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Abstract

This author has replaced the Maxwell equations with the corresponding mutual energy principle,

self-energy principle as the axioms in electromagnetic �eld theory. The advantage of doing this is

that it can overcome the di�culty of the Maxwell equations, which con�icts to the energy conserva-

tion law. The same con�ict also exists in the Schrödinger equation in the quantum mechanics. This

author would like to intruded the mutual energy principle to quantum mechanics, but has met the

di�culty that there is no advanced solution for the Schrödinger equation. This di�culty is over-

come by introducing a negative radius. After this, all the theory about the mutual energy can be

extend from the �eld satisfying Maxwell equations to the �eld satisfying Schrödinger equation. The

Schrödinger equation can also be derived from the corresponding mutual energy principle. However,

this doesn't mean both sides are equivalent. The mutual energy principle cannot derive a single so-

lution of Schrödinger equation. The mutual energy principle can only derive a pair solutions of the

Schrödinger equations. One is for retarded waves and another is for advanced waves. The retarded

wave and the advanced wave must be synchronized. The solutions of the mutual energy principle is

in accordance with the theory of the action-at-a-distance and the absorber theory. A action is done

always between two objects, for example a source (emitter) and a sink (absorber). The mutual

energy principle tell us that a particle is an action and a reaction between the source and the sink.

In other hand the wave satisfying Schrödinger equation only need one source or one sink. From the

mutual energy principle, it is easy to derive the mutual energy theorem, the mutual energy �ow

theorem, corresponding Huygens�Fresnel principle. All these will solve the wave-particle duality

paradox.
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I. INTRODUCTION

Maxwell equations have the retarded solution and the advanced solution. Many engineers

and scientists do not accept the advanced wave based on the consideration of causality.

However, there are scientists and engineers believe the advanced wave is real. Wheeler

and Feynman have introduced the absorber theory which involved the advanced wave [1][2].

The absorber theory is based on the action-at-a-distance [8, 20, 23]. J. Cramer further

worked on the absorber theory and introduced the transactional interpretation for quantum

mechanics[5, 6]. Stephenson o�ered a good tutorial about the advanced wave [22].

In classical electromagnetic �eld theory the advanced wave is applied on the Welch's

reciprocity theorem [24], Rumsey's reciprocity theorem[19], Zhao's (this author) mutual

energy theorem [9, 25, 26]. de Hoop's reciprocity theorem[7]. This author found the above 4

theorems can be seen as one theorem in Fourier domain or in time domain. These theorems

have the major di�erence comparing to Lorentz reciprocity theorem[3, 4]. Lorentz reciprocity

theorem is a mathematical theorem, these theorems are an energy theorem.

This author combined the absorber theory and the mutual energy theorem and further

introduced the concept that the photon energy is transferred by the mutual energy �ow[12�

18, 21]. And this author further introduced the mutual energy principle[10] and the self-

energy principle[11]. The mutual energy principle tell us that the electromagnetic �eld or

the �eld for photons all should satisfy the formula of the mutual energy principle. The

solution of the mutual energy principle is an retarded wave and an advanced wave. Both

waves satisfy the Maxwell equations. The formula of the mutual energy principle require

that the both waves must be synchronized. The mutual energy �ow is the energy �ow of

the particle. The self-energy principle for photon tells us that the self-energy are returned

by the time-reversal waves. There are two time reversal waves, one corresponding to the

retarded wave and another one is corresponding to the advanced wave. The energy �ow of

the two time-reversal waves o�set the the self-energy �ows. Hence, the self-energy �ows do

not contribute to any energy transfers of the particle. However, the retarded wave and the

advanced wave combined together can build the mutual energy �ow, which survived and

which can transfer the energy from point a to point b. Here a is the source of the energy

�ow, b is the sink of the energy �ow. It can be proven that the shape of the mutual energy

�ow is thin in the two ends a and b, it is thick in the middle between a and b. Hence, the
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mutual energy �ow looks like a wave in the middle between a and b and the mutual energy

�ow looks like a particle at the ends of a and b. Hence, photon is not wave or particle but

the mutual energy �ow.

In this article the concept of the mutual energy principle, self-energy principle, mutual

energy theorem, mutual energy �ow theorem is extended to the system of the quantum

mechanics, where Schrödinger equation is applied instead of Maxwell equations.

It is often said that the Schrödinger equation only has the solution of the retarded wave.

However, this author found that if we allow the distance of a point to the origin has a

negative value, the Schrödinger equation can have the advanced solution. After we obtained

the advanced wave solution of Schrödinger equation, all theory of mutual energy can be

extended from the electromagnetic �elds to quantum mechanics. This all will be show in

this article.

