an event. Obviously, we can formulate the time vector 𝑡 as a complex variable, e.g. Hokstad (2019). 
Here we just point out that we may also define an angle, 𝜑௪ ∈ [−𝜋/2,   𝜋/2] by   

                                                                  sin 𝜑௪ =
௪


=  

௫/ 

௧
                                                                 (4)  

3 A simple event graph 

We now introduce a graphical approach to describe the series of events, defined by this moving object. 

3.1 Specification 

Fig. 1 provides a graphical illustration of the four parameters: 𝜏, 𝑥/c, 𝑡 and w, related to a specific event. 
The absolute value (length) of the time vector, 𝑡, provides 𝑡. The slope of the line provides 𝜑௪ and, thus, 
also the velocity, w. Now the two components (abscissa and ordinate) of the time vector are given as 
see eqs. (1), (4): 

𝜏 = 𝑡ඥ1 − (𝑤/𝑐)ଶ = 𝑡 cos 𝜑௪  

                                                                    
௫


=

௪௧


= 𝑡 sin 𝜑௪            

  

Figure 1. An ‘event graph’: A chain of events, (t, 𝒙)𝝉ஹ𝟎 on a specific RF; describing an object of a 
constant velocity, w relative to this RF.  
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Thus, by specifying the object’s velocity, w (relative to our RF) and its proper time, τ, the graph will 
directly give the corresponding event parameters, (𝑡, 𝑥) relative to the chosen RF.  

Now, in addition to illustrate a specific time vector, this line also illustrates the whole chain of events, 
representing the object’s movement from time 0. We denote this an ‘event graph’.  

3.2 Examples 

We illustrate the above graph with a couple of standard examples. 

 

 

 

 

 

 

 

 

 

a) Travelling twin (three event graphs)  b) My-meson (three event graphs) 

Figure 2.  Simple examples of the event graph. 
 

Example 1. The traveling twin. 

We apply a standard numerical example, as given for instance in Mermin (2005). Here the travelling 

twin leaves the earth in a rocket of velocity, w = 0.6c. This gives ඥ1 − (𝑤/𝑐)ଶ = 0.8. He travels to a 
‘star’ located 3 light years from the earth. This means that 𝑥/𝑐 = 3 years. Further, the RF of the earth 
has a synchronized clock located at the star, and by the arrival of the twin to the star, this clock will now 
read, 

𝑡 = 𝑥/𝑤 = 3c/0.6c = 5 years. 

At this instant the travelling twin’s clock will - according to the TSR, (see equation (1)) – read,  

𝜏 = 𝑡ඥ1 − (𝑤/𝑐)ଶ  =  5 ∙ 0.8 = 4 years. 

Thus, by the arrival of the rocket to the star we have 𝜏 = 4 years, 𝑥/𝑐 = 3 years, 𝑡 = 5 years. Or, 
expressed by the time vector related to this even, (see the blue line OB of Fig. 2. A)): 

𝑡ைሬሬሬሬሬሬ⃗ = ൬
𝜏

𝑥/𝑐
൰ = ൬

4

3
൰ ,   with  │𝑡│ = 𝑡 = 5.  

Here O represents the twins’ start of the travel, and B the event of his arrival to the star. Thus, the line 
OB also represents the twins’ travel to the star. 

In addition, we have in this figure inserted two other event graphs. First, the red line OA, illustrating the  
the clock of the brother who remains on the earth, (thus, having x/c ≡ 0); and finally, the line CD, 
illustrating the (imagined) clock permanently situated on the star. 

So, in this illustration, it is essential that all the three event graphs are related to the same RF, (that of 
the earth). In this perspective, all three event chains start ‘simultaneously’ with t = 0, (at events O and 
C .respectively). 

B 
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So, in the perspective of this RF, it is fair to say that the figure gives a snapshot of three time vectors, 
𝑡ைሬሬሬሬሬሬ⃗ , 𝑡ைሬሬሬሬሬሬ⃗  and 𝑡ሬሬሬሬሬሬ⃗  representing three ‘simultaneous’ (chains of) events. 

Example 2. The My-mesons. 

For instance, Mermin (2005) refers to this standard example essentially as follows: The µ-mesons are 
produced by cosmic rays in the upper atmosphere. When 'at rest' they have a lifetime of about 2 
microseconds. So if their internal clocks ran at a rate independent of their speed, about half of them 
would be gone after they had traveled 2.000 feet. Yet about half of the µ-mesons produced in the upper 
atmosphere (about 100.000 feet up) manage to make it all the way down to the ground. This is because 
they travel at speed so close to the speed of light that they can survive for 50 times as long as when they 
are stationary. 

