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In this study we want to propose a heuristic model to compute and to interpret
the dark energy content of our universe. To this purpose we include the mass-
energy of the static gravitational field in Newtonian gravity, finding agreement
with general relativity at large scales. We then compute its effect at very small
distances also including quantum effects. From this analysis, we obtain an es-
timation of the smallest volume in empty space. Our result is compatible with
loop quantum gravity and this enables the embedding in it. After that we show,
how this can be used to compute a natural energy cutoff kc for all quantum
fields and study its utility in computing the dark energy density and its impli-
cations on the content of fermionic and bosonic elementary fields. Indeed for
the vacuum equation of state w= pvac/ρvac we obtain an expression depend-
ing on ∆N = N f − Nb, which represents the difference between the number of
species of fermions and bosons. Finally comparing our result with the mea-
sured value of w, we discuss general constraints on the field content beyond
the Standard Model of the elementary particles.

1 Introduction

A common aspect of many different approaches to quan-
tum gravity such as string theory (see e.g. [1]), causal
sets [2, 3], spin foams [4], causal dynamical triangula-
tion (CDT) [5, 6] and loop quantum gravity [7, 8] is the
presence of a smallest geometrical scale. The experi-
mental search of such a scale has gained in the last years
a lot of importance and concrete projects have already
been started [9,10]. A first phenomenological review of
these approaches to quantum gravity can be found for
example in [11–14].

If one tries to quantize a non renormalizable theory
like gravity, the presence of a smallest scale has usually
the advantage to solve the problems associated with in-
finities. In particular quartic divergencies emerge when
one interprets dark energy as being originated by quan-
tum fluctuations and this is independent on the curva-
ture. The problem is that, even if the final result is fi-
nite, it turns out to be anyway many orders of magni-
tudes above the observed value [15]. Interesting new
approaches have been developed in the last years from
the point of view of supersymmetry, the renormaliza-
tion procedure [16, 17], the renormalization group flow
[18], the holographic principle [19] and stability consid-
erations concerning the Minkowski space-time [20, 21].
In all such approaches the results are all improved and
some of them are also able to predict the dark energy

with the correct order of magnitude.
The purpose of this work is to propose a simple phe-

nomenological model to predict the smallest geometri-
cal scale of loop quantum gravity and the dark energy
density from quantum fluctuations. As we will show,
our approach has implications also on the possible field
content of dark matter, showing a strict connection be-
tween the two aspects.

An important point of our investigation is an idea
introduced by Heim [22], which consists in considering
how the field mass µ = E/c2 associated to the energy
content E of the gravitational field generated by a central
massive spherical body has an effect to the field itself in
Newtonian gravity. Assuming this one arrives at two
important consequences as discussed in [22]:

(i) A source (typically a central mass) and its associ-
ated gravitational field build a unity (called struc-
ture).

(ii) The Einsteins field equations,

Rµν −
1
2

R gµν =
8πG
c4 Tµν, (1)

receive a more general interpretation: they are not
only viewed as an equation with the “source” ap-
pearing on its right side and the “field” appear-
ing on its left side, but they are, more generally,
considered as an equivalence between the gen-
eralized phenomenological energy-density-tensor

P. Bolzoni. On the smallest Volume Scale and Dark Energy 1



including the field mass of the structure and ge-
ometry including in the Einstein-tensor also the
“geometrization” of the source.

In this way Tµν represents the energy density of the full
structure (mass and field mass) and Gµν represents its
geometrical side. Since matter has a quantum nature,
its “geometrization” has to be intended as quantum ge-
ometry, which for example has been developed in loop
quantum gravity. We note then that according to the
principles (i) and (ii), Eqs.(1) are just a generalization
of the field equations of general relativity: indeed if the
“field mass” is sufficiently small to be neglected in the
phenomenological energy-density-tensor, then Tµν can
be interpreted again as the source of the gravitational
field described by the metric gµν, which contributes to
the Einstein tensor Gµν.

