
Unishox - Guaranteed Compression of Short

Unicode Strings using Entropy, Dictionary and

Delta encoding techniques

Arundale Ramanathan

August 15, 2019

Abstract

A new hybrid encoding method is proposed, with which short unicode
strings could be compressed using context aware pre-mapped codes and
delta coding resulting in surprisingly good ratios.

Also shown is how this technique can guarantee compression for any
language sentence of minimum 3 words.

1 Summary

Compression of Short Unicode Strings of arbitrary lengths have not been ad-
dressed sufficiently by lossless entropy encoding methods so far. Although it
appears inconsequential, space occupied by such strings become significant in
memory constrained environments such as Arduino Uno and when attempting
storage of such independent strings in a database. While block compression is
available for databases, retrieval efficiency could be improved if the strings are
individually compressed.

2 Basic Definitions

In information theory, entropy encoding is a lossless data compression scheme
that is independent of the specific characteristics of the medium [1].

One of the main types of entropy coding is about creating and assigning a
unique prefix-free code to each unique symbol that occurs in the input. These
entropy encoders then compress data by replacing each fixed-length input sym-
bol with the corresponding variable-length prefix-free output code word.

According to Shannon’s source coding theorem, the optimal code length for
a symbol is −logbP , where b is the number of symbols used to make output
codes and P is the probability of the input symbol [2]. Therefore, the most
common symbols use the shortest codes.

1

Data Compression techniques • Information Theory • Unishox - Guaranteed
Compression of Short Unicode Strings

The most popular and most used method (even today) for forming optimal
prefix-free discrete codes is Huffman coding [3].

A Dictionary coder, also sometimes known as a substitution coder, is a class
of lossless data compression algorithms which operate by searching for matches
between the text to be compressed and a set of strings contained in a data
structure (called the ’dictionary’) maintained by the encoder. When the encoder
finds such a match, it substitutes a reference to the string’s position in the data
structure.

The LZ77 family of encoders use the dictionary encoding technique for com-
pressing data. [4]

Delta coding is a technique applied where encoding the difference between
the previously encoded symbol or set of symbols is smaller compared to encoding
the symbol or the set again. The duffernce is determined by using the set minus
operator or subtraction of values. [5]

In contrast to these encoding methods, there are various other approaches
to lossless coding including Run Length Encoding (RLE) and Burrows-Wheeler
coding [6].

3 Existing techniques - Smaz and shoco

While technologies such as GZip, Deflate, Zip, LZMA are available for file com-
pression, they do not provide optimal compression for short strings. Eventhough
these methods compress far more than what we are proposing, these methods
often expand the original source for short strings because the symbol-code map-
ping also needs to be attached to aid decompression.

To our knowledge, only two other competing technologies exist - Smaz and
shoco.

Smaz is a simple compression library suitable for compressing very short
strings [10]. It was developed by Salvatore Sanfilippo and is released under the
BSD license.

Shoco is a C library to compress short strings [11]. It was developed by
Christian Schramm and is released under the MIT license.

While both are lossless encoding methods, Smaz is dictionary based and
Shoco classifies as an entropy coder [11].

In addition to providing a default frequency table as model, shoco provides
an option to re-define the frequency table based on training text [11].

4 This research

We propose a hybrid encoding method which relies on the three encoding tech-
niques viz. Entropy encoding, Dictionary coding and Delta encoding methods
for compression.

Unlike shoco, we propose a fixed frequency table generated based on the
characterestics of English language letter frequency. We re-use the research

Licensed under CC 4.0 Int’l Attribution License c©2019 Siara Logics (cc) 2

Data Compression techniques • Information Theory • Unishox - Guaranteed
Compression of Short Unicode Strings

carried out by Oxford University [7] and other sources [7] [9] and come out with
a unique method that takes advantage of the conventions of the language.

We propose a single model that presently is fixed because of the advantages
it offers over the training models of shoco.

The disadvantage with the training model, although it may appear to offer
more compression, is that it does not consider the patterns that usually appear
during text formation.

We can actually see that this performs better than pre-trained model of
shoco (See performance section).

For compressing Unicode symbols, we use Delta encoding because usually
the difference between subsequent symbols is quite less.

We also use Delta coding for binary symbols (i.e symbols betewen ASCII 0
and 31 ad symbols between ASCII 128 and 255). However not much compression
is expected out of this and in many cases, the input size is expanded.