Describing this phenomenon in the perspective of (the RF of) the earth, the situation is quite similar to 
that of Example 1; and is illustrated in Fig. 2 b). The creation of the µ-mesons in the upper atmosphere 
is event O, (x/c = τ = 0). The blue line OB represents the movements of the my-mesons, and by the 
arrival to the earth (B), the τ value of the my-mesons equals (cf. CB) τ = 2∙10-6 sec.  

Further, the line CD is the event graph of the clock located on the earth, having the duration t ≈ 2∙10-6 
∙50 = 10-4 sec. This equals the distance OB.  Actually, also the distance traveled by the µ-mesons, (OC), 
equals x/c ≈ 10-4 sec. 

I think this case is interesting, as there are different ways to describe/interpret these results. Mermin 
(2005) says: “The atomic particles can go much further because their internal clocks that govern when 
they decay are running much more slowly in the frame in which they rush along at speed close to c. This 
is a real effect. …. “. When he refers to the ‘internal clock’, I assume this should be interpreted as the 
imagined clock, following the mesons, and reading the ‘proper time’, τ.    

And obviously, the lifetime given by this τ-value is much less than the one given as the t – value observed 
by the clocks of the earth’s RF. However, the τ-value is independent of the RF being applied by the 
observer, (cf. Example 3 below)! So, why say that the ‘internal clock’ is running more slowly in this 
situation? Actually, various observers will get different results for the life time of the mesons, simply 
because they move at different speeds relative to the phenomenon. The inner clock, however, is not 
affected by the velocity. For instance, Serret (2018) is in favor of this way to interpret the phenomenon. 
The question is rather, shall we describe this as a true physical phenomenon, or is it rather an 
‘observational phenomenon’. 

Example 3. Equivalent events. The Lorentz Transformation. 

Contrary to all the other examples, here we do not take the perspective of a specific RF. We consider 
one specific event, and illustrate how this is specified by different RFs, moving relative to each other. 
In other words, we illustrate the Lorentz Transformation (LT), but involving an arbitrary number of RFs. 

We start with specifying an event having an ‘internal clock’ reading 𝜏; (in previous works we have 
denoted these clocks for ‘Basic Clocks’). For simplicity, we let this clock be located at the origin of an 
RF, K, having velocity 0. Further we have, for any w, an RF, Kw, which has velocity w relative to K. 
Furter, let (tw, xw) be the time and space coordinates on Kw for the specified event. Thus xw = w tw, and 
according to standard theory, (see eq. (1)): 

𝜏 = ඥ𝑡௪
ଶ − (𝑥௪/𝑐)ଶ = 𝑡௪ඥ1 − (𝑤/𝑐)ଶ 

This relation is valid for all w, and is illustrated in Fig. 3. Here OA represents the time vector of the 
‘internal clock’; (located at the origin of K, having velocity 0 and t = τ). Further, the blue vectors 
represent the time vectors of the same event, relative to some arbitrary RFs. So, OB exemplifies the time 
vector for this event, as specified on an RF moving with velocity w relative to K  (with the ‘internal 
clock’ of the event).  
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Figure 3.  Diagram illustrating the Lorentz transformation (for any number of RFs). 
 

The point is that – given the 𝜏 of the event – we just determine 𝜑௪ from (eq. (4)), that is sin 𝜑௪ = 𝑤/𝑐, 
and then directly observe xw and tw from the figure. So, this is similar to Fig. 1, In Fig 3, however, w is 
the velocity of the RF relative to the ‘internal clock’ of the event, and corresponds to -w in Fig. 1. 