We shall show that including field mass effects in
the energy-density-tensor, one reproduces, to a certain
approximation, the result of general relativity without
geometrizing. A further consequence of this model will
also be the existence of a smallest geometrical scale,
after that effects of usual quantum mechanics are con-
sidered. In [23–25] the smallest scale found with this
method is called “metron”, which is quite different from
the result of our revisited analysis. However this will be
in agreement with the result obtained by “geometrizing”
matter, which is in its essence a quantum behavior. This
is achieved by the attempts to quantize geometry, like
loop quantum gravity and renormalization group quan-
tum gravity . Indeed the advantage of our result will be
the possible embedding in these theories.

In comparison to [26] this paper presents a revision
of the derivation of the modified Newton potential and
of its smallest scale. This is due to the following rea-
sons:

• The natural context of our argument is the three
dimensional space and not a surface.

• The quantum effects on the field mass were not
properly included.

• The mass formula of Heim [24], which we re-
ported in Eq.(1) of [26] should be consequently
also be revisited and cannot be used as part of our
argument anymore. This will eventually be done
in a future publication [27].

Furthermore this will be exploited for to compute the
dark energy content from vacuum quantum fluctuations.

For the application to the actual universe we start from
the usual Friedmann equations for a spacially flat uni-
verse reported in Eqs(33) and, similarly as in [20], com-
pute the dark energy contribution to the stress tensor Tµν
from quantum fluctuations on this curved background.
This point will be explained in detail in Section 4 to-
gether with the Appendix. To avoid the quartic diver-
gence of the large cutoff kc, we also assume, that the
Minkowski space is stable, i.e. it is imposed as a gen-
eral principle to have a vanishing vacuum energy, as it
should be. This implies that the contribution of the flat
space-time has always to be subtracted from the vacuum
energy derived from the quantum fluctuations also in a
general curved space-time. We will show that according
to our interpretation of the result, we can compute the
dark energy density in very good agreement with the ac-
tual measurements. In addition we will also obtain a pre-
diction for the equation of state parameter of the dark en-
ergy w = pvac/ρvac from first principles using the com-
puted cutoff kc. The comparison with the current mea-
surements will show, that even if it is not yet possible to
discriminate between “quintessence” (−1 ≤ w < −1/3)
and “phantom-energy” (w < −1) , it is still generally
possible to constrain the field content, fixing the differ-
ence between the number of species of fermions and
bosons ∆N = N f − Nb. According to the Standard
Model of elementary particles we have that ∆S M = 60
and hence our result provides also a way to determine
the minimal amount of additional degrees of freedom,
which can contribute to the dark matter.

The paper is organized as follows. In Section 2 we
explain in detail the computation for the modified New-
tonian potential due to the inclusion of field mass ef-
fects. The derivation of the smallest volume element is
then shown in Section 3. The application of these results
for the computation and explanation of the nature of the
dark energy from vacuum fluctuations and the possible
influence of the result on the field content of dark matter
beyond the Standard Model follows in Section 4. Finally
we write our conclusions in Section 5.

2 The inclusion of the field mass in the static poten-
tial

In this section we want to include the effects of the in-
clusion of the field mass on the Newtonian potential
φn = −Gm(0)/r of a central mass m(0), where G is the
usual gravitational constant. Hereafter we also include
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quantum effects at small scales.
We denote the field mass by µ and we then assume

it produces a modification of the Newtonian potential
φn, leading to an effective function of the form φ =

−Gm(r)/r, where m(r) = m(0) + µ(r). According to
this definition we obtain for the Laplacian operator ∇2 =
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 that

∇2φ = −Gm(r)∇2
(
1
r

)
−

G
r

d2µ(r)
dr2 (2)

= 4πG
(
m(r)δ(r) − 3V

d2µ(r)
dV2 − 2

dµ(r)
dV

)
,

where in the second line we have used the distributional
relation ∇2(1/r) = −4πδ with δ the Dirac function and
where we have performed the change of variables V =

4/3πr3. A first natural condition for the field mass µ(r)
is that for very large values of r it vanishes. As a second
condition for µ(r) it seems to us reasonable to expect that
at the Planck scale quantum gravity effects weaken the
gravitational mass m(r) till it reaches a maximal value
before starting to fall rapidly down. This is because
the quantum uncertainty acts against the localizing ten-
dency of gravity. Under these circumstances and look-
ing at the second part of Eq.(2) one can think there are
three additional effective sources coming from the sec-
ond derivative, which at the maximal point is negative.
Accordingly the last term is expected to be negligible,
because at the extremum dµ/dr = 0. That the origin of
this kind of behavior for gravity at very small distances
has a purely quantum nature, has been shown in the con-
text of the renormalization group approach in Ref. [28].