Unlike smaz and shoco, we assume no a priori knowledge about the input
text. However we rely on a posteriori knowledge about the research carried out
on the language and common patterns of sentence formation and come out with
pre-assigned codes for each letter.

5 Model

In the ASCII chart, we have 95 printable letters starting from 32 through 126.
For the purpose of arriving at fixed codes for each of these letters, we use two
sets of prefix-free codes.

The first set consists of 11 codes, which are: 00, 010, 011, 100, 1010, 1011,
1100, 1101, 1110, 11110, 11111. The second set consists of 7 codes, which are 0,
10, 110, 11100, 11101, 11110, 11111. Let us call this vcode (vertical code) and
hcode (horizontal code) respectively.

With these two sets of codes, we form several sets of letters as shown in the
table below and use some rules based on how patterns appear in short strings,
to arrive at frequency table.

Licensed under CC 4.0 Int’l Attribution License c©2019 Siara Logics (cc) 3

Data Compression techniques • Information Theory • Unishox - Guaranteed
Compression of Short Unicode Strings

hcode → 10 0 110 11100 11101 11110 11111
↓ vcode Set 1 Set 1a Set 1b Set 2 Set 3 Set 4 Set 4a
00 switch dist / bin f / F switch . & @
010 sp / tb l / L y / Y 9 , ; ?
011 e / E c / C v / V 0 - : ’
100 Uni / Cont. d / D k / K 1 / < ˆ
1010 t / T h / H q / Q 2 = > #
1011 a / A u / U j / J 3 + *
1100 o / O p / P x / X 4 sp “ !
1101 i / I m / M z / Z 5 ({ \
1110 n / N b / B lf / rpt 6) } |
11110 s / S g / G cr+lf 7 $ [˜
11111 r / R w / W term 8 %] ‘

6 Rules

6.1 Basic rules

• It can be seen that the more frequent symbols are assigned smaller codes.

• Set 1 is always active when beginning compression. So the letter e has the
code 011, t 1010 and so on.

• If the letter in Set 1a needs to be encoded, the switch code is used followed
by 0 to indicate Set 1a. So the letter c is encoded as 00011, d as 000100
and so on.

• Similarly, if the letter in Set 1b needs to be encoded, the switch code is
used followed by 110. So k is encoded as 00110100, q as 001101010 and so
on. Note that the terminator symbol is encoded as 0011011111.

6.2 Upper case symbols

• For encoding uppercase letters in Set 1, the switch symbol is used followed
by 10 and the code against the symbol itself. For example, E is encoded
as 0010011. The same applies to tab character.

• For encoding uppercase letters in Set 1a, the switch symbol is used, fol-
lowed by 10, again switch symbol, followed by 0 and then the corre-
sponding code against the letter. For instance, the letter P is encoded
as 00100001100.

• Similarly, for uppercase letters in Set 1b, the prefix 001000110 is used. So
the symbol X is encoded as 0010001101010.

• If uppercase letters appear continuously, then the encoder may decide to
switch to upper case using the prefix 0010 0010. After that, the same

Licensed under CC 4.0 Int’l Attribution License c©2019 Siara Logics (cc) 4

Data Compression techniques • Information Theory • Unishox - Guaranteed
Compression of Short Unicode Strings

codes for lower case are used to indicate upper case letters until the code
sequence 0010 is used again to return to lower case.

6.3 Numbers and related symbols

• Symbols in Set 2 are encoded by first switching to the set by using 00
followed by 11100. So the symbol 9 is encoded as 0011100010.

• For Set 2, whenever is switch is made from Set 1, it makes Set 2 active. So
subsequent numbers are encoded without the switch symbol, as in 1011
for 3, 1100 for 4 and so on.

• To return to Set 1, the code 0010 is used.

• To encode symbols in Set3, the prefix 00 is used followed by 0 and the
corresponding code for the symbol. For example, + is encoded as 0001011.

6.4 Other symbols (Set 4)

• The special characters in Set 4 can be encoded by using the prefix 0011110
followed by the corresponding code for the letter. Example: ; is encoded
as 0011110010.

• The symbols in Set 4a are encoded using the prefix 0011111. Example: ?
is encoded as 0011111010.