II. RETARDEDANDADVANCEDWAVE SOLUTIONS FOR THE SCHRÖDINGER

EQUATION

We assume that the quantum for example electron runs in the empty space from point a

to b. This electron must satisfy the Schrödinger equation,

i~
∂

∂t
Ψ(r, t) =

[
−~2

2µ
∇2 + V (r, t)

]
Ψ(r, t) (1)

where i =
√
−1. Ψ(r, t) is the wave function. In the free space the amplitude of the wave

function will decrease with distance, hence we have

Ψ(r, t) =
1

r
exp(−(jωt− kr)) (2)

where we assume that if the wave is retarded wave, then

r = +||x− x′|| (3)

if the wave is advanced wave,

r = −||x− x′|| (4)

x is the �eld point. x′ is the source point. Eq.(2) is correct at least at the place of far �eld

where r is not too small. Eq.(2) can be a retarded wave. Hence normally we speak that
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Figure 1. The region of the retarded wave and the advanced wave. The distance r can be negative.

For an advanced wave the distance r is negative.

the Schrödinger equation only has the solution of the retarded wave. However, if we allow

the the distance r has the negative values4. The Eq.(2) can also be applied to the advanced

wave.

For example when t take a negative value: t = −|t|, r also take a negative value for

example r = −|r|, this is a place for an advanced wave. When we allow the distance r has

negative value, Schrödinger can have the advanced wave solution. See Figure 1.

III. MUTUAL ENERGY PRINCIPLE FOR SCHRÖDINGER EQUATION

A. Operator of the Schrödinger equation

The Schrödinger equation can be written as,

LΨ(r, t) = 0 (5)

where, L referred as Schrödinger operator and is de�ned as,

L ≡
[
− ~2

2iµ
∇2 +

1

i
V (r, t)

]
Ψ(r, t)− ~

∂

∂t
Ψ(r, t) (6)

We assume the Schrödinger equation also has the source or sink,
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LΨ(r, t) = S (7)

where S is the source or sink. The source of Schrödinger equation can be at very small region

for example, the source of an electron is inside an atom. Some reader perhaps will argue

how you know there is a source and sink for Schrödinger equation? This author doesn't

know whether or not there are source or sink for Schrödinger equation. However it always

possible to have arti�cial source or sink based on Huygens principle. That means the source

will be just a place the wave goes to outside from an atomic system to the empty space.

The sink just a place the wave goes from empty space to the inside of an atomic system.

B. A mathematics formula for the operator L

De�ne the inner product in the volume V ,

(Ψb,Ψa)V =

˚

V

Ψ∗bΨadV (8)

A mathematical formula can be proved as following,

(Ψb(r, t), LΨa(r, t))V + (LΨb(r, t),Ψa(r, t))V

= −
"

Γ

Jab · n̂Γdt− ∂

∂t

˚

V

udV dt (9)

where L is de�ned at Eq.(6). V is any volume in the space. Γ is the boundary surface of

the volume V . And the mutual energy �ow intensity is de�ned as,

Jab ≡
~

2µi
(Ψ∗b∇Ψa −∇Ψ∗bΨa) (10)

The mutual energy intensity is de�ned as,

u ≡ ~Ψ∗bΨa (11)

See the Appendix VIII for details of the proof. Eq.(9) is only a mathematical formula instead

of a physic formula, because Schrödinger equation has not applied on it which is the physical

formula.
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C. Deriving the mutual energy principle from Schrödinger equation

The above Eq.(9) is a mathematical formula, now let us consider the equation of physics,

which is Schrödinger equation, assume in the two point a and b has the sources Sa and Sb

we have the Schrödinger equations,

LΨa(r, t) = Sa (12)

LΨb(r, t) = Sb (13)

In the above Schrödinger equation we have add two sources, when we speak a source, it can

be also a sink. We assume Sa is a source, it sends out the energy of the particle and Sb is a

sink, it receives the energy of the particle.

Substitute the above two equations to Eq.(9) we can obtain the mutual energy principle

corresponding Schrödinger equation,

−
"

Γ

Jab · n̂Γ− ∂

∂t

˚

V

udV = (Ψb(r, t), Sa)V + (Sb,Ψa(r, t))V (14)

This means, that if we have the Schrödinger equation, we can derived the corresponding

mutual energy principle Eq.(14). In the above formula the energy �ow to the inside of the

volume is −
!

Γ
Jab · n̂Γ which is equal to the energy increase inside the volume ∂

∂t

˝
V
udV

and consumed energy of the two source Sa and Sb: (Ψb(r, t), Sa)V + (Sb,Ψa(r, t))V .