In this way we arrive at a modified field equation for
the gravitational field ~G in a static system valid only at
short distances nearly the extremum of the field mass:

~∇ ~G =
ρ

α
, (3)

with

ρ =
1
4

(
m(0)δ(r) − 3V

d2µ(r)
dV2

)
(4)

α = (16πG)−1 .

At large distances the derivatives of µ can be considered
small enough to be neglected and thus.

ρn = m(0)δ(r); αn = (4πG)−1, (5)

recovering the usual Poisson equation of the Newtonian
case. We have that in general α has not to be considered
a constant. However its derivatives will be neglected in
what follows limiting in this way the confidence of our
approximation,which however, as we shall see, can be
considered relatively good.

Now the presence of a gravitational field ~G associ-
ated to central spherical source with radius r0 and mass
m0 is from our point of view not a possibility but a ne-
cessity and this should be reflected in the fact that it is
somehow produced by an “energetic convenience” i.e. a
reduction of the system energy. Hence we can write for
the energy (E = m(r)c2) of the mass-field system up to
a radial coordinate r from the center:

m(r)c2 = m0c2 −
α

2

∫ V

V0

~G2 dV. (6)

The last term in this equation represents the field energy
and is obtained from Eqs.(3,4) in complete analogy to
the energy of the static electrical field. Now remember-
ing that ~G = ~∇φ Eq.(6) becomes

m(r)c2 = m0c2 −
α

2

∫ V

V0

(~∇φ)2 dV. (7)

Now performing the first derivative, taking into account
that φ = −Gm(r)/r and that for a spherical symmetric
function (~∇φ)2 = (dφ/dr)2, we obtain easily the follow-
ing differential equation for the static potential φ:(

r
dφ
dr

)2

−
c2

2πGα

[(
r

dφ
dr

)
+ φ

]
= 0. (8)

This nonlinear differential equation can be easily solved
viewing it as a quadratic equation in terms of rdφ/dr,
whose solutions are:

r
dφ
dr

=
c2

4πγα

1 ± √
1 +

8πGα
c2 φ

 . (9)

With help of the following substitution,

q± = 1 ±

√
1 +

8πGα
c2 φ, (10)

one can straightforward rewrite Eq.(9) as:

r
d(2q± − q2

±)
dr

= −2q±, (11)
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which according to dx/x = d ln(x) can be simplified to

d ln(rq±e−q±) = 0, (12)

or equivalently to

rq±e−q± = A, (13)

where the integration constant A has been introduced.
We want now to fix the sign in Eq.(10) and the con-

stant A in Eq.(13). Assuming that for r → ∞, φ → 0,
we obtain immediately that the negative sign in Eq.(10)
is the only possibility. This follows from the fact that
with this choice q → 0 when r → ∞ and only in this
case remains our assumption consistent with the fact
that in Eq.(13) A is a numerical constant. As far as
the determination of the constant A is concerned, we
can fix it requiring that the classical Newton potential
φn = −Gm(0)/r will be reproduced if |φ|/c2 � 1. Ac-
cordingly expanding Eq.(13) to the first order in φ/c2,
we obtain for the constant A:

A = rq−e−q− = −r
4πGα

c2 φn, (14)

where according to Eq.(10) 0 ≤ q− ≤ 1. This equation
defines implicitly the potential φ and, according to its
dependence on m(r), also the field mass µ(r).