6.5 Sticky sets

• When switching to Set 2, it becomes active and is said to be sticky till Set
1 is made active using the symbol 0010.

• However, no other set is sticky. Set 1 is default. Set 2 automatically
becomes sticky when switched to it by using 0011100 and Upper case
letters can be made sticky by using 00100010.

• Symbols in Set1a, Set1b, Set3, Set 4 and Set 4a are never sticky. Once
encoded the previous sticky set becomes active.

6.6 Special symbols

• term in Set 1b indicates termination of encoding. This is used if length of
the encoded string is not stored.

• rpt in Set 1b indicates that the symbol last encoded is to be repeated
specified number of times.

• dict in Set 1a indicates that the specified offset in file and length is to be
copied at the current position. This is dictionary based encoding.

Licensed under CC 4.0 Int’l Attribution License c©2019 Siara Logics (cc) 5

Data Compression techniques • Information Theory • Unishox - Guaranteed
Compression of Short Unicode Strings

• CRLF in Set 1b is encoded using a single code. It will be expanded as two
bytes CR LF. If only LF is used, such as in Unix like systems, a separate
code is used in Set 1b. Also, in the rare case that only CR appears, the
Bin code is provided in Set1a.

6.7 Dual access for Set 3

• Set 3 can be accessed both when Set 1 and Set 2 is active. This is because
the symbols occur commonly in both Set 1 and 2. So it is necessary to
have minimum length codes for these.

• For the same reason, the space symbol appears both in Set 1 and Set 3.

6.8 Repeating letters

• If any letter repeats more than 3 times, we use a special code (rpt) shown
in Set1b of the model.

• The encoder first codes the letter using the above codes. Then the rpt
code is used followed by the number of times the letter repeats.

• The number of times the letter repeats is coded using a special bit sequence
as explained in section ”Encoding counts” that follows.

6.9 Repeating sections

• If a section repeats, another code of Set1a (dict) is used followed by four
fields as described next.

• The second field indicates the length of the section that repeats.

• The third field indicates the distance of the repeating section.

• The fourth field is coded only if several sets of texts are encoded. It is a
number indicating the set that the section belongs to, assuming there are
several sets of text are being encoded. If only one set of text is encoded,
the distance is to be counted from the current position.

• The second, third and fourth fields are encoded as explained in the fol-
lowing section ”Encoding counts”.

6.10 Encoding Counts

• For encoding counts such as length and distance, the horizontal codes
shown in the model are re-used, each code indicating how many bits will
follow to indicate count.

• If code is 0, 2 bits would follow, that is, count is between 0 and 3.

Licensed under CC 4.0 Int’l Attribution License c©2019 Siara Logics (cc) 6

Data Compression techniques • Information Theory • Unishox - Guaranteed
Compression of Short Unicode Strings

• If code is 10, 5 bits would follow, that is, count is between 4 and 35.

• If code is 110, 7 bits would follow, that is, count is between 36 and 163.

• If code is 11100, 9 bits would follow, that is, count is between 164 and
675.

• If code is 11101, 12 bits would follow, that is, count is between 676 and
4771.

• If code is 11110, 16 bits would follow, that is, count is between 4772 and
70307.

• If code is 11111, a varint would follow, which means a VarInt that uses
a terminating byte would be used to indicate the count. The format
for this code is kept for future expansion as it is not expected that an
implementation of Unishox would need this.

• This is shown in tabular form below

Code Range Number of bits
0 0 to 3 2
10 4 to 35 5
110 36 to 163 7
11100 164 to 675 9
11101 676 to 4771 12
11110 4772 to 70307 16
11111 Above 70307 Variable

6.11 Encoding Unicode characters

• The code 100 is used as prefix to indicate that a Unicode character is
being encoded.

• First, the unicode number is decoded from the input source depending on
how it was encoded, such as UTF-8 or UTF-16 or Wide Character set.

• For the first unicode character, the number decoded is re-coded to the
output as it is.

• For subsequent unicode characters, only the difference between the pre-
vious character is re-coded to the output. Thus, here, delta coding is
used.

• After the code 100, another set of prefix-free codes are used, according to
the following table, depending on the size (in bits) of the difference.