D. Deriving Schrödinger equation from the mutual energy principle

In other hand, if we have the above mutual energy principle Eq.(14), comparing it with

the mathematical formula Eq.(9) we can obtained a pair of Schrödinger equations Eq.(12,13),

hence, Schrödinger equations can be derived from the mutual energy principle. The mutual

energy principle can be derived from Schrödinger equation and the Schrödinger equation

can be derived from the mutual energy principle, does this means that the mutual energy

principle and Schrödinger equation are equivalent? This will be discussed in the following

section.
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IV. THE DIFFERENCE BETWEEN SCHRÖDINGER EQUATION AND THE

MUTUAL ENERGY PRINCIPLE

It should notice that, even we can derive from the Schrödinger equation to the corre-

sponding mutual energy principle and we can derive the Schrödinger equation from the

corresponding mutual energy principle, but this does not mean that the Schrödinger equa-

tion is equivalent to the mutual energy principle. This can be seen by the following reasons.

1. The mutual energy principle needs at least a pair Schrödinger equations exist simulta-

neously. That means a pair Schrödinger equations must be synchronized. Since if we have

known that,

Ψb(r, t) ≡ 0, Sb ≡ 0 (15)

for example, substituting this to the mutual energy principle Eq(14), we can obtain

Ψa(r, t) = anything <∞ (16)

Is a solution of the mutual energy principle. However, this is not an accepted solution.

This means that if we started from mutual energy principle, we cannot get a solution which

satis�es only one Schrödinger equation. We can obtained only a solution with a pair of

Schrödinger equations. One solution of the Schrödinger equations is not an accepted solution

for the mutual energy principle.

In other hand, if we apply the Schrödinger equation as axiom, any the solution which

satisfy only one Schrödinger equation is an accept solution.

The concept of a pair solutions, it is suitable to the concept of �action-at-a-distance�.

In the theory action-at-a-distance [8, 20, 23], an action need at least two points an source

(emitter) and an sink (absorber). Only a source without sink can not be accepted. Only

a sink without a source can also not be accepted. A particle is an action which needs a

source and a sink. The source give the sink a action, a sink will give the source a re-action.

The action and the re-action is look like a particle. The particle is the action and reaction

between a source and a sink.

2. This author believe that the mutual energy principle can be applied as a correct

axiom for quantum mechanics. The Schrödinger equation has the same problem same as
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the Maxwell equations. The self-energy �ow of Schrödinger equation Jaa, J bb"

Γ

Jaa · n̂Γdt 6= 0,

"

Γ

J bb · n̂Γdt 6= 0 (17)

where Γ can be a surface of in�nite big sphere and where Jaa ≡ ~
2µi

(Ψ∗a∇Ψa −∇Ψ∗aΨa) will

go outside the universe, that is not possible. It is same for J bb ≡ ~
2µi

(Ψ∗b∇Ψb −∇Ψ∗bΨb).

The mutual energy �ow Jab, in other hand, can not go to the outside of our universe:

"

Γ

Jab · n̂Γdt = 0 (18)

Where Jab is related a source and a sink. Ψb,Ψa are two waves. Here, we assume that one

of them is the retarded wave and one of them is the advanced wave. The two waves reach

the in�nite sphere Γ one is at a future time and another one is at a past time. Hence, the

two waves cannot nonzero at the sphere simultaneously. Hence, we have Eq.(18). In other

side if the two waves are all retarded wave or all advanced wave, it is not possible to obtain

Eq.(18). Hence, starting from mutual energy principle as axiom, it automatically require

the existence of the advanced wave and the advanced wave has to be synchronized with the

retarded wave.

3. From mutual energy principle it is easy to obtained the mutual energy theorem and

mutual energy �ow theorem which can be used to prove that the mutual energy �ow looks

like a particle in the place of two ends and looks like wave in the middle between the two

ends. This will solve the wave-particle paradox. This will be discussed in the next section.

V. THE MUTUAL ENERGY AND THE MUTUAL ENERGY FLOW THEOREMS

A. The mutual energy theorem

Assume U =
˝

V
udV dt. We can assume U(t = ∞) = U(t = −∞). U(t = −∞) is the

energy before the particle emitted at the source a, U(t =∞) is the energy after the particle

has reached b. Hence, U(t =∞) should equal to U(t = −∞),hence we have,

∞̂

t=∞

∂

∂t

˚

V

udV dt =

∞̂

t=∞

∂

∂t
Udt

= U(t =∞)− U(t = −∞) = 0 (19)
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Substituting Eq.(18) to the mutual energy principle Eq.(14) we have

−
∞̂

t=∞

"

Γ

Jab · n̂Γ =

∞̂

t=∞

((Ψb(r, t), Sa)V + (Sb,Ψa(r, t))V )dt (20)