Note that if we have two events (𝑡௪
, 𝑥௪

), i = 1, 2, corresponding to this 𝜏, it follows that  

𝜏 = 𝑡௪
ඥ1 − (𝑤 /𝑐)ଶ = 𝑡 cos 𝜑௪ , i = 1, 2 

                                                                    
௫ೢ


=

௪௧ೢ


= 𝑡 sin 𝜑௪ , i = 1, 2       

We note that this gives the following relation between (𝑡௪భ
, 𝑥௪భ

) and (𝑡௪మ
, 𝑥௪మ

)  

𝑡௪మ
=

ඥ1 − (𝑤ଵ /𝑐)ଶ

ඥ1 − (𝑤ଶ /𝑐)ଶ
𝑡௪భ

 

𝑥௪మ
=  

𝑤ଶඥ1 − (𝑤ଵ /𝑐)ଶ

𝑤ଵඥ1 − (𝑤ଶ /𝑐)ଶ
𝑥௪భ

 

So, this represents an alternative formulation of the LT. Now the velocity, v between the two RFs are 
given by a standard formula in TSR, e.g. see Mermin (2005): 

𝑣 =
௪భି௪మ

ଵି௪భ௪మ/మ     

4 Generalizations 

We now look at a couple of generalizations of the above approach. 

4.1 An event graph of piecewise constant velocity 

The event graph of Ch. 3 is based on having an event of constant velocity, w, cf. Fig. 1. But we can 
similarly illustrate a chain of events for an object having a piecewise constant w, see the example given 
in Fig. 4. In this figure we start with a constant w > 0, see the line OA. After a certain time, the object is 
brought to rest, that is w = 𝜑௪  = 0, giving a line (AB) parallel to the abscissa, τ. Next, the object 
approaches the origin; i.e. having a negative w, (line BC) Thereafter the ‘object’, (or now rather ‘event’), 
has velocity, w = c, (𝜑௪ = 𝜋/2), and the line (CD) is orthogonal to the τ-axis, etc. (Note that the 
object/clock all the time moves in the same direction; that is, the x-axis of K.)  

 τ  

x /c 

O 
A 

 φw 

 τ  

𝑡௪ 
𝑥௪/𝑐 B 
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Strictly speaking, TSR is said to apply for objects having a constant w. So, at the instants where the 
magnitude of the velocity, w changes, we also imagine a change of the ‘internal’ clock. We may assume 
that a clock with the new velocity is passing the previous clock at exactly the right moment, and this is 
then synchronized with the old clock. Whether this is physically feasible is not really the question. We 
just imagine that these internal clocks are present, and the time, τ is what we would observe if they were 
present.  

 

Figure 4. An event graph illustrating an object’s movement, when the velocity, w is piecewise 
constant. The length of the graph equals the elapsed (calendar) time, 𝒕 on the RF.  

It is rather trivial to see that the length of the graph for a chain of events (𝑡, 𝑥)τ≥0 up to a certain τ-value 
will still be equal to the calendar time, 𝑡 of the end event. But this length is not defined by the time 
vector, 𝑡 of the end event. So, in Fig. 4, the calendar time, t will depend on the past history, and for the 
end event, E, this will equal, (hopefully, with a self-explanatory notation) 

𝑡 = 𝑡ைିா =  │𝑡ைሬሬሬሬሬሬ⃗ │ +  │𝑡ሬሬሬሬሬሬ⃗ │ +  │𝑡ሬሬሬሬሬሬ⃗ │ + │𝑡ሬሬሬሬሬሬ⃗ │ + │𝑡ாሬሬሬሬሬሬ⃗ │. 

4.2 Extension to three space coordinates   

In the approach, described so far, there is a single space coordinate, 𝑥, only. We could, however, 
introduce three space coordinates (𝑥, 𝑦 , 𝑧) with corresponding velocity coordinates, (wx, wy, wz). For 
simplicity we just consider the case of having a constant velocity throughout; now with a velocity vector  

𝑤ሬሬ⃗  = (wx, wy, wz)T 

So, when we have the calendar time, 𝑡 at the position (𝑥, 𝑦 , 𝑧) on K, it follows that  

(x, y, z)T = 𝑡 ∙ (wx, wy, wz)T 

At this instant the spatial distance from the origin of K equals 

𝑙 = ට𝑥ଶ + 𝑦ଶ + 𝑧ଶ  = 𝑡 ∙ ට𝑤௫
ଶ + 𝑤௬

ଶ + 𝑤௭
ଶ  

The absolute value of the velocity vector, 𝑤ሬሬ⃗  = (wx, wy, wz)T equals 𝑤 = ට𝑤௫
ଶ + 𝑤௬

ଶ + 𝑤௭
ଶ . Thus, w=l/t. 

Now we can apply the results of Section 3.1, by just replacing 𝑥 by 𝑙. In analogy with eq. (4) the event 
graph is still defined by 𝜑௪ , now having 

sin 𝜑௪ = 𝑤/𝑐 =    𝑙/𝑐𝑡. 

