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A world system is composed of the world lines of the rest observers in the system. We present a 

relativistic coordinate transformation, termed the transformation under constant light speed with the 

same angle (TCL-SA), between a rotating world system and the isotropic system. In TCL-SA, the 

constancy of the two-way speed of light holds, and the angles of rotation before and after the 

transformation are the same. Additionally a transformation for inertial world systems is derived from it 

through the limit operation of circular motion to linear motion. The generalized Sagnac effect involves 

linear motion, as well as circular motion. We deal with the generalized effect via TCL-SA and via the 

framework of Mansouri and Sexl (MS), analyzing the speeds of light. Their analysis results 

correspond to each other and are in agreement with the experimental results. Within the framework of 

special and general relativity (SGR), traditionally the Sagnac effect has been dealt with by using the 

Galilean transformation (GT) in cylindrical coordinates together with the invariant line element. 

Applying the same traditional methods to an inertial frame in place of the rotating one, we show that 

the speed of light with respect to proper time is anisotropic in the inertial frame, even if the Lorentz 

transformation, instead of GT, is employed. The local speeds of light obtained via the traditional 

methods within SGR correspond to those derived from TCL-SA and from the MS framework. 
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I. INTRODUCTION 

 Traditionally, the Galilean transformation (GT) between the rotating and the inertial frames has been 

exploited in cylindrical coordinates to handle circular motions within the framework of special and 

general relativity (SGR) [1–7]. The traditional approach based on the non-relativistic GT and the 

constancy of the speed of light under the standard synchrony cannot comprehensively deal with 

relativistic circular motions. Some inconsistencies, such as the problem of time gap, arise [2, 3]. In this 

paper, a relativistic transformation between the rotating world system S ~
 and the isotropic system 

S , which is termed the transformation under constant light speed with the same angle (TCL-SA), is 

derived based on the Lorentz transformation (LT). The world system consists of the world lines of rest 

observers in the system. The world lines of rotating observers compose S ~
 and they are obtained by 

using the LT. In S , the speed of light is a constant c  regardless of the propagation direction. The 

TCL-SA holds the constancy of the two-way speed of light in S ~
. Circular motion can be regarded as 

locally inertial. Accordingly, a coordinate transformation between S  and an inertial world system is 

derived from the TCL-SA.  

A curvilinear motion can be described as an infinite number of linear motions. The framework of 

Mansouri and Sexl (MS) [8], handling these linear motions, can deal with arbitrary motions including 

circular motion. In the derivation of the coordinate transformation between S 
~

 and S , given an 

unprimed rotational angle   in S , it is necessary to find the corresponding primed one  . Using 

the MS framework, we can obtain  , which is shown to be the same as  . The TCL-SA is 

consistent with the MS framework because   is derived from it. In contrast, the primed rotational 

angle in the existing transformation under constant light speed with a different angle (TCL-DA) [9] is 

other than the one from the MS framework. 

The generalized Sagnac effect [10–13], which involves linear motion as well as circular motion, 

indicates that the speed of light is anisotropic not only in rotating frames but also in inertial frames. 

We investigate the generalized Sagnac effect via TCL-SA, analyzing the speeds of light in the rotating 

and the inertial frames. The analysis via TCL-SA takes no account of the motion of the laboratory 

frame. Considering its motion, the generalized Sagnac effect is also analyzed by using the MS 

framework. These analyses are in agreement with the experimental results [10, 11]. Moreover, the 

local speeds of light derived from TCL-SA are shown to be the same as those derived from the MS 

framework. 

It seems to have been known to most physicists that SGR can resolve the Sagnac effect without 

contradictions, although it cannot provide consistent explanations on the speed of light in the rotating 

frame [2, 3, 14–18]. We show that the difference between the travel times of two light beams 
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traversing a circumference in opposition directions can be exactly obtained via the traditional methods 

utilizing GT and the invariant line element. However, this does not mean that SGR can consistently 

explain the Sagnac effect. Applying the same traditional methods to an inertial frame in place of the 

rotating one, we show that the Sagnac effect takes place also in linear motions, as actually observed in 

the experiment of the generalized Sagnac effect. It implies that the speed of light is anisotropic in 

inertial frames. Even if LT, rather than GT, is used for the transformation between inertial frames, the 

local speed of light with respect to proper time is shown to be anisotropic. The speeds of light 

calculated through the traditional methods correspond to those derived from TCL-SA and from the MS 

framework. As clearly proven in Ref. 18, the equivalence of inertial frames under light speed 

constancy is mathematically infeasible, which one can readily see from the relationships of relative 

velocity between four arbitrary inertial frames. 