Licensed under CC 4.0 Int’l Attribution License c©2019 Siara Logics (cc) 7

Data Compression techniques • Information Theory • Unishox - Guaranteed
Compression of Short Unicode Strings

Code Range Number of bits
0 0 to 31 5
10 32 to 4127 12
110 4128 to 20511 14
1110 20512 to 86047 16
11110 86048 to 2183199 21
11111 Special code -

• The Special code is explained in the next section.

• After 100, one of the above codes is used, followed by the sign bit. The
sign bit is a single bit. 1 indicates that the number following is negative
and 0 indicates that the number following is positive.

• After the sign bit, the unicode value (or difference) is encoded as a number.
The number of bits used depends on its size, as shown in the above table.

• After encoding the unicode number, the state returns to Set 1, unless
continuous unicode encoding was started. This is explained in the next
section.

6.12 Encoding continuous Unicode characters

• Since the prefix 100 may become an overhead when several Unicode are
to be encoded, a continuous unicode encoding code is used (0010100).

• When 0010100 is used, unicode characters are encoded continously using
delta encoding, until a non-unicode character is encountered. When this
happens, state is returned to Set 1 using the Special code 11111 110 in
the table shown in previous section is used.

• The Special codes are used only when Unicode characters are coded contin-
uously, to indicate special characters and situations occuring in-between.
What follows the Special code 11111 is indicated using the table below:

Code Character/Situation
0 Space character
10 Repeating section
110 End continuous unicode encoding
11100 Comma (,)
11101 Full stop (.)
11110 Carriage return (CR)
11111 Line feed (LF)

• It is found that the above characters appear frequently in between conti-
nous Unicode characters and so Special codes are needed to avoid switch-
ing back and forth from Set1.

Licensed under CC 4.0 Int’l Attribution License c©2019 Siara Logics (cc) 8

Data Compression techniques • Information Theory • Unishox - Guaranteed
Compression of Short Unicode Strings

6.13 Encoding punctuations

• Some languages, such as Japanese and Chinese use their own punctua-
tion characters. For example full-stop is indicated using U+3002 which is
represented visually as a small circle.

• So when encountering a Japanese full-stop, the special code for full-stop
is used, only in this case, the decoder is expected to decode it as U+3002
instead of ’.’. In general, if the prior unicode character is greater than
U+3000, then the special full-stop is decoded.

• There are other types of full-stops used in other languages. For exam-
ple, Hindi uses a kind of pipe symbol to indicate full-stop. However, to
avoid confusion, this is left to delta coding, since it does not make much
difference in compression ratio.

6.14 Encoding other binary symbols

• Binary symbols are not expected for encoding text, so it is out of scope of
this exercise.

• However, for encoding other binary symbols ranging from ASCII 0 to 31
and ASCII 128 to 255, the prefix code 001000000 is used.

• It is followed by the ASCII value of the symbol, encoded using the method
described in section ”Encoding counts” in this document.

• This method actually expands the original size and is provided for the rare
cases where such binary symbols appear.

Based on the above rules, the following Frequency table is formed.

Licensed under CC 4.0 Int’l Attribution License c©2019 Siara Logics (cc) 9

Data Compression techniques • Information Theory • Unishox - Guaranteed
Compression of Short Unicode Strings

7 Frequency table

ASCII Code Letter Code Length
32 010 3
33 ! 00111111100 11
34 “ 00111101100 11
35 # 00111111010 11
36 $ 001110111110 11
37 % 001110111111 12
38 & 001111000 9
39 ’ 0011111011 10
40 (00111011101 11
41) 00111011110 11
42 * 00111101011 11
43 + 00111011011 11
44 , 0011101010 10
45 - 0011101011 10
46 . 001110100 9
47 / 0011101100 10
48 0 0011100011 10
49 1 0011100100 10
50 2 00111001010 11
51 3 00111001011 11
52 4 00111001100 11
53 5 00111001101 11
54 6 00111001110 11
55 7 001110011110 12
56 8 001110011111 12
57 9 0011100010 10
58 : 0011110011 10
59 ; 0011110010 10
60 < 0011110100 10
61 = 00111011010 11
62 > 00111101010 11
63 ? 0011111010 10
64 @ 001111100 9

Licensed under CC 4.0 Int’l Attribution License c©2019 Siara Logics (cc) 10

Data Compression techniques • Information Theory • Unishox - Guaranteed
Compression of Short Unicode Strings