We show now that for small q−, Eq.(14) reproduces
the result of general relativity up to corrections of order
q3

min(φn), if quantum corrections at small distances are
not included, i.e. if α = (4πG)−1. First of all we notice
that inverting Eq.(10) we have

φ

c2 = −q− +
1
2

q2
−. (15)

Then expanding Eq.(14) in q and using Eq.(15) we get:

φ

c2 =
φn

c2 −
1
2

q2
−(φ) + O(q3(φ)) (16)

=
φn

c2 −
1
2

q2
−(φn) + O(q3(φn)) (17)

= −1 +

√
1 + 8πG α

φn

c2 + (1 − 4πG α)
φn

c2

+O(q3(φn)), (18)

and putting α = (4πG)−1 we find

φ

c2 = −1 +

√
1 −

2Gm(0)

rc2 + O(q3(φn)), (19)

which agrees with the general relativity result (see e.g.
Eq.(25.16) in [29]).

From Eq.(14) we can also determine the smallest al-
lowed r-value rmin from its reality condition. Indeed this
is fulfilled by Eq.(10), when |φ| ≤ c2/(8πGα), which
means that

r ≥ rmin =
8πG2αm(rmin)

c2 . (20)

This last result needs few words: First of all we notice
that very often for a macroscopic collapsing system one
can neglect field mass effects in the second of Eqs.(2)
and one can so assume α = αn = (4πG)−1, according
to Eq.(5). In this case we obtain for the smallest ra-
dius of the system rmin = 2Gm/c2, which is equal to the
well known Schwarzschield radius of the general rel-
ativity. Considering also quantum effects to the field
mass typical of high density microscopic systems like
elementary particles, we have for r = rmin that q = 1 and
that α = (16πG)−1, according to Eq.(4). In this case we
get from Eqs.(13,14), that rmin = eA = e4πG2αm(0)/c2,
showing by comparison with Eq.(20) also that

m(rmin) =
m(0)

2
. (21)

Notice that this result does not depend on α, although
rmin does.

We notice that significant deviations accure down to
distances around 10−17m well below current experimen-
tal limits (see e.g. [11, 30, 31] and references therein).

3 The smallest (non vanishing) volume Vmin

Following the same approach adopted in [23], we want
now similarly to derive the smallest volume Vmin for
the system under consideration. Eq.(20) fixes a lower
limit rmin for the radial coordinate due to relativistic and
gravitational field mass effects and thus does not repre-
sent a smallest length for the empty space-time, because
it vanishes with the mass m. However a microscopic
mass system should also be characterized by its quan-
tum behavior, which becomes important at the scale of
the corresponding Compton wavelength λc = h/m(0)c
(we take however λc/2, because for example in e+e−

annihilation one has 2mc2 = 2hc/λ for the two parti-
cle system). Conversely we have that in this case for
a vanishing mass λc diverges. Hence if we are look-
ing for a good definition of the smallest scale lmin for a
spherical system with a vanishing mass m like the empty
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space, we can build the geometrical average between
d̃min = 2rmin and λc/2 to find a well defined limit:

dmin = lim
m(0)→0

√
d̃min · λc/2

=

√
16πG2αm(rmin)

c2 ·
h

2m(0)c

=

√
πe~G
2c3 =

√
πe
2

lPl, (22)

where we have used Eq.(20), Eq.(21) and the second
of Eqs.(4) and where lPl =

√
~G/c3 is the well known

Planck length. Using Eq.(22) we finally arrive at our ap-
proximated formula for the smallest non vanishing Vol-
ume of space:

Vmin =
4
3
π

(
dmin

2

)3

=
π

6

(
πe~G
2c3

) 3
2

. (23)

We can here compare our result with the pure geometri-
cal result from loop quantum gravity as given for exam-
ple in the book by Rovelli and Vidotto [32] Eq.(1.65):

VLQG
min =

1√
6
√

3

(
8πγ~G

c3

) 3
2

, (24)

where γ is the Barbero-Immirzi constant. Now equating
Eq.(23) with Eq.(24) we find

γ =
e

16

π2
√

3
6

 1
3

= 0, 241. (25)

The theoretical value of γ in loop quantum gravity is
fixed by the Beckenstein-Hawking entropy interpreted
statistically from quantum geometry and is given by (see
Eq.(10.27) of [32]):

γ = 0, 274, (26)

showing that our result is compatible with loop quantum
gravity. This is because our result has to be intended as
an estimation due to the approximations assumed in the
derivation.