The rest of this paper is organized as follows. In Section II, the TCL-SA is derived. Section III 

presents the MS framework, showing that the rotational angles   and   are equal in the coordinate 

transformation between S ~
 and S . Section IV investigates the Sagnac effect and the speeds of light 

via TCL-SA and via the MS framework. In Section V, traditional approaches within the framework of 

SGR are employed to deal with the Sagnac effect and to find the speeds of light in inertial frames. 

Finally, Section VI presents conclusions, together with a brief discussion on the usefulness of LT. 

 

II. RELATIVISTIC TRANSFORMATION FOR CIRCULAR MOTION 

In this section, we derive the TCL-SA based on the relativistic circular approach presented in Refs. 

9 and 19. The circular approach employs the unprimed and the primed coordinate systems S , S
~

, 

S
~ , and S   for single observers in the complex Euclidean space, as illustrated in Fig. 1, where time 

is represented as an imaginary number. The speed of light is assumed to be a constant c  irrespective 

of the propagation direction in S  and its time coordinate is expressed as ict  where 2/1)1(i  

and t  denotes time. The coordinate time ~  of S
~

 is the same as  . The z -components do not 

change by coordinate transformations and are omitted if not necessary. We denote the coordinate 

vectors of S  and S
~

 by Tyx ],,[p  and Tyx ]~,~,~[~ p , respectively, where T  stands for the 

transpose.  

The coordinate system S
~

 is rotated by   with respect to S  and their coordinate vectors p  

and p~  are related by 

pAp )(~  ,                                                              (1) 

where )(A  is a rotation matrix: 
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Obviously )()(1   AA , so pAp ~)(  . The coordinate systems S   and S
~  are the primed 

ones corresponding to S  and S
~

, respectively. Their coordinate vectors are denoted as 

Tyx ],,[  p  and Tyx ]~,~,~[~  p  where tic  ~ . The ~ - and x~ -axes of S
~

 and the 

 ~ - and x ~ -axes of S
~  lie on an identical plane, as can be seen from Fig. 1. An observer O

~  at rest 

in S
~  is in motion in the direction of the x~ -axis at a normalized speed cv / , as seen in S . In 

Fig. 1, the angles from the x~ -axis to the x ~ -axis and from the x -axis to the x -axis are both  , 

which is a complex number, and the trigonometric functions cos  and sin  are given as 

2/12 )1/(1cos    and 2/12 )1/(sin   i . The normalized speed is written in terms of   

as 

 tani .                                                               (3) 

One can see that if 0 , 0 . In Section II.1, considering O
~  as if it is in rectilinear motion, 

we obtain the relationships between the rotational angles   and  . In Sections II.2 and II.3, 

considering O
~  in circular motion, we derive the coordinate transformation between S ~

 and S . 

 

1. Angle of rotation 

Let the coordinate vector of O
~  be described as Tyx ]~,~,~[~ p  in S

~
. Performing the LT for p~  

in the x~ -axis direction, we obtain its coordinate vector Tyx ]~,~,~[~  p  in S
~ : 

pTp ~)(~ L ,                                                             (4) 

where )(LT  is the LT matrix 
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One can easily see that when 0 , )(LT  is reduced to an identity matrix. Generally a 

conversion matrix of coordinates between S   and S
~  can be represented as )(A . Using Eqs. (1) 

and (4) and pAp   ~)(1  , we have 
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pTp ),( LR ,                                                          (6) 

where  

)()()(),( 1  ATAT LLR   .                                              (7) 

To solve Eq. (6), we need to find the unknown )(A . The rotational angle    in Fig. 1, which is 

the angle between the x - and x ~ -axes, is expressed as [19] 

R cos ,                                                             (8) 

where 2/12 )1/(1cos  R . The y ~ -axis lies on the x-y plane, and the locus of the x ~ -axis forms 

a cone as   increases from zero to 2 . When   varies from zero to 2 , the x~ -axis spans the 

x - y  plane of S  while the x ~ -axis spans the lateral surface of the cone. The period of   is 2 . 