Considering Eq.(18) we have

∞̂

t=∞

((Ψb(r, t), Sa)V + (Sb,Ψa(r, t))V )dt = 0 (21)

where V is the whole space. Hence, we can obtained the mutual energy theorem:

−
∞̂

t=∞

(Ψb(r, t), Sa)Vadt =

∞̂

t=∞

(Sb,Ψa(r, t))Vbdt (22)

Va and Vb is the place where Sa or Sb are not zero. This can be rewritten as,

−(Ψb(r, t), Sa)TVa = (Sb,Ψa(r, t))TVb (23)

where (Ψb(r, t), Sa)TVa =
´∞
t=∞(Ψb(r, t), Sa)Vadt. (Sb,Ψa(r, t))TVb =

´∞
t=∞(Sb,Ψa(r, t))Vbdt.

The subscript T = [−∞,∞] express the inner product also includes a integral with time´∞
t=∞ ·dt. −(Ψb(r, t), Sa)TVa is the produced energy of the source Sa . (Sb,Ψa(r, t))TVb is the

received energy of the sink Sb. This energy is the energy of the particle. It is the energy

from the source (emitter) Sa moving to the sink (absorber) Sb.

The word �mutual� can be drop out. The mutual energy theorem is actually the energy

conservation law for the particle. The energy of particle can only emitted from a and

received by b. It is clear there are no any other energy go from a to b. If the energy of the

particle has moved from a to b, there should have energy �ow between a and b. This will

be discussed in next subsection. We will also discuss the self-energy does not contributed to

the energy �ow of the particle in next section.

B. The mutual energy �ow theorem

We assume Va and Vb are inside V . Va is the region include the source Sa. Vb is the region

include the sink Vb. −(Ψb(r, t), Sa)TVa is the energy send by the source Sa. (Sb,Ψa(r, t))TVb

is the energy received by the sink Sb. We can also obtain the mutual energy �ow theorem,

−(Ψb(r, t), Sa)TVa = (Ψb,Ψa)TΓab
= (Sb,Ψa(r, t))TVb (24)
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where,

(Ψb,Ψa)TΓab
=

∞̂

t=∞

"

Γ

Jab · n̂dΓdt

=

∞̂

t=∞

"

Γab

~
2µi

(Ψ∗b∇Ψa −∇Ψ∗bΨa) · n̂Γdt (25)

where Γab is a closed surface surround a, or a closed surface surround b. It also can be a

in�nite plane between a and b. The normalized vector n̂ is the norm vector of the surface.

The direction is from a to b. Γab can be seen as an arbitrary surface separating Va and Vb.

We have written Eq.(25) as an inner product form. It can be proven that it is really an

inner product and satisfy the inner product 3 condition:

I. Conjugate symmetry,

(Ψb,Ψa)TΓab
= (Ψa,Ψb)

∗
TΓab

(26)

II. Linearity,

(Ψb, kΨa)TΓab
= k(Ψb,Ψa)TΓab

(27)

(Ψb,Ψa1 + Ψa2)TΓab
= (Ψb,Ψa1)TΓab

+ (Ψb,Ψa2)TΓab
(28)

III. Positive de�ned,

(Ψ,Ψ)TΓab
≥ 0 (29)

(Ψ,Ψ)TΓab
= 0 iff Ψ = 0 (30)

Where iff means if and only if. Jab is the energy �ow intensity. Q =
!

Γ
Jab · n̂dΓ is the

energy �ow. Energy =
´∞
t=∞Qdt is the all energy from the source a to the sink b.

Proof: In the Eq.(20) V can be arbitrarily chosen. We separate V as two parts, Va and

Vb. Γab is the boundary between Va and Vb. We choose V as Va there is only one source Sa.

In this case, Eq.(20) become,

−
∞̂

t=∞

"

Γa

Jab · n̂abdΓ =

∞̂

t=∞

((Ψb(r, t), Sa)Va)dt (31)

In the same way, if V is chosen as Vb we have,

−
∞̂

t=∞

"

Γb

Jab · n̂badΓ =

∞̂

t=∞

((Sb,Ψa(r, t))Vb)dt (32)
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Adjust the direction n̂ba in the above formula from b −→ a to a −→ b. Γba changed to

Γab, considering
!