We also notice that a similar result can be obtained
in the contest of renormalization group quantum grav-
ity. Indeed in [28] the improved Schwarzschild metric

obtained in the case of a static, spherically symmetric
spacetime with a point mass m(0) situated at the origin is
given by:

ds2 = − f (r)dt2 + f (r)−1dr2 + r2
(
dθ2 + sin2(θ)dφ2

)
,

(27)
where f (r) is the improved radial function

f (r) = 1 −
4Gm(0)r2/c2

2r3 + ω̃l2Pl
(
2r + 9Gm(0)/c2) , (28)

with ω̃ = 118/ 15π. Below to a critical mass m(0)c =

3, 5027mPl, where mPl is the Planck mass, there is no
event horizon anymore and the function f (r) exhibits in
general an extremal point due to the weakening effect
of the quantum corrections proportional to the Planck
length lPl in Eq(28). This is actually the kind of be-
havior we have anticipated in Section 2. Imposing now
f ′(r) = 0 we obtain for the extremal points the following
condition:

r3 − ω̃l2Pl

(
r
2
−

9Gm(0)

2c2

)
= 0. (29)

In the limit m(0) → 0 we get for the non vanishing min-
imal radius rmin =

√
ω̃/2 lPl and thus the following for-

mula for the minimal volume element:

Vmin =
4π
3

(
ω̃~G
2c3

) 3
2

. (30)

Comparing this result again with Eq.(24), we obtain for
the Barbero-Immirzi constant the result:

γ =
ω̃

4

 √3
6π

 1
3

= 0, 282, (31)

which is in good agreement with Eq.(26).
After this discussion we will from now on assume

for the smallest geometrical scale Eq.(24) together with
Eq.(26). This result can be used to estimate the natural
cutoff for the quantum fluctuations. Indeed to this pur-
pose we propose to substitute in the usual uncertainty
principle ∆x ·∆p ≥ ~/2 the position uncertainty ∆x with
3
√

VLQG
min of Eq.(24). This is possible, because in loop

quantum gravity Vmin is coordinates independent. More-
over the momentum uncertainty ∆p is identified with the
UV momentum cutoff kc/c. In this way and assuming a
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minimal uncertainty for the higher energy fluctuations,
we obtain

kc =
~c

2 3
√

VLQG
min

=

(
6
√

3
) 1

6√
8πγ

EPl

2
, (32)

where EPl =
√
~c5/G is the Planck energy.

4 A possible description of the dark sector

In this Section we want to investigate the cosmological
consequences of our result obtained in Eq.(32). A few
years ago a new approach in considering the zero-point
energy fluctuations of the quantum fields has been pro-
posed in [20]. According to their method it was possi-
ble to obtain a consistent formula for the computation
of the cosmological dark energy density ρvac entirely
from vacuum energy quantum fluctuations. The basic
additional principles of the authors in [20] are that the
empty Minkowski space should be gravitational stable
(ρvac = 0), that our universe is spatially flat and that
the vacuum stress energy tensor should have the form
< Tµν >= −ρvac gµν with ρ̇vac = 0. These are the usual
properties assumed in the Standard Model of Cosmol-
ogy, the ΛCDM-model, for the cosmological constant.
Following [20], we remind the reader that according to
the Friedmann equations,( ȧ

a

)2
=

8πG
3 c2 ρ( ȧ

a

)2
+ 2

ä
a

= −
8πG
c2 p, (33)

one can easily check that

ρ̇vac = −3
( ȧ
a

)
(ρvac + pvac), (34)

This implies that putting pvac = wρvac with w = −1,
for the vacuum energy equation of state one satisfies si-
multaneously the constraints ρ̇vac = 0 and < Tµν >=