In contrast, the period of    is less than 2 , which implies that the space spanned by the x ~ -axis 

is curved. A representation in S   of the coordinate vector p ~  may be obtained by spatially rotating 

the x ~ - and y ~ -axes by    so that they correspond to the x - and y -axes. In the rotation, the 

time components of p  and p ~  are identical. Then )(A  can be written as  

)()(   AA .                                                           (9) 

However, the time axes of S   and S
~  are oriented differently, as seen in Fig. 2. Hence, first, it will 

be necessary to make a rotation such that they have the same orientation. To this end, the   - x  and 

the  ~ - x ~  planes are rotated by   downward, as in Fig. 2, so that the circular sector 10POP  and 

both   - and  ~ - axes correspond to, respectively, the sector 10PPO   and the   -axis orthogonal 

to it. The resultant arc 10PP   becomes larger than the arc 10PP  and the angle   between the x - 

and x ~ -axes becomes 

  .                                                                  (10) 

In Eq. (10),   is defined in S  . If it is defined in S
~ , its sign is changed so that   . The 

conversion matrix is given by 

)()(  AA                                                              (11) 

with   defined in S  .  

We must determine which one of Eqs. (9) and (11) will be used for the conversion in the primed. 

Equation (6) represents a generalized LT which can be applied irrespective of the direction of motion 

in the x - y  plane. The MS framework, into which clock synchronizations can be incorporated, 

provides a general transformation between inertial frames. In Section III, we derive )(A  by using 

the MS framework and Eq. (7). The derived result corresponds to Eq. (11).  
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2. Approach to circular motion 

   With   obtained as Eq. (10), the TCL-SA can be discovered through the same circular approach 

used for the derivation of the TCL-DA [9]. This subsection briefly introduces the circular approach. 

The coordinate system S
~

 is rotating with an angular velocity of   relative to S , and its rotational 

angle   at an instant   is  

 c ,                                                                (12) 

where icc /  . Observers O  and O
~

 are located at radius r  in S  and S
~

, respectively. The 

coordinate vector in S  of O  is written as Tr],0,[  p  and the coordinate vector in S
~

 of O
~

 

as Tr],0,[~  p . The observers O  and O
~  are the primed ones corresponding to the unprimed 

O  and O
~

, respectively. The transformation (6) is valid when   is constant. In the event that   is 

time varying, differential coordinate vectors should be used [19]. For constant  , the transformation 

equations from S
~

 to S   are Eq. (4) and pAp  ~)(  . For time varying  , the transformation 

of the coordinates in S
~

 of O
~

 to S   is given, using differential vectors, by 

pTp ~)( dd L  ,                                                          (13a) 

pAp  dd )(  ,                                                        (13b) 

where cr /  . Equation (13b) is valid irrespective of whether   is defined in S   or in S
~  

[19]. Depending on the coordinate system selected to define  , only the point of view on the relative 

motion between them is different. 

Motions are relatively described in the LT. Hence, in the transformation from S  to S
~ , the latter 

can be viewed as fixed while the former as rotating. Accordingly the spatial components of a 

differential vector pd  of p  are divided into the x~ - and y~ -components and then the LT is made 

in the x~ - direction: 

pAp dd )( ,                                                           (14a) 

pTp dd L )(~  ,                                                          (14b) 

where   and   are defined in S . When motions are described with the point of view that S
~

 (or 

equivalently S
~ ) is rotating with respect to S , similarly a transformation from S

~  to S  can be 

obtained [19]. However, the experimental results of circular motion are in agreement with Eq. (14), 

but in disagreement with the resultant one from the other viewpoint [9]. 

  The coordinate systems S
~

 and S   have been introduced in the process to discover the 

transformation between the coordinates of O  and O
~  who are real observers. The observer O

~
(O ) 
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can be considered to be O
~ (O ) seen in S ( S

~ ).  

 

3. Coordinate transformation 

The coordinate systems S , S
~

, S
~ , and S   are the ones for single observers who see the world 

through the Lorentz lens. On the other hand, a world system consists of a collection of world lines, 

which can be obtained from Eq. (14). A rotating world system in the unprimed is denoted by S
~

, 

which is rotating at an angular velocity   in S . We assume without loss of generality that S  is 

identical to the isotropic system S , which means that each event in S  is the same as the event at the 

same coordinates in S . Then S
~

 becomes equal to S
~

. The world systems S  and S ~
 are the 

primed ones corresponding to S  and S 
~

, respectively. We use a subscript ‘s’ to represent the spatial 

vector from a space-time coordinate vector. For example, the spatial vector of p~  is expressed as 

)]~,~[(~ T
s yxp . 