ASCII Code Letter Code Length
65 A 00101011 8
66 B 00100001110 11
67 C 001000000 9
68 D 0010000011 10
69 E 0010011 7
70 F 00100011000 11
71 G 001000011110 12
72 H 00100001010 12
73 I 00101101 8
74 J 0010001101011 13
75 K 001000110100 12
76 L 0010000010 10
77 M 00100001101 11
78 N 00101110 8
79 O 00101100 8
80 P 00100001100 11
81 Q 0010001101010 13
82 R 001011111 9
83 S 001011110 9
84 T 00101010 8
85 U 00100001011 11
86 V 001000110011 12
87 W 001000011111 12
88 X 0010001101100 13
89 Y 001000110010 12
90 Z 0010001101101 13
91 [001111011110 12
92 \ 00111111101 11
93] 001111011111 12
94 ˆ 0011111100 10
95 00111111011 11
96 ‘ 001111111111 12

Licensed under CC 4.0 Int’l Attribution License c©2019 Siara Logics (cc) 11

Data Compression techniques • Information Theory • Unishox - Guaranteed
Compression of Short Unicode Strings

ASCII Code Letter Code Length
97 a 1011 4
98 b 0001110 7
99 c 000011 6
100 d 000100 6
101 e 011 3
102 f 0011000 7
103 g 00011110 8
104 h 0001010 7
105 i 1101 4
106 j 001101011 9
107 k 00110100 8
108 l 000010 6
109 m 0001101 7
110 n 1110 4
111 o 1100 4
112 p 0001100 7
113 q 001101010 9
114 r 11111 5
115 s 11110 5
116 t 1010 4
117 u 0001011 7
118 v 00110011 8
119 w 00011111 8
120 x 001101100 9
121 y 00110010 8
122 z 001101101 9
123 { 1101101 7
124 — 1111110 7
125 } 1101110 7
126 ˜ 11111110 8

Even after the freqency table is formed, the original model is still needed for
encoding Sticky sets as explained in the Rules section.

8 Implementation

According to the above Rules and Frequency table, a reference implementation
has been developed and made available at https://github.com/siara-cc/Unishox
as unishox1.c. This is released under Apache License 2.0.

Further, Unishox has been used in several open source projects shown below:

• Unishox Compression Library for Arduino Progmem - https://github.com/siara-
cc/Shox96 Arduino Progmem lib

Licensed under CC 4.0 Int’l Attribution License c©2019 Siara Logics (cc) 12

Data Compression techniques • Information Theory • Unishox - Guaranteed
Compression of Short Unicode Strings

• Unishox Compression Library for Arduino - https://github.com/siara-
cc/Shox96 Arduino lib

• Sqlite3 User Defined Function for Unishox as loadable extension - https://github.com/siara-
cc/Unishox Sqlite UDF

• Sqlite3 Library for ESP32 - https://github.com/siara-cc/esp32 arduino sqlite3 lib

• Sqlite3 Library for ESP8266 - https://github.com/siara-cc/esp arduino sqlite3 lib

• Sqlite3 Library for ESP-IDF - https://github.com/siara-cc/esp32-idf-sqlite3

9 Performance Comparison

The compression performance of all three techniques - Smaz, shoco and Shox96
were compared for different types of strings and results are tabulated below:

String
Length Smaz shoco Shox96

Hello World 11 10 8 8
The quick brown fox jumps over the lazy
dog

43 30 34 29

I would have NEVER said that 28 20 20 18
In (1970-89), $25.9 billion; OPEC bilat-
eral aid [1979-89], $213 million

67 65 52 54

Further - world95.txt - the text file obtained from The Project Gutenberg
Etext of the 1995 CIA World Factbook was compressed using the three tech-
niques and following are the results:

Original size: 2988577 bytes
After Compression using shoco original model: 2385934 bytes
After Compression using shoco trained using world95.txt: 2088141 bytes
After Compression using Shox96: 1966019 bytes
As for memory requirements, shoco requires over 2k bytes, smaz requires

over 1k. But Shox96 requires only around 95 ∗ 3 = 285 bytes for compressor
and decompressor together, ideal for using it with even Arduino Uno.

10 Proving guaranteed compression

Guaranteed compression means that the length of compressed text will never
exceed the length of the source text.