−ρvac gµν and hence also ∇µ < Tµν >= 0 with ∇µ the
usual covariant derivative. The result computed in [20]
is:

ρvac =
g c2

8πγ

(( ȧ
a

)2
+ 2

ä
a

)
(35)

with

g =
3γ

8π~c5 ∆Nk2
c , (36)

where ∆N = N f −Nb is the difference between the num-
ber of species of fermions and bosons and kc is an UV-
cutoff. The reader can find in the Appendix a detailed
derivation of Eq.(35). Now substituting pvac = wρvac

with ρvac given by Eq.(35) into the second of Eqs.(33),
remembering that for non relativistic matter pm = 0 and
neglecting the relativistic radiation density, which is a
factor ∼ 10−5 smaller than the total energy density, one
can very easily check that

w = −
1
g
. (37)

Clearly this result is consistent with the assumptions of
[20] outlined at the beginning of this section only if g =

1.
In our study we relax the constraint g = 1 of [20] al-

lowing more general and exotic possibilities, which de-
viates from the usual cosmological constant vacuum en-
ergy scenario with w = −1. Obviously, according to the
actual experimental observations, a realistic description
of the dark energy imposes that the deviations of g from
the unity are expected to be small. Indeed taking recent
fits from the observations of Type Ia supernovae dynam-
ics [33,34] of the HZSN and the the SCP collaborations
we can estimate that( ä

a

)
t=t0
≈ 0.58 H2

0 , (38)

where t0 is the actual time and H0 the actual Hubble con-
stant. One can check this result for example computing
the time derivatives of the fitting function for the scale
factor a(t) in Eq.(26.82a) in the book of Thomas Müller
[35]. Although this is only a qualitative argument, be-
cause the specific fitted function of [35] is model de-
pendent, it provides anyway a plausible estimation of
the correct value. Substituting this result in Eq.(35),
and using the usual definition for the critical density
ρc 0 = 3c2H2

0/(8πγ), we obtain

Ωvac 0 =
ρvac 0

ρc 0
≈ g ·

1 + 2 · 0.58
3

≈ g · 0.7, (39)

which with g ≈ 1 is in quite good agreement with recent
analysis from CMB measurements [36,37], considering
the experimental uncertainties in Eq.(38).

We have already shown that Eq.(35) satisfies the sec-
ond of Eqs.(33) with the identification g = −1/w. We
want now to discuss the solution of the first of Eqs.(33)
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for the scale parameter a(t) in the more general case
g , 1. To this purpose we put the expression of the vac-
uum energy given in Eq.(35) into the first of of Eqs.(33)
and thus we get the following differential equation for
the scale factor a(t):(

1 −
g

3

) ( ȧ
a

)2
−

2g
3

ä
a

= H2
0

Ωm 0

a3 , (40)

where as usual Ωm 0 = ρm 0/ρc 0, ρm = ρm 0/a3 and where
Ωrad 0 has been again neglected. Performing now the
change of variables,

w(a) = aȧ2, (41)

one has that Eq.(40) becomes a first order linear differ-
ential equation in w, whose solution is given by

w(a) = Ωm 0H2
0 + (1 −Ωm 0)a3/gH2

0 , (42)

where the usual initial conditions a0 = a(t0) = 1 and
w0 = w(a0) = H2

0 have been imposed. According to
this result and treating Eq.(41) as a separable variables
differential equation, we can rewrite and integrate it as
follows:∫ a

a0

da√
Ωm0a−1 + (1 −Ωm0)a−(1−3/g)

= H0(t − t0), (43)

again with the initial condition a0 = a(t0) = 1. This in-
tegral represents the general solution to the Friedmann
equations with the presence of matter with wm = 0 and
dark energy with wΛ = −1/g as expected by consistency.
To our knowledge there is not a simple general analytic
expression that solves the integral in Eq.(43) for g , 1.
However a very simple solution can be obtained at early
times (a � a0), when the universe was matter domi-
nated, and at later times (a � a0), when the universe
will be dark energy dominated:

ag(t) ∝ t2/3; a � a0; (44)

ag(t) ∝
[
1 +

3(g − 1)
2g

√
1 −Ωm0H0(t − t0)

] 2g
3(g−1)

;(45)

a � a0.