It is the transformation between S  and S ~
 that we seek. Recall the coordinate vector in S

~
 of 

O
~

, who is equivalent to O
~  seen in S , is Tr],0,[~  p . The spatial vector in S  of O

~
 is 

written as T
s r ]cos,[sin  p . When 0 , the spatial vector of O

~
 is T

s r],0[ p  and O
~

 

meets O  who is at rest in S . The differential vector of p  is TT
sddd ],[ pp   where 

T
s drd ]sin,[cos p . Using Eq. (14) and  tandrd   from Eqs. (12) and (3), we have 




cos

d
d  ,                                                            (15a) 

0sdp~ .                                                                (15b) 

The direction of motion of O
~

 is orthogonal to the radial direction so that the LT has no effect on the 

radial component of sp~ , as can be seen from Eq. (15b). Equation (15b) means that O
~  is at rest in 

S
~ . Hence O

~  is expected to rotate at an angular velocity with respect to S  . Unfortunately, we 

cannot proceed further to find the spatial coordinates of O
~  as 0sdp~ . However, fortunately, we 

can derive the radius r  of O
~  by using Eq. (13) [9]. In the derivation of the radius, the   defined 

in S
~  is employed and thus   . Because T

s r],0[~ p , Tdd ]0,0,[~ p . Substituting the 

p~d  into Eq. (13a) yields  

Tdd ]0,sin,[cos  p .                                                 (16) 

From Eqs. (13b) and (16), sdp  can be written as T
s drd ]sin,[cos  p  with 
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cosrr  ,                                                              (17)  

where we used the relationships of cdd  /  and  cos)//(tansin/sin rrc  . 

  Equations (10), (15a), and (17) lead to the transformation between S  and S : 

cos

t
t  , cosrr  ,   , zz  ,                                      (18) 

where   is defined in S . The angular frequency of O
~  when seen in S  is written as  

 cos




td

d
.                                                       (19) 

As S 
~

 rotates at the angular frequency   with respect to S , the azimuthal angle ~  is related to 

  by t ~ , which is expressed as t 
~

. The coordinate transformation between 

S 
~

 and S  is written as 

cos

t
t  , cosrr  , t 

~
, zz  .                                 (20) 

The rotating system can be regarded as locally inertial though it is in accelerated motion. Therefore 

a coordinate transformation between an inertial world system and the isotropic system S  can be 

derived from Eq. (20). To this end, we introduce a differential arc r S
~

 of radius r  subtended by a 

differential angle ~d  in S ~
, as can be seen from Fig. 3 where an inertial world system S   moves 

at constant speed   relative to S . If r  is so large or ~d  is so small that the differential arc can 

be approximated as a line segment which lies in S  , then ~dr  and rd  approach xd   and dx , 

respectively, where Tx ],[  p  is the coordinate vector of S  . The quantity ~dr  is given 

from Eq. (20) by 

dtrdrdrxd  coscos
~

 .                                        (21) 

Using  tancr , we have 

 ddxxd sincos  .                                                  (22) 

The time component of the coordinate vector of S   is equal to that of r S
~

. The transformation 

between S   and S  is written as 

pTp dd I )( ,                                                          (23) 

where 

















cossin

0cos/1
)(IT .                                                  (24) 
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The inertial transformation of Eq. (23), which shows absolute simultaneity, has attracted some interest 

for the coordinate transformation between inertial frames [8, 14, 20–22]. When the inertial 

transformation and the LT are compared, their spatial components are, as can be seen from Eqs. (5) 

and (24), identical and the time components are different. We have obtained Eqs. (18) and (20) based 

on the LT for the instantaneous transformation for inertial frames, as in Eqs. (13a) and (14b). However, 

the transformation for inertial frames is given as Eq. (23), not the Lorentz one. It may be pointed out 

that if Eq. (23) is correct, Eqs. (18) and (20) would not be accurate because they have been derived 

from LT. We have used LT to find world lines, which are independent of synchronization procedures. 

The world line is the same irrespective of the absolute and the standard synchronizations.  