Finally, we note that this graphical approach is somewhat similar to Minkowski’s spacetime diagram 
with three space coordinates, x, y, z, and an imaginary time coordinate, t. The coordinates of his space 
are (x, y, z, i∙ct). As opposed to this, we have transformed the spatial parameters to time, and we have 𝜏 

 

w=0 
w=c 

x/c 

τ  

E 

A B 

C 

D    

O 
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rather than t as the time coordinate. In his paper, Minkowski (1909) also introduced the spacetime 

distance, given as ඥ𝑐ଶ𝑡ଶ − 𝑥ଶ − 𝑦ଶ − 𝑧ଶ in his four-dimensional space, while we in the current 

approach refer to 𝑡 = ඥ𝜏ଶ + (𝑥/𝑐)ଶ as the total ‘distance in time’ (from the ‘point of initiation’). As 
pointed out for instance by Petkov (2012),  Minkowski introduced the term proper time for τ =

ඥ𝑡ଶ − (𝑥/𝑐)ଶ  and coordinate time for t; which are the commonly used terms for these parameters.  

5 Example: the travelling twin 

We now apply the results of Section 4.1, and will discuss Example 1 of Section 3.2 in much more detail. 
This travelling twin paradox, goes back to Langevin (1911), and shall illustrate that if one twin leaves 
the earth at a speed close to c, and then returns to the earth, he will by the return have aged less than his 
brother. Or in terms of clocks: If we initially have two synchronized clocks at the same place, then they 
can end up with different readings if they move apart and then are brought together again. This example 
is frequently discussed, both in text books and papers, for instance see Debs and Redhead (1996) and 
Schuler and Robert (2014). It is very well suited to illustrate the graphical approach of the present work.  

We apply the same numerical values as given in Example 1, and wil now consider the entire travel. First, 
we take the perspective of the twin remaining on the earth. His RF is denoted K, and has its origin at the 
earth. Next, we apply the perspective of the travelling twin on his travel from the earth, (RF, KT). Finally, 
we take the perspective of an RF, KS, demonstrating complete symmetry between the two twins.  

Note that (we imagine) both twins carry their own ‘internal’ clock, and this clock reading, τ represent 
the twin’s age.  

5.1 The perspective of the earth-based RF, K 

Fig. 5 presents two graphs, illustrating the total chain of events, both that of the travelling twin, and also 
that of the twin remaining on the earth. Both graphs describe the events in the perspective of K, (i.e., the 
earth’s RF). As seen in Example 1 the travelling twin’s travel to the star is described by the blue line, 
OB at an angle 𝜑௪, where sin 𝜑௪ = 𝑤/𝑐 = 0.6. 

 

Figure 5. Event graphs of the two twins in the perspective of the earth-based RF, K. The blue graph 
describes the travelling twin’s journey. The red line follows the twin on the earth, having 𝑥/c ≡ 0. 
 

At the turning point, B, of the traveling twin we found that 𝜏 = 4, 𝑥/c = 3, 𝑡 = 5. At this point, the 
velocity abruptly changes to -w. As we pointed out in Section 3.2, this actually implies that – strictly 
within the framework of TSR - we should rather introduce a second rocket bringing a clock back to the 
earth; and by passing the star at the right moment, this returning clock is also set to time 𝜏 = 4.1 So 
strictly speaking it is not the travelling twin’s clock that is returning. 

Now the return travel is given by BC, and the total blue graph illustrates the well-known results that by 
the return to the earth (where again 𝑥 /c = 0), the returning clock shows τ = 8 years (OC). So at this 

 
1 So this presentation corresponds to the ‘three brothers‘ approach’, suggested by Lords Halsbury,  being referred 
in Debs and Redhead (1996).  
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moment it has elapsed a time t = 5 + 5 = 10 years on K, which equals the total length of the blue graph, 
(OB + BC).   

The red line, OA illustrates the very simple ‘chain of events’ related to the twin at the earth. He is 
permanently stationed at the origin, O of K. So, now we have w ≡ 0, and thus also 𝜑௪ ≡ 0, giving 𝑥 /c 
≡ 0 and 𝑡 ≡ 𝜏, (all 𝜏). As we just found by identifying the blue graph: by the return of the twin to the 
earth it has elapsed a time 𝑡 = 10 years on K, and the red event graph ends with 𝑡 = 𝜏 = 10 years.  