Γb
·n̂badΓ =−

!
Γb
·n̂abdΓ, substituting Eq.(31,32) to the mutual energy

theorem Eq.(22) we obtained the mutual energy �ow theorem,

−(Ψb(r, t), Sa)TVa

=

∞̂

t=∞

"

Γa

Jab · n̂abdΓ =

∞̂

t=∞

"

Γb

Jab · n̂badΓ

= (Sb,Ψa(r, t))TVb (33)

This can be easily extended,

−(Ψb(r, t), Sa)TVa

=

∞̂

t=∞

"

Γa

Jab · n̂dΓ =

∞̂

t=∞

"

Γab

Jab · n̂dΓ =

∞̂

t=∞

"

Γb

Jab · n̂dΓ

= (Sb,Ψa(r, t))TVb (34)

where Γab is any surface between Γa and Γb. Now we have n̂ = n̂ab the normal vector of the

surface. The direction is from a to b. Considering,

(Ψb(r, t),Ψa(r, t))TΓab
=

∞̂

t=∞

"

Γab

Jab · n̂dΓ (35)

We have Eq.(24).

The mutual energy �ow theorem is stronger than the mutual energy theorem, in next

section we will explain that the self-energy �ow do not contribute to the energy transfer

of the particle. Hence, the mutual energy �ow is the only energy �ow. Hence, the word

�mutual� can be dropped out. It is not only the mutual energy �ow theorem but the energy

�ow theorem.

VI. SELF ENERGY PRINCIPLE

If we assume the mutual energy principle is the axiom of the quantum mechanics, we still

obtained two Schrödinger equations. Hence, Schrödinger equations should also satis�ed. If

Schrödinger equation is satis�ed, we still obtained Eq.(17). There is still the energy going
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to the outside of our universe. This energy is not received by anything. The problem of the

Schrödinger equations still not solved.

One possibility is the wave has collapsed. That means the retarded wave has collapsed

to the sink b. The advanced wave has collapsed to the source a. However, there has lot of

sinks for example b′ in the space, it is di�cult the retarded wave just collapsed the particular

sink b (which is the target of the mutual energy �ow). If the retarded wave collapsed, there

should be another kind of particle, which is contributed by the self-energy �ow. It is same

to the advanced wave which needs to collapsed to a source a′. It is di�cult for the advanced

wave just collapse to the place a (the mutual energy �ow started from). Hence, there should

be another particle corresponding to the advanced wave which collapsed to a′. We only seen

one kind of particle.

Wave collapse should be a process of physics. But this process has not been described by

any formula. Hence, the theory of wave function collapse is di�cult to be accepted. Since

we have the mutual energy �ow theorem which can transfer the energy of the particle, the

wave is not necessary to be collapsed.

This author do not think the there is an energy go to outside of our universe. Since

there is the mutual energy �ow can transferred the energy from the source to sink, it is not

necessary for the self energy �ow to transfer the energy.

If this author believe the concept the wave collapse cannot be accept. Here the wave

collapse is collapse to it's goal. For example the retarded wave sent from the source a is

collapsed to the sink b. If wave doesn't collapse where it goes? This author thought it re-

turns. That means that the retarded wave returns to the source. The advanced wave returns

to the sink. The return process can be described by a time-reversal process which should

satis�es, the time-reverse Schrödinger equation. The time-reverse Schrödinger equation can

be obtained by substitute −t to t in the Schrödinger equation, which is,

Lre ≡
[
− ~2

2iµ
∇2 +

1

i
V (r, t)

]
Ψre(r, t)− ~

∂

∂(−t)
Ψre(r, t) (36)

LreΨre(r, t) = 0 (37)

The solution of the time-reverse Schrödinger equation is written as Ψre(r, t). It is clear that,
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Ψre(r, t) = Ψ∗(r, t) (38)

where Ψ(r, t) is the normal wave satis�ed the Schrödinger equation. Hence, the time-reverse

wave is the complex conjugate of the of the normal wave. Here the normal wave includes

the retarded wave and the advanced wave.

The energy �ow of the normal wave can be canceled by the time-reversal wave, i.e.,

∞̂

t=∞

"

Γ

Jaa · n̂dΓdt+

∞̂

t=∞

"

Γ

Jaare · n̂dΓdt = 0 (39)

∞̂

t=∞

"

Γ

J bb · n̂dΓdt+

∞̂

t=∞

"

Γ

J bbre · n̂dΓdt = 0 (40)

Here Jaare is the self energy �ow intensity of the time-reverse wave corresponding the re-

tarded wave. J bbre is the self-energy �ow of the time-reverse wave corresponding the ad-

vanced wave. Eq.(39,40) are referred as self-energy principle. The self-energy principle tells

us, there exists the time-reverse wave which can cancel the self-energy �ow. The self-energy

�ow of the retarded wave is canceled by the energy �ow of the corresponding time-reversal

wave of the retarded wave. The self-energy �ow of the advanced wave is canceled by the

energy �ow of the corresponding time-reversal wave of the advanced wave. Here when we

speak the cancel we mean the energy �ow is canceled, the retarded wave and the correspond-

ing time-reversal wave are not cancel each other. The advanced wave and the corresponding

time-reverse wave are all existent.