 

III. MANSOURI-SEXL FRAMEWORK 

An inertial frame kS  is in uniform linear motion at a normalized velocity k  relative to the 

isotropic frame S  and its coordinate vector is denoted as TT
skkk ],[ )()()( pp  where 

T
kkksk zyx ],,[ )()()()( p . For a vector q , we denote its normalized vector by q̂  and its magnitude 

by q . For example, ||/ˆ
kkk    and || kk   where ||   designates the Euclidean norm. In 

the MS framework, the coordinates of S  are transformed into kS  as follows [8, 12, 18]: 

pTp )( kGk  ,                                                           (25) 

where )( kG T  can be expressed as  











)(
)(

kkk

T
kk

kG
ib

ig





M

T                                                 (26) 

with 

k
T
kkkk bag  ,                                                        (27) 

kkkk
T
kkkk ddb   ˆ)ˆ)(( ,                                            (28) 

IM k
T
kkkkk ddb   ˆˆ)()( ,                                            (29) 

and I  denoting an identity matrix. The transformation coefficients ka  and kb  are associated with 

time dilation and length contraction, respectively, and the synchronization vector k  is determined 

by a synchronization scheme in kS .  

Because iiG pTp )(1  , the transformation from one inertial frame iS  to another jS  is 

expressed as 

)()( ),( iijGj pTp  ,                                                      (30) 
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where 

)()(),( 1
iGjGijG   TTT .                                               (31) 

According to Eq. (30), the spatial vector appears to depend on the synchronization vector, but it does 

not, as seen in Eq. (25). The transformation coefficients in Eq. (25) can be given, in accordance with 

special relativity, as 

1 kka  , kkb  , 1kd ,                                                 (32) 

where 2/12 )1(  kk  )cos( k . If 0k , )()( IG TT   when   has the same direction 

as the x-axis. We adopt the standard synchronization so that kk   . Then )(GT  becomes 

equal to the LT matrix, and thus )()( LG TT   for   parallel to the x-axis. Clearly 

)()(1
k

T
GkG  TT  , which leads to ),(),(1

ij
T

GijG  TT  .  

An object kO , jik , , is placed at the origin of kS . The normalized velocity ji  of jO  as 

seen in iS  is calculated as [12, 18, 23] 

)]ˆ(ˆ))ˆ(ˆ([1
j

T
iijij

T
iiiijjji     .                              (33) 

The inverse of ),( ijG T  is ),( jiG T . In Eq. (33), the ij  corresponds to the (1, 1)-entry of 

),( jiG T , which is given by [12, 18] 

2/12 )1(  jiij  ,                                                         (34) 

and represents the time dilation factor. Given i  and j , it can be obtained from them. As 

),(),( ij
T

GjiG  TT  , jiij   , which leads to the equality ijji   . Though the magnitudes 

of ji  and ij  are equal, in general jiij   .  

It is well known that proper time (PT) is independent of synchronization schemes and can be 

discovered in any inertial frame if relative velocity is known. We use a subscript ‘ ’ in PT, say k , 

to distinguish it from the adjusted time (AT) through the synchronization of clocks. The PT interval is 

measured at the same place while the AT interval is between different places. The PT of jO  can be 

expressed as  

 jiij  /)()(                                                           (35a) 

j / .                                                             (35b) 

Note that Eq. (35a) is valid even if i and j  are interchanged. The first row of ),( ijG T  is given 

by [12, 18] 
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],1[|),( 1
T
jijirijG i  T .                                                (36) 

The motion of jO  is described as TT
jiii i ],1[)()( p  in iS . Recall that Eq. (25) with jk   

and Eq. (30) are the representations for the same )( jp . Equation (35a) is obtained by substituting the 

)(ip  into Eq. (30), and Eq. (35b) by substituting TT
ji ],1[ p  into Eq. (25) with jk  . 

Equation (35) shows that the PT of jO  is the same for any iS  regardless of i  and j . 

Now, we are ready to deal with the primed rotation angle   remaining unsolved. In Eq. (6), S
~

 

is rotated by a constant   in the x - y  plane with respect to S . The z -components do not vary 

with the transformation and are dropped. It is seen by comparing Eqs. (6) and (25) that ),( LRT  

should be equal to )(GT  when xA ˆ)(   s  where T]0,1[ˆ x  and )(sA  is a spatial 

rotation matrix given by 
















cossin

sincos
)(sA .                                                  (37) 

The conversion matrix )(A , which is unknown, is expressed from the equality as 

)()()()( 111    LG TATA  .                                             (38) 