5.2 The perspective of the travelling twin KT 

As an exercise we also consider the same two chains of events from the perspective of the RF moving 
away from the earth at velocity, w., The rocket is located at the origin of this RF, which we denote KT, 
(with time, tS and position, xS). When the travelling twin arrives to the star, this KT continues its journey 
away from the earth; (as we consider RFs of constant velocity, only).  

Fig. 6 provides an illustration. Again, the red line refers to the event chain for the earthbound twin. This 
twin is moving along the negative 𝑥்/c-axis of KT at velocity -w, Thus, this graph has an angle 𝜑ି௪ 
relative to the 𝜏-axis, where sin 𝜑ି௪ = −𝑤/𝑐 = −0.6. 

 

Figure 6. Event graphs of the two twins in the perspective of KT, which is the RF of the travelling twin 
on his travel away from earth.  

This line is valid for the entire event chain. So, at the instant when his internal clock reads 𝜏 = 10 years, 
it follows that the parameters on KT of this event equals xT /c = -7.5 years and tT = 12.5 years. Thus, the 
red line gives a full description of the ‘journey’ for the earthbound twin, as described in KT. 

To follow the travelling twin, we look at the blue line in Fig. 6. For the first four years he remains at the 
origin of KT. When 𝜏 = 4, (and xT = 0, tT = 4) there is an abrupt change in his velocity. For 𝜏 ≥ 4 the blue 
line illustrates the returning twin (or rather clock). This shall have a velocity w relative to K. Further, 
the speed between K and KT also equals w. So now we must apply the rule for adding velocities in TSR, 
e.g. see Mermin (2005). According to this the returning clock it will have the following velocity relative 

to KT:                                                           𝑢 =
ି௪ି௪

ଵା(ି௪/)మ = −
ଶ௪

ଵା(௪/)మ                                                        (5) 

Now inserting w/c = 0.6 here, we get u/c = −15/17. So, for the return travel (𝜏 ≥ 4) the blue graph has 

an angle, 𝜑௨ given by sin 𝜑௨ = 𝑢/𝑐 = −15/17, (and further, cos 𝜑௨ = ඥ1 − (𝑢/𝑐)ଶ  = 8/17. This 
fully describes the direction of the blue graph for  𝜏 ≥ 4. 

4 τ  

xT /c 
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Further, we found that the two event chains end when xT /c = -7.5 years on KT. This is the location on KT 
where the two twins are reunited. So, now we have fully determined also the blue graph. Fig. 6 
demonstrates that when xT /c = -7.5 years the returning clock reads 𝜏 = 8 years, while that of the twin 
on the earth reads 𝜏 = 10 years; (which we already know from Section 5.1, as 𝜏 does not depend on the 
RF). We also see that the clock reading on KT when the blue graph terminates, equals tT = 4 + 8.5 = 12.5 
years; which of course is equal to the length of the red graph.  

5.3 A symmetric approach 

Finally, we choose an approach of complete symmetry between the two twins. We observe both twins 
in the perspective of an auxiliary RF, KS, (where time is denoted tS and position denoted xS). During the 
travel away from the earth the origin of this RF is located at the midpoint between the two twins. Now 
the travelling twin has a velocity w* relative to KS. and the earthbound twin a velocity -w*, relative to 
the same RF, where the two w* ‘sum up’ to w. In TSR this means that (in analogy with eq. (5)): 

2𝑤∗/𝑐

1 + (𝑤∗/𝑐)ଶ
=

𝑤

𝑐
=  0.6 

From this relation we derive that  

𝑤∗/𝑐 =
𝑤/𝑐

1 + ඥ1 − (𝑤/𝑐)ଶ
= 1/3 

In other words, if the two twins move away from the origin of KS at relative speed ±𝑐/3, respectively, 
then the velocity between the twins will equal the specified value, w = 0.6c. 