It is possible that the time-reversal wave also has the corresponding mutual energy prin-

ciple, and hence, the mutual energy �ow theorem and mutual energy �ow theorem. There

is the problem that the time-reversal mutual energy �ow can also cancel the normal mutual

energy �ow that means,

∞̂

t=∞

"

Γ

Jab · n̂dΓdt+

∞̂

t=∞

"

Γ

Jabre · n̂dΓdt = 0 (41)

where Jab is the mutual energy �ow form a to b. Jabre is the time-reversal mutual energy

�ow from b returns to a. If the mutual energy �ow is canceled by the energy �ow of the

corresponding time-reversal wave. There is no energy �ow can transfer the energy for a

particle. The particle cannot move form a to b. This author assume that if the sink receive
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an energy of a whole particle, it will not allow the energy return from b to a. If the sink

received only a half or partial energy of a particle it will allow the energy to return from b

to a. This is the reason why we cannot obtained a partial particle. The self-energy principle

tell us there is no energy �ow go outside to our universe. Self-energy principle is applied to

make the theory selfconsistent. The mutual energy principle is applied to the calculation of

the quantum mechanics.

It should be noticed if the mutual energy �ow of time-reversal wave existent, it can also

be an anti-particle for example the positron (a positive electron) for electron.

After we have the self-energy principle, both the Schrödinger equation and the mutual

energy principle can be applied as the axioms of quantum mechanics. If we apply Schrödinger

equation as the axiom we need two Schrödinger equations one is for the retarded wave one

is for the advanced wave. We need to explain to the reader the advanced wave exists same

as the retarded wave. If we apply the mutual energy principle as the axiom of quantum

mechanics, we only need one mutual energy principle. The advanced wave and retarded

wave can all be derived from the mutual energy principle. Hence, use the mutual energy

principle as axiom it is better than the Schrödinger equation.

Since the self-energy principle is only this author's hypothesize, it still needs to be proven.

For example the self-energy �ow goes to the in�nite big sphere perhaps go back from another

world or another universe. It go back by a wormhole but not the time-reverse wave. That

is also possible.

But mutual energy principle can be proved from Schrödinger equation, it should be

correct. We need only compare the mutual energy principle and the Schrödinger equation

which is more close to the nature. If we do not derive Schrödinger equations from the The

mutual energy principle, the mutual energy principle will has no problem. All the problem of

the mutual energy principle comes only through the Schrödinger equations (Here we speak

about the problem of Schrödinger equation, which is the self energy �ow of Schrödinger

equation goes to outside of our universe.). Hence, even without the self-energy principle we

should also apply the mutual energy principle as the axioms. Most reader perhaps would like

to accept the problem of the Schrödinger equations than to accept the self-energy principle.

The problem of Schrödinger equations is the self-energy �ow go out our universe, the problem

of the self-energy principle is introduction of a new kind of �eld that needs to be tested.

The self-energy principle introduced two time-reverse �eld, even without proof, it make the
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theory selfconsistent. Hence it still very valuable.

The formula of the mutual energy principle is similar for the electromagnetic �eld and

quantum mechanics, even the Maxwell equations and the Schrödinger equation are not

similar to each other. They all can be written as,

−(Sf , ξ
f
i ) = (ξΓ

f , ξ
Γ
i ) = (ξif , Si)

where (Sf , ξ
f
i ) and (ξif , Si) is a inner product with 3D volume integral and 1D time integral.

(ξΓ
f , ξ

Γ
i ) is a inner product with 2D surface integral and 1D time integral. i is at the initial

place which is the source of the particle. f is the �nal place which is the sink place of the

particle. Γ is any 2D surface between i and f . Sf is the sink intensity, Si is the source

intensity. ξfi is the �eld at the place f emitted from i, ξΓ
f is the �eld at Γ emitted from f .

It is similar to ξΓ
f and ξif .

Hence, the mutual energy �ow should be more general than Schrödinger equation or

Maxwell equation. It is also possible we have the mutual energy principle corresponding to

hadron, graviton and so on.

VII. HAMILTON AND MOMENTUM OPERATORS

In quantum mechanics when we often speak the energy and momentum of the particle.

We de�ne the average of the Hamilton operator and say that it is the energy of the particle.

We de�ne average of momentum operator and say that it is the momentum of the particle.

This author do not satisfy that kind of de�nition without a proof and think the other reader

will also very confused for that. In the following a better proof will be given.