Consistently in the limit g→ 1 we obtain the later times
behavior of the ΛCDM model according to which a(t) ∝
exp

[√
1 −Ωm0H0(t − t0)

]
. For the case 0 < g < 1 we

have that the scale factor ag(t) rapidly expands and di-
verges in the finite time t = 2g/[3(1−g)

√
1 −Ωm0H0] +

t0, producing a “Big Rip” as it is well known in the case
that dark energy is phantom energy [38].

After that we come back to the physical interpreta-
tion of Eq.(36). First of all we substitute the computed
result for the cutoff kc of Eq.(32) into Eq.(36) and with
Eq.(37) we obtain that

w = −
8π~c5

3Gk2
c∆N

= −
256 π2γ

3(6
√

3)
1
3 ∆N

. (46)

This is the main result of this paper. We can fix ∆N
trying to satisfy the constraint w = −1 as accurately as
possible. According to this point of view, we would find
that,

w = −0.9976 for ∆N = 106, (47)

expecting for this case at least 46 additional fermionic
degrees of freedom. Indeed in [20] the authors have
shown that for the Standard Model of elementary par-
ticles ∆NS M = 60 (N f = 2 × 3 + 4 × 3 + 3 × 4 × 6
including neutrinos, leptons and quarks and Nb = 4 +

2 + 2 × 3 + 2 × 8 + 2 including the Higgs, before sym-
metry breaking is performed, the photon, weak bosons,
gluons and the graviton).

Finally we notice, that both the result for the equa-
tion of state pvac = wρvac predicted in Eq.(47) and the
dark energy density obtained by Eq.(39) are in agree-
ment with the experimental measurements. However
with the actual uncertainties it is not yet possible to dis-
criminate all the possibilities above ∆N ≈ 97 and below
∆N ≈ 108. To come to this last statement we have com-
pared with the central values of w reported in chapter 27
of [40]. The additional degrees of freedom could come
from dark matter, whose nature has not yet been cleared.

5 Conclusions

Summarizing, we have firstly reviewed the computation
of the modified Newtonian potential coming from the
inclusion of the field mass and quantum effects in the
source. Without any additional assumption and limit-
ing ourselves to the small distance effects, we find for
the smallest volume element Vmin = 4π/3 (dmin/2)3 with
dmin =

√
πe~G/2c3 of the empty space-time, a result

which is compatible with the loop quantum gravity com-
putation and also with the renormalization group ap-
proach (asymptotic safety). Hence imposing the loop
quantum gravity result to the scale length of the quan-
tum fluctuations we compute a natural UV-cutoff for the
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modes of the zero point energy finding the following
expression: kc = (6

√
3)

1
6 /(2

√
8πγ)EPl, where EPl =√

~c5/γ is the Planck energy. Substituting this result
into the formula of Bernard and LeClair for the cosmo-
logical constant given in [20], we obtain for the dark
energy equation of state pvac = wρvac the result w= −

256 π2γ/(3(6
√

3)1/3∆N), where γ is the usually called
Barbero-Immirzi constant and where ∆N is the differ-
ence between the number of species of fermions and
bosons. We find so that w= − 0.9976 with ∆N = 106.
More generally comparing with the recent experimen-
tal determinations [40], we found that the number of
additional fields beyond the Standard Model should at
least include 37 fermionic degrees of freedom (implying
∆N = 97), which could account for dark matter. Fur-
thermore we also estimate that ∆N, according to the ac-
tual experimental constraints, should be bounded from
above by 108.