Now we will obtain the graph for the traveling twin’s travel to the star, relative to this RF, KS. Again, 
we know that by the arrival to the star the clock reading for the clocks following the travelling twin 
reads τ = 4, (as it does not depend on the RF). Further, his velocity in the RF, KS, equals 𝑤∗ = 𝑐/3,  
giving sin 𝜑௪∗ = 𝑤∗/𝑐 = 1/3. From these results it is now quite easy to derive 𝑡ௌ and 𝑥ௌ, and we find 
that in this RF, the traveling twin’s journey to the star is given by the line OB of Fig 7, where 

𝑡ைሬሬሬሬሬሬ⃗ = ቀ ఛ
௫ೞ/

ቁ = ቀ ସ

√ଶ
ቁ, and │𝑡ைሬሬሬሬሬሬ⃗ │= 𝑡ௌ = 3√2 years 

That is, by the travelling twin’s arrival to the star, the local clock on KS reads 𝑡ௌ = 3√2  years, and the 

position on KS equals 𝑥ௌ = √2 light years. Now exactly the same argument applies for the earthbound 
twin, and the line OA represents the first part of his journey with respect to KS. 

To finalize this example, we must decide how the two twins shall unite again. The standard answer is 
that the traveling twin is turning, and the twin on the earth remains ‘at rest’, (as was demonstrated in 
Figs. 5 and 6). But various options exist, and in this example we will maintain the symmetry throughout. 

 

Figure 7 Event graphs for the two twins, now united at the star; both graphs in the perspective of 
the auxiliary RF, KS.  

τ  

 xs/c  

√2 

4   8 

3√2 3√2  

O 

B 

C 

A 

 φw* D 
 6√2  



10 
 

So now we let the twins return to the origin of KS in a symmetric way. Thus, both twins turn and move 
in the opposite direction (at speed ±𝑤∗) until they meet again at the origin of KS. In Fig. 7 the graphs 
OBC and OAC represent the total travels of the two twins in this set-up. Both graphs have length tS = 

6√2 ≈ 8.5 years. Thus, the clock at the origin of KS reads 6√2 ≈ 8.5 years at this instant of return; OD 
represents the event graph of this clock. (This would be the age of a person permanently located here.)  

Further, we see that when the twins meet on the star, (at the origin of KS) the internal clocks of the twins 
both read τ = 8 years; (i.e. their age at this instant). Note that we can sum up the travels as follows: 
 KS moves at a constant velocity w* towards the star in the whole period. 

 The travelling twin, after having arrived at the star, actually remains there, giving a velocity -w* 
relative to KS. 

 The ‘earthbound twin’ first remains on the earth (OA). Next he moves at velocity v with respect to 
the earth’s RF, K, giving velocity w* relative to KS. 

 

Figure 8 Event graphs for the two twins; same events as in Fig. 7, but now in the perspective of 
the earth, K.  

So, what really happens here is more ‘easily’ described in the perspective of the earth (K); see. Fig. 8. 
The travelling twin (blue graph) travels to the star and arrives there after 4 years (according to his own 
clock); the clock of K reading 5 years. And he remains there until the brother arrives 4 years later. The 
other twin (red graph) first remains on the earth in 4 years. Then he starts out to the star, arriving there 
4 years later; (but according to the stationary clocks on K it has passed 5 years). So, by the reunion, the 
twins have a position given by x/c = 3 light years, and the time on K equals t = 4 + 5 = 9 years. Finally, 
we note that the first parts of Fig. 8 (of course) is identical to Fig. 5. 

5.4 Some observations related to these examples 

The above event graphs well describe some basic features in special relativity. The first part of the travel 
is identical in all the Figs. 5-8, and they illustrate the basic fact that the reading, 𝜏, of any specific 
(‘internal’) clock does not depend on the chosen RF, (i.e. the ‘perspective’). In particular, by the arrival 
to the star, the clock of the travelling twin reads  𝜏 = 4 whatever RF we may choose.  

Obviously, also the strategy for how the twins shall reunite is essential for the resulting outcome on the 
age difference. Figs. 5 and 6 illustrate the standard strategy. Then the twins’ clocks will read 𝜏 = 8 and 
 𝜏 = 10, respectively, by the reunion, (any RF). Figs. 7 and 8 illustrate the more symmetric approach, 
and then the clocks of both twins will read 𝜏 = 8 by the reunion. So, it is the strategy for uniting the 
twins that determines the age difference when they come together.   

Further, can the above examples say something about simultaneity? Of course Figs. 5-8 present event 
chains that we must consider to be simultaneous: they start at both the same time and location, and also 
end at the same time and location, (when the twins are reunited). Quite another question is simultaneity 
‘at a distance’ which is not properly defined in TSR. We know that the travelling twin has aged 𝜏 = 4 
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years when he arrives at the star, but does it make sense to ask about the age of the twin brother at this 
moment? 