Recalling Eq. (3) and substituting xA ˆ)(   s , cosb , 1 ba , and 1d  into )(GT , 

we have 














IAxxAxA

xA
T

)(ˆˆ)()1(cosˆ)(sin

)ˆ)((sincos
)(




T
s

T
ss

T
s

G  .                  (39) 

The )(GT  is a generalized LT matrix. It is straightforward to confirm by direct computation that 

ITT )()(  G
T

G . Right-multiplying both sides of Eq. (39) by ))(()(1   AA  leads to 


























cossincossinsin

sincoscoscossin

0sincos

)()( AT G .                             (40) 

Inserting Eq. (40) in Eq. (38) yields ))(()()( 11    AAA , which substantiates Eq. (11) 

together with   given as Eq. (10). 

 

IV. SPEEDS OF LIGHT UNDER THE UNIQUE ISOTROPIC FRAME 

Unless the isotropic frame is unique, physical quantities such as PT and Doppler shifted frequency, 

which are independent of synchronization procedures, are not uniquely determined [18]. The speeds of 

light are analyzed via the TCL-SA that transforms the coordinates between the unique isotropic system 
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S  and the rotating world system S 
~

. The laboratory frame will be different from the isotropic 

system. Considering the motion of the laboratory frame relative to S , we also make the analysis 

based on the transformation (30) in the standard synchronization. These analyses are consistent with 

the experimental results such as the Saganc effect. 

 

1. Two-way speed of light in TCL-SA 

If r  is fixed, so is r , and vice versa. Here, the two-way speed of light in TCL-SA is investigated 

when radius r  is fixed. For the investigation, we extend the world system r S
~

, which represented a 

differential arc in Section II, such that it includes the surface of a cylinder of radius r . As illustrated 

in Fig. 3, a photon b  takes a roundtrip between two spatial points 0
~

sp  and 1
~

sp  located at the same 

radius r  in S ~
 where )0,0,(~

0 rps   and ),
~

,(~
1 zddrps   . The squared distance between the 

spatial points is written as 

222 )
~

(
~

zddrld   .                                                     (41) 

When a photon moves in S ~
 by ~dr  and zd   in the azimuthal and the z -axis directions, 

respectively, it does in S  by rd  and dz  in the respective directions. Because the speed of light 

is c  in S , it follows that  

0)()( 222  dzrdcdt  .                                                  (42) 

Substituting tddd  
~

 into Eq. (42) and solving the quadratic equation of dtc , we have 

 22/1222 cos]))1()
~

((
~

[ dzdrrdcdt  ,                               (43) 

where 0dtc  irrespective of the sign of ~d . From Eqs. (43), (41), and (20), one can easily see 

that dtc  is expressed as 

 cos
~

cos
~ 2 ldrdcdt  .                                              (44) 

The travel times cdt  and cdt  for 10
~~

ss pp   and 01
~~

ss pp  , respectively, are given by 

 cos
~

cos
~ 2 ldrdcdt                                               (45) 

where 0
~
d . The time elapsed during the round trip is  

cos
~

2 ldcdtcdtcdt   .                                              (46) 

The roundtrip time in r S
~

 is related to dt  by cos/~
 dttd   according to the first equation of 

the transformation (20) and then 
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c
td

ld
c 







 ~

~
2~ .                                                            (47) 

Equation (47) indicates that the roundtrip speed of light is constant irrespective of the propagation 

direction in the rotating world system r S
~

 with radius fixed. The TCL-SA holds the constancy of the 

two-way speed of light, which remains the same also in the inertial transformation (23) derived from 

Eq. (20). 

 

2. Local speeds of light and the Sagnac effect 

Recalling  ~~   and cosrr   and using Eq. (44), we can find the one-way speed of light in 

r S
~

. Equation (44) is rewritten as  

 cos)cos1(
~  ldcdt ,                                                (48) 

where lddr
~

/
~

cos   . The speed of light is given by 

)
~

(
~

~
td

dt

dt

ld

td

ld
c








                                                        (49a) 

 


cos1

c
.                                                        (49b) 

The one-way speed of light is dependent on the propagation angle    and is anisotropic in r S
~

, 

though the two-way speed is isotropic. The    indicates the angle from the direction of motion of the 

primed frame to the propagation direction of light and Eq. (49b) is also valid for rectilinear motion. In 

other words, when a light signal propagates in an inertial world system S   with a propagation angle 

   with respect to the direction of motion of S   its speed is also given by Eq. (49b). Of course, the 

same speed can be obtained from Eq. (23) [14]. 

