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One usually hears that modern physics is governed by symmetries, either
discrete or continuous. In quantum gravity, where spacetime is a derivative
concept, many symmetries are also derivative. What is foundational are discrete
statements in quantum logic, or the abstract characterisation of the conditions
of an experiment for the observer. The preeminence of categorical techniques,
and their relevance to motivic mathematics, suggests looking not for classical
symmetries but instead for their Hopf algebras.

Consider the canonical example: a Lie algebra G, given by its associative
universal enveloping algebra U(G). Such Hopf algebras may be deformed to
give representation categories with a nontrivial braiding. But since quantum
measurement has discrete sets of outcomes, we want to start with rings or finite
fields, rather than the reals. The axioms of most interest work over a ring R.

Our ring R is not necessarily commutative. Recall that a left module M over
R is equipped with a scalar multiplication [1] R ×M → M such that 1x = x
for x ∈M and (rx)y = r(xy) for r ∈ R. In higher dimensions, associativity will
be weakened. Define an algebra over R to be a module A with multiplication
µ : A⊗A→ A and unit η : R→ A, where the tensor product is over R. There
is a category AlgR of all algebras over R with the obvious morphisms. Any
module M defines a tensor algebra

T (M) = ⊕∞n=0M
⊗n (1)

with multiplication µ : T (M) ⊗ T (M) → T (M) given by the isomorphism
between M⊗p ⊗M⊗q and M⊗(p+q).

Now when M is itself an algebra A, as is the case for U(G), we have a map

µ : T (A)→ A (2)

taking a1 ⊗ a2 to a1a2. This setting is the right one for us because the con-
struction is monadic [2]. Recall that a monad on a category C is an endofunctor
T : C → C along with a map µ : T (A)→ A such that the associative law holds:
µ(1⊗ µ) = µ(µ⊗ 1).

Classical logic is governed entirely by the category Set and its power set
monad, which takes the set of all 2n subsets of an n point set. We begin to do
quantum logic by building square matrices in a categorically correct manner, as
follows.
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Take a category with r objects and Hom sets from the category AlgR, called
Aij for i, j = 1, 2, · · · r. A matrix algebra is defined to be a tensor category A
with duals on matrix objects such that any objects A and B satisfy the axioms

1. A ≡ ∪Aij with Aij ∈ Aij and AijAjk ⊂ Aik

2. A∗∗ ' A

3. (AB)∗ ' B∗A∗

4. (A∗)ij ' (Aji)
∗.

The duals here are inherited from an involution on the objects Aij . Except for
the lack of strict equalities, these are precisely the axioms of a nonassociative
matrix algebra in Vinberg’s approach to homogeneous cones [3][4]. They are also
essentially the axioms of a tortile tensor category [1][5] with a braiding, where
⊗ is the matrix product, and axiom 4 is the compatibility of duals with twist
maps A → A given by matrix transpose. In other words, the categorification
of nonassociative matrix algebras is tortile ⊗ categories, such as a category of
ribbon tangles for quantum computation.

Such nonassociative matrices are applied to Lie algebras for quantum gravity
in [6]. From the categorical perspective, the nonassociativity will weaken the
usual law for a monad T , but in an interesting way. With an associator 2-arrow
filling in the square µ(1⊗µ) = µ(µ⊗1), the Mac Lane pentagon is drawn on five
sides of a three dimensional cube. Braided categories are of course secretly three
dimensional, and when we fill the pentagon with a 3-arrow we obtain pentagonal
faces for the three dimensional associahedron [7]. Physical dimensions are closely
connected to the axioms required for quantum computation. We can now begin
to study motivic cohomology and homotopy using alternatives to triangulated 1-
categories, where the higher dimensional quantum monad has both a geometric
and algebraic interpretation.
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