Appendix

In this Appendix we compute the result for the vacuum
energy from quantum fluctuations given in Eq.(35). We
start with the action of a single bosonic field on a curved
background:

S b =

∫
dtd3x

√
−g

1
2

(
−∂µφ ∂µφ − m2φ2

)
, (48)

where g is the determinant of metric gµν. We take as
backgroung the FLRW-metric in the case of a spacially
flat universe

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2), (49)

thus implying that gµν = diag(−1, a2, a2, a2) and that
that g = −a6. Before proceeding with the canonical
quantization of the field, we first perform the change of
variable φ = χ/a3/2, in oder to remove the time depen-
dence appearing in the measure of the integral action
coming from g. Indeed in this way one obtains after
some algebra that the action in Eq.(48) becomes

S b =

∫
dtd3x

1
2

(
(∂tχ)2 −

1
a2 (~∇χ)2 − (m2 −A)χ2

)
,

(50)
where

A =
3
4

(( ȧ
a

)2
+ 2

ä
a

)
. (51)

The corresponding equation of motion for the field χ is
then

∂2
t χ −

1
a2∇

2χ + (m2 −A)χ = 0. (52)

We rewrite now the field χ as a Fourier integral with a
relativistic invariant measure

χ =

∫
d3k√

(2π)32ωk/a

(
a~ku~k(t)ei~k·~x + a†

~k
u∗
~k
(t)e−i~k·~x

)
,

(53)
where

ω2
k/a =

k2

a2 + m2 −A, (54)

where a†
~k
, a~k are the usual creation and annihilation oper-

ators of a particle state with momentum ~k and where u~k
is a time dependent function. Substituting the Fourier
integral into Eq.(52) one obtains for u~k the following
equation:

(∂2
t + ω2

k/a)u~k(t) = 0. (55)

In the so called “adiabatic limit” one assumes that the
time dependence of ωk/a can be neglected in our actual
universe and one can easily find the solution to Eq.(55),
which is

u~k(t) = u~k e−iωk/at. (56)

After that performing a Legendre transformation of the
Lagrangian in the action for χ Eq.(50) and substituting
Eq.(53) together with Eq.(56) into it, one finds for the
Hamiltonian

Hb =

∫
d3x

1
2

(
(∂tχ)2 +

1
a2 (~∇χ)2 + (m2 −A)χ2

)
=

1
2

∫
d3kωk/a(a†

~k
a~k + a~ka†

~k
). (57)

Now repeating a similar computation for a fermionic
field one obtains

H f =
1
2

∫
d3kωk/a(b†

~k
b~k − b~kb†

~k
). (58)

We introduce now the usual commutation (anticom-
mutation) relations for bosons (fermions):

[a~k, a
†

~k′
] =

{
b~k, b

†

~k′

}
= δ3(~k − ~k′) =

∫
d3x

(2π)3 ei(~k−~k′)·~x,

(59)
where we have also added the integral representation
of the Dirac function. Remembering that a~k|vac >=
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b~k|vac >= 0 for the vacuum state |vac > and using the
relations in Eq.(59) one gets

ρ
b( f )
vac,0 ≡

1
a3V0

< vac|Hb( f )|vac >= ±
δ3(~0)
2V0

∫
d3kωk,

(60)
where the change of variables ~k → ~k/a has been per-
formed and where + has to be chosen for bosons and
− has to be chosen for fermions. According to the last
equality in Eq.(59) one has that δ3(~0) = V0/(2π)3 and
Eq.(60) becomes

ρ
b( f )
vac,0 = ±

1
16π3

∫
d3kωk. (61)

Now as mentioned in the Introduction, one has to sub-
tract from it the contribution from the flat space-time
(A = 0) and the vacuum energy contributions to dark
energy becomes:

ρ
b( f )
vac = ±

1
16π3

∫
d3k

( √
k2 + m2 −A −

√
k2 + m2

)
,

(62)
where Eq.(54) has been used. Finally remembering that
d3k = k2dk sin(θ)dθdφ, introducing the large cutoff kc to
regulate the integral and considering N f fermionic and
Nb bosonic fields, one obtains at the leading order

ρvac = N fρ
f
vac + Nbρ

b
vac =

∆Nk2
cA

16π2 + . . . , (63)

where ∆N = N f −Nb and where the additional terms are
all suppresed by powers of 1/k2

c . As a last step one can
easily check that Eq.(63) coincides with Eq.(35).
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