Once the local speed of light is known, it is an easy task to solve the Sagnac effect. Suppose that 

two counter-propagating light beams traverse a circumference of radius r  on a circular plate which, 

as seen in the laboratory frame, rotates around its center with an angular velocity of  . The 

laboratory frame is assumed to be isotropic and is represented by S . Its motion will be considered 

later. Because 0zd  in the Sagnac experiment, |
~

|
~  drld . For the counter-propagating light 

beams b , where b  and b  denotes the co-rotating and counter-rotating ones, respectively, 

1cos   and their speeds are given by 


 1

~ c
c .                                                              (50) 

Then the elapsed times of b  traversing the respective paths are calculated as 
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c

l

c

ld
t p

path

)1(
~

~ 





 


 ,                                                   (51) 

where rl p  2  is the rest length of the circumference. The time difference is given by 

c

l
ttt p

D





 

2
.                                                     (52) 

The analysis result is in agreement with the experimental results of the Sagnac effect. The generalized 

Sagnac effect involves linear motion as well as circular motion. Though we considered only circular 

motion for simplicity, the analysis for the generalized Sagnac effect can be easily made. Because Eq. 

(49) is valid for linear motion, so is Eq. (50). In the experiment of the generalized Sagnac effect [10, 

11], two light beams b  traverse an optical fiber loop in opposite directions. The integration in Eq. 

(51) is performed over the path of the optical loop. Then their travel time difference is identical with 

Eq. (52) where pl   is the rest length of the loop.  

The laboratory frame will be other than the isotropic S . Let us take account of its motion in the 

generalized Sagnac effect. Though the Earth rotates, it can be considered to belong to an inertial frame 

iS  for a very short time of the test. The standard synchronization is introduced into iS . The optical 

fiber loop has an arbitrary shape. A curved line can be approximated by many straight lines. The fiber 

loop is divided into n  line segments such that its motion can be handled by linear motions. As n  

tends to infinity, the linearized shape approaches the original one. Each segment adopts the standard 

synchronization. The jth segment of the linearized shape is in linear motion momentarily at a velocity 

of ji  relative to iS , where  ji , and it belongs to a standard-synchronized jS . The 

coordinate vectors of iS  and jS  are related by Eq. (30) and the relationship between their 

differential vectors is given by 

)()( ),( iijGj dd pTp  .                                                    (53) 

In Eq. (53) k , jik , , is the velocity of kS  with respect to S  and then ji  is expressed as Eq. 

(33). 

In the standard-synchronized iS , 0|| 2
)(

2
)(  sii dd p  for a light beam. Using this fact and Eq. 

(53), the rest length of the jth segment is calculated as [12] 

)()()(  i
T
jijiisjj idddl cp  ,                                           (54) 

where )()( / isii dd  pc  , which has a unit magnitude, is a velocity of light with respect to AT. The 

jdl  represents the travel length in jS  of a photon traversing a segment sid )(p  for )(id  in iS . 

Equation (54) has been obtained from Eq. (53) under the standard synchronization and jdl  appears to 
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depend on the synchronization vector i . The same differential vector is expressed according to Eq. 

(25) as pTp dd jGj )()(   and then jdl  is written as 

)(  cT
jjj iddl  ,                                                    (55) 

where  dd s /pc  . Cleary jdl  is irrelevant to clock synchronization. The speed of light with 

respect to PT in jS  is given from Eq. (54) by 

)ˆ1(2

)(
i

T
jiji

j

j
j c

dt

dl
c c 



.                                                 (56) 

For a light beam, )( )()()( iiiisi cdtdd ccp   . Substituting this relationship into Eq. (53) and 

recalling Eq. (36), one can see that )1()()(  i
T
jijiij idd c . It is confirmed from this expression 

for )( jd  and Eq. (54) that the speed of light with respect to AT is written as cddlcic jjj  )(/   

in the standard-synchronized jS . Setting 0i  in Eq. (56), we can find the speed of light in terms 

of absolute velocity: 

)ˆ1(2 cTcc   .                                                         (57) 

The c  becomes equal to the jc  when j   and 0i . Equation (49b) also represents the 

speed of light as a function of the absolute velocity. In Appendix, Eqs. (49b) and (57) have been 

proven to be identical. 