A. Average of the Hamilton operator is the energy of the particle

Considering the particle is at the orbit, the wave is static and stable, hence, ~ ∂
∂t

can be

omit. Hence, we have

L ≡
[
− ~2

2iµ
∇2 +

1

i
V (r, t)

]
− ~

∂

∂t

=
1

i
H (42)
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where H is the Hamilton,

H = − ~2

2µ
∇2 + V (r, t) (43)

Hence, we have,

(Ψb(r, t), LΨa(r, t))TVa = (Ψb(r, t),
1

i
HΨa(r, t))TVa (44)

According the mutual energy �ow theorem Eq.(24), we have

|(Ψb(r, t), HΨa(r, t))TVa | = |(Ψb(r, t), LΨa(r, t))TVa | = |(Ψb,Ψa)TΓab
| (45)

In case the electron is on the orbit, we know that the advanced wave and the retarded wave

is same, this is similar to the electromagnetic �eld wave inside a wave guide, i.e.,

Ψb(r, t) = Ψa(r, t) = Ψ(r, t) (46)

Va can be written as V , we have,

|(Ψ(r, t), HΨ(r, t))TV | = |(Ψ(r, t), LΨ(r, t))TV | = |(Ψ,Ψ)TΓ| (47)

In the case the wave is stable, the subscript T can be drop out, because it means a integral

with time. Hence, we have,

|(Ψ(r, t), HΨ(r, t))V | = |(Ψ(r, t), LΨ(r, t))V | = |(Ψ,Ψ)Γ| (48)

where |(Ψ,Ψ)Γ| = |
!

Γ
J · n̂dΓ| is the absolute value of the total energy of the energy �ow

of the particle, which is related to the average of the Hamilton |(Ψ(r, t), HΨ(r, t))V |.

This is the reason in quantum mechanics we can use the average of Hamilton as the

energy of the particle! This tell us the average of the Hamilton operator is not just an

average energy of the particle but it is the tall energy of the energy �ow of the particle.

Eq.(47, 48) o�ers more meaningful result to explain the Hamilton operator.

When we speak about the Jab is energy �ow intensity, it can be also mass �ow intensity.

Since mass and energy is equivalent according the relative theory. Actually it is normalized

mass �ow intensity. In the text book of quantum mechanics, it is referred as the probability

�ow intensity. Since this author do not accept the probability interpretation of Copenhagen

school, when we speak the probability �ow intensity, it can be understand as the normalized

mass �ow intensity.
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B. Average of the momentum operator is the momentum of the particle

In our new quantum mechanics (using the mutual energy principle and self-energy prin-

ciple as axioms), I hope that the momentum can be de�ned as,

p =

ˆ

V

ρµ(x)vdV (49)

Where ρµ is mass intensity. Jµ = ρµ(x)v is mass �ow intensity, it is the momentum for the

unit volume.

µ =

ˆ

V

ρµdV

= µ

ˆ

V

ρdV (50)

where ρ is the normalized mass intensity or the probability intensity. We have,

ρµ = µρ (51)

Hence,

p ≡ µ

ˆ

V

ρvdV = µ

ˆ

V

JdV (52)

where J = ρv is normalized mass �ow intensity (or the probability �ow intensity). It should

be notice that this author do not support the concept of probability and the probability �ow

intensity. Hence, here when we speak the probability intensity it just a normalized mass

intensity, the probability �ow intensity is just a normalized mass �ow intensity.

C. Quasi-plane wave

The wave the electron inside its orbiter can be referred as quasi-lane wave. In this

situation we have,

J = Jab =
~

2µi
(∇ΨAΨ∗B −ΨA∇Ψ∗B)

=
~

2µi
(∇ΨAΨ∗B −ΨA∇Ψ∗B)

=
1

2µ
((
~
i
∇ΨA)Ψ∗B + ΨA(

~
i
∇ΨB)∗)
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=
1

µ
[
1

2
(Ψ∗B(p̂ΨA) + (p̂ΨB)∗ΨA)] (53)

where p̂ = ~
i
∇.

Hence the momentum of the particle is,

p ≡ µ

ˆ

V

JdV =

ˆ

V

1

2
(Ψ∗B(p̂ΨA) + (p̂ΨB)∗ΨA)dV (54)

In the case for example the wave is in a wave guide or an electron is on its orbit inside

an atom, the wave can be seen as quasi-plane wave. In the case of quasi-plane wave, the

retarded wave and the advanced wave are the same, each has the half value of the total �eld.

Hence, we can take away the subscript of the wave function. In this case we have

ΨA = ΨB = Ψ (55)

Here ΨA is the retarded wave send from point A which is an emitter. ΨB is the advanced

wave send from B which is an absorber. Ψ is either ΨA or ΨB.