While it is not possible to prove it for any text, we can prove this for most
real life scenarios good enough for using it without fear of expansion of original
length.

At first we make the following assumptions for a given sentence in English
language:

Licensed under CC 4.0 Int’l Attribution License c©2019 Siara Logics (cc) 13

Data Compression techniques • Information Theory • Unishox - Guaranteed
Compression of Short Unicode Strings

• The sentence will start with a capital letter.

• The sentence will end in period (.).

• The sentence will have at least 3 words.

• Special characters other than a-z, A-Z and space will not be more than 2
or 3.

• Terminator symbol is not needed. That is, length of compressed string in
bits will be separately maintained.

With the above assumptions, we try to prove guaranteed compression as
follows:

• Since the sentence will have atleast two spaces, it saves 5 + 5 = 10 bits.

• Since any English word will have a vowel and the average length of code
in our frequency table is 4, it will save another 12 bits, unless the vowel
’u’ appears in all three words, which is not likely in real life.

So, with a saving of atleast 22 bits, we can say it is more than sufficient to
offset for any symbol being used, such as Uppercase letter or Special character,
provided such letters do not exceed 4, since the maximum length of any code in
our frequency table is only 13. So if there are 4 such exceeding codes, it will
occupy at most (13− 8) ∗ 4 = 20 bits.

This assumption is towards defining a safe limit and since there will be more
savings because of the known general frequency of letters, we can safely assume
this guarantee.

For Unicode text, the codes in section ”Encoding Unicode characters” have
been selected in such a way that the prefix-code overhead is offset by delta
coding and the fact that UTF-8 encoding has more redundant code overhead.

11 Conclusion

As can be seen from the performance numbers, Unishox performs better than
available techniques. It can also be seen that it performs better for a variety of
texts, especially those having a mixture of numbers and special characters.

12 Further work

We propose to improve Unishox by including support for compressing binary
symbols. We also propose to develop such models for other languages and types
of text such as Programs.

Licensed under CC 4.0 Int’l Attribution License c©2019 Siara Logics (cc) 14

Data Compression techniques • Information Theory • Unishox - Guaranteed
Compression of Short Unicode Strings

13 About the Author

Arundale Ramanathan has over 20 years of experience working in the IT in-
dustry. He has worked alternatively in large Corporates, MNCs and Startups,
including Viewlocity Asia Pacific Pte. Ltd., IBC Systems Pte. Ltd. and Po-
laris Software Lab Ltd. He has founded Siara Logics (cc) and Siara Logics
(in) and publishing his open source work at https://github.com/siara-cc and
https://github.com/siara-in. He has a masters degree in Computer Science
from Anna University. He can be reached at arun@siara.cc.

References

[1] David MacKay. Information Theory, Inference, and Learning Algorithms,
Cambridge University Press, 2003.

[2] Shannon, Claude E. (July 1948). ”A Mathematical Theory of Communica-
tion”, Bell System Technical Journal. 27

[3] D. A. Huffman, “A method for the construction of minimum-redundancy
codes“, Proc. IRE, vol. 40, pp. 1098-1101,1952.

[4] J. Ziv and A. Lempel. A Universal Algorithm for Data Compression. IEEE
Transactions on Information Theory, 23(3):337–343, May 1977.

[5] Wikipedia, Delta Encoding, https://en.wikipedia.org/wiki/Delta encoding,
updated July 2019.

[6] M. Burrows and D. Wheeler. A Block-Sorting Lossless Data Compression
Algorithm. Research Report 124, Digital Equipment Corporation, Palo Alto,
CA, USA, May 1994.

[7] ”Statistical Distributions of English Text”. data-compression.com. Archived
from the original on 2017-09-18.

[8] What is the frequency of the letters of the alphabet in English?, Oxford
Dictionary. Oxford University Press. Retrieved 29 December 2012.

[9] Wikipedia, Letter frequency, https://en.wikipedia.org/wiki/Letter frequency,
updated December 2018.

[10] Salvatore Sanfilippo, SMAZ - compression for very small strings,
https://github.com/antirez/smaz, February 2012.

[11] Christian Schramm, shoco: a fast compressor for short strings,
https://github.com/Ed-von-Schleck/shoco, December 2015.

Licensed under CC 4.0 Int’l Attribution License c©2019 Siara Logics (cc) 15