There are two candidates for indicating such a simultaneity: First, the t-value of the chosen RF, and 
secondly, the 𝜏-value of twins’ clock. Now consider the four cases of Figs. 5-8. In Fig. 5 the two criteria 
give different results; In the perspective of K, we get have t = 5 for the travelling twin, and so the 
earthbound twin has aged 5 years, (as 𝑡 = 𝜏 for him). But based the twins’ internal clocks (𝜏), the arrival 
to the star is simultaneous with the earthbound twin also having aged 4 years. 

In the rather strange case of Fig. 6 we still have that the travelling twin has aged 𝜏 = 𝑡் = 4 years by 
the arrival to the star. Thus, according to the 𝜏-criteria, also the earthbound twin has aged 4 years. But 
according to the 𝑡்-value he has aged 𝑡் cos 𝜑௪ = 4 ∙ 0.8 = 3.2 years; (by interchanging the RF, it is 
the earthbound twin that apparently ages more slowly). 

The last two cases (Figs. 7 and 8) are special as they are symmetric with respect to the two twins. Fig. 7 

presents a completely symmetric set-up where 𝜏 = 4 and tS =3√2 when the travelling twin arrives to 
the star, and the symmetry makes it completely clear that this is ‘simultaneous’ with the 
earthbound twin experiencing the same values. That is, the earthbound twin has also aged 4 
years at this instant. In the case of Fig. 8, K is again the chosen RF, and the first part is identical 
to that of Fig, 5; discussed above.  

So, as we know, there is no unique conclusion here. However, we must point out that the 
symmetry of Fig. 7 is rather convincing. Here we can define simultaneity of the two events, by 

having both the same 𝜏 and the same t-values, (and thus also the same│x/c│of the relevant K). One may 
object that in Fig. 7 we do not apply the ‘correct’ strategy for the reunion, (as in Fig. 5). However, what 
happens after the arrival to the star should not affect how we judge simultaneity of the event B. 

In total, these cases confirm my view that, when it comes to specifying some sort of ‘simultaneity’ of 
events, the proper time 𝜏 of the ‘internal’ clocks is more fundamental than the calendar time, t, (which 
varies wildly from one RF to another). 

Of course, we can choose the perspective of a specific RF, and then the time t of that RF gives a sensible 
criterion. So, if a specific perspective (RF) for some reason should be preferred, we could base a 
‘simultaneity’ criterion on the t – value.  

So, even if a proper definition of ‘absolute simultaneity’ is not possible in TSR, there should be sensible 
ways to specify weaker versions of, say, a ‘conditional simultaneity’; (meaning that we restrict the 
number of events to consider); somewhat analogous to the way we define ‘conditional probability’. 
Some further investigation here could be interesting.  

6 Summary 

We present a graphical approach to describe and investigate the movement of an object, as observed 
within a specific reference frame (RF). The object has a piecewise constant velocity, and the event graph 
illustrates all parameters of an event: 

1. The proper time, τ of the moving object, i.e. the reading of its imagined ‘internal clock’.  
2. The calendar time, t as read on the chosen RF, (at the relevant location).  
3. The position x - divided by the speed of light, c; (representing the time required for the light to 

traverse this distance).  

The graph illustrates how the time, t is decomposed into its two orthogonal components, τ and x/c.  We 
also observe that the event (𝑡, 𝑥) relative to the specified RF is derived from the proper time, τ, together 
with the object’s relative velocity, w, (which we observe in the graph by the angle 𝜑௪).. We note that 
the approach is somewhat related to the work of Minkowski, cf. his ‘world line’. 
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As an example, we make extensive use of the travelling twin case; illustrating different ‘perspectives’, 
i.e. choice of  RF, and also different strategies for the reunion of the twins. 

Based on this, we include a short discussion on ‘simultaneity’, and suggest that it could make sense to 
refer to a ‘conditional simultaneity’; in particular, when we restrict to a certain symmetry of events.  

Contrary to the parameters (t, x), the proper time, 𝜏 is independent of the RF where we have chosen to 
perform the observations. As it is the phenomenon as such that should be of main interest - irrespective 
of the chosen RF – I rather see 𝜏 as the primary ‘event parameter’; being more fundamental than t and 
x. I argue that this should affect the way we talk about/interpret time within the STR, and should be 
relevant e.g. when we discuss the case of the µ-mesons. 
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