J =
1

2µ
(Ψ∗(p̂Ψ) + (p̂Ψ)∗Ψ) =

1

µ
<[Ψ∗p̂Ψ] (56)

where < is take the real part for a complex number. This example tell us even we started

from the probability �ow intensity J

p ≡ µ

ˆ

V

JdV = <(

ˆ

V

(Ψ∗p̂Ψ)dV ) (57)

Hence,
´
V

(Ψ∗p̂Ψ)dV can be seen as complex momentum.

In quantum mechanics, the average of momentum of the particle is de�ned as,

< p >≡
ˆ

V

(Ψ∗p̂Ψ)dV (58)

It is noticed that < p > is not only the average of the momentum of the particle, it is the a

complex value of the momentum of the particle. Take the real part it is the momentum of

the particle, i.e.,

p = <(< p >) = <(

ˆ

V

(Ψ∗p̂Ψ)dV ) (59)
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VIII. CONCLUSION

This author notice the fact that the mutual energy principle can be derived from the

Schrödinger equation and Schrödinger equation can also be derived from mutual energy

principle, however, this two formula as axioms are not equivalent. The mutual energy

principle can only derive a pair of Schrödinger equations one corresponding to the retarded

wave and one corresponding the advanced wave. The two wave have to be synchronized.

This solution is the action and reaction pair solution. In other side the Schrödinger equation

can obtained the retarded wave as the solution.

After this author introduced the the self-energy principle, the solution of the Schrödinger

equation looks like a probability wave, because there are time-reverse wave which cancel the

energy �ow of the self-energy �ow of the Schrödinger equation. Self-energy �ow principle

guarantees that the mutual energy �ow are actually the energy �ow. The word �mutual�

can be dropped.

This author has introduced the mutual energy principle and self -energy principle for

photon and electromagnetic �elds. In this theory, the photon is nothing else but the mutual

energy �ow. This author would like to bring the same theory to quantum mechanics, but

there was a di�culty because the Schrödinger equation has no advanced wave solution. In

this article the negative distance is introduced which make the advanced wave solution for

Schrödinger equation become possible.

After this the mutual energy principle, self-energy principle, mutual energy theory, mutual

�ow theorem is introduced to quantum mechanics. The mutual energy �ow is consist of the

retarded wave and the advanced wave which satisfy the Schrödinger equation. The energy

�ow of the particle is proved as the mutual energy �ow.

In the end the author also proved that the energy of the particle is the average of the

Hamilton operator. The particle's momentum is the real part of the average of the momen-

tum operator.

The mutual energy �ow theorem will be applied to introduce the Huygens principle which

will further introduce a updated path integral which will be discussed in a separated article.

19



APPENDIX

proof:

(Ψb(r, t), LΨa(r, t))V + (LΨb(r, t),Ψa(r, t))V

=

∞̂

t=∞

˚

V

(Ψ∗b(−
~

2µi
∇2 +

1

i
V (r, t)− ~

∂

∂t
)Ψa

+((− ~
2µi
∇2 +

1

i
V (r, t)− ~

∂

∂t
)Ψb)

∗Ψa)dV dt

=

∞̂

t=∞

˚

V

(Ψ∗b(−
~

2µi
∇2Ψa) + (− ~

2µi
∇2)∗Ψ∗bΨa

+Ψ∗b
1

i
V (r, t)Ψa + Ψ∗b(

1

i
)∗V (r, t)Ψa

Ψ∗b(−~)(
∂

∂t
Ψa) + (−~)(

∂

∂t
Ψ∗b)Ψa)dV dt

=

∞̂

t=∞

˚

V

((− ~
2µi

)(Ψ∗b(∇2Ψa)− (∇2Ψ∗b)Ψa)

+
1

i
(Ψ∗bV (r, t)Ψa −Ψ∗bV (r, t)Ψa)

+(−~)(Ψ∗b
∂

∂t
Ψa +

∂

∂t
Ψ∗bΨa))dV dt (60)

The �rst term inside are,

(− ~
2µi

)(Ψ∗b∇2Ψa −∇2Ψ∗bΨa)

= (− ~
2µi

)(Ψ∗b∇2Ψa +∇Ψ∗b · ∇Ψa −∇Ψ∗b · ∇Ψa +∇2Ψ∗bΨa)

= −∇ · ( ~
2µi

(Ψ∗b∇Ψa −∇Ψ∗bΨa))

−Jab (61)

The second term,
1

i
(Ψ∗bV (r, t)Ψa −Ψ∗bV (r, t)Ψa) = 0 (62)

The third term,

(−~)(Ψ∗b
∂

∂t
Ψa +

∂

∂t
Ψ∗bΨa)
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= − ∂

∂t
(~Ψ∗bΨa) = −u (63)

Proof �nished.
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