Using Eq. (56), one can readily obtain the difference between the elapsed times during the travel of 

b  in jS , which is calculated as 

))ˆ(1(

ˆ2
22








i
T
jiji

i
T
jij

j c

dl
t

c

c





 ,                                                   (58) 

where ic  denotes the velocity in iS  of the co-propagating light beam b . The overall time 

difference Dt  is obtained by integrating Eq. (58) over the loop. 

In case the directions of ic  and ji  are the same, the denominator of Eq. (58) is reduced to c  

and Dt  is given by Eq. (52) where  


n

j j
n

p dll
1

lim . Meanwhile, if the angle between ic  and 

ji  is   so that cosˆˆ i
T
ji c , Eq. (58) can be approximated as cdlt jijj /cos2   . Then 

the time difference is given by  

c

l
t p

D




cos2 
 .                                                        (59) 

As far as the time difference is concerned, the effective length of the optical loop is reduced by cos  
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times, which has been experimentally observed [10]. The generalized Sagnac effect shows that the 

speed of light is anisotropic not only in rotating frames but also in inertial frames. 

 

V. TRADITIONAL APPROACHES 

Traditional approaches [1–7], within the framework of SGR, to circular motion usually exploit the 

GT between the inertial and the rotating frames, representing the latter in the cylindrical coordinate 

system. Each infinitely small region in the rotating frame can be regarded as inertial, which allows the 

application of LT so that the line element becomes invariant. It seems to have been recognized that the 

Sagnac effect can be, without contradictions, explained within SGR. Relying on the GT and the 

fundamental principles of SGR, one can exactly find the difference between the travel times of the 

counter-rotating light beams in the experiment of the Sagnac effect. Following the same traditional 

methods, however, we can show that the speed of light with respect to PT is anisotropic in the inertial 

frame, even though LT instead of GT is employed. 

 

1. Sagnac effect in rotating frames 

In SGR, inertial frames are equivalent according to the principle of relativity. The laboratory frame 

can be considered to be isotropic so that it is represented here as S . The time difference can be 

calculated by employing the line element, which is written in S  as 

2222222 dzdrdrdtcds   .                                           (60) 

The coordinates of S  and S
~

 are related by the GT: 

tt ~ , rr ~ , t~
~   , zz ~ .                                          (61) 

Substituting Eq. (61) into Eq. (60) yields 

2222 ~
)~(

~~2)~( ldtcddrtcdds    ,                                      (62) 

where 

22222 ~~~~~
zddrrdld   .                                                 (63) 

Recall 0~~  zdrd  in the Sagnac experiment, and then |
~

|~~ drld  . Setting 0ds  to find the 

elapsed time for the travel of light, we have 

)
~~~(~ 2 lddrtcd   .                                                     (64) 

When the counter-rotating light beams b  traverse a circumference of radius r  as seen in S , it is 

easy, using Eq. (64), to obtain the travel time difference for b , which is given by 

c

l
t c
D




~
2~

2

 ,                                                           (65) 
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where rlc
~2

~  )2( r .  

As one can see from the non-relativistic transformation (61), the quantities Dt
~  and cl

~
 are not 

relativistic values. It is necessary to find proper ones, which can be done by exploiting metric tensors. 

In an arbitrary coordinate system, the coordinates of which are represented as ),,,( 3210 xxxx , the 

line element can generally be written as  

2202 )( dldxdxdxgds  


 ,                                          (66) 

where  

)(|| 0
1

00
02/1

0
0 i

ii dxggdxgdx 
  ,                                            (67) 

2/1
00

1
00

2 )( ji
ji dxdxgggdldl                                               (68) 

with 2/1)( ji
ij dxdxgdl  . In the above equations, repeated Greek and Latin indices are summed over 

0 through 3 and over 1 through 3, respectively. The quantity dl  is the proper distance [4], and the 

PT is given by 

02/1
00

0 || dxgdx  .                                                        (69) 

The proper distance and time are calculated as Eqs. (68) and (69) because infinitely small regions are 

regarded as inertial so that the LT can be applied. The nonzero tensor elements of S
~

 are written from 

Eq. (62) as 

2
00

 g , rgg ~~
2002  , 13311  gg , 2

22
~rg  .                         (70) 

Using Eqs. (68) and (70), we have the proper length of the circle 

cc ll
~~  .                                                                (71) 

If the actual radii in S  and in the rotating frame are related by the second equation of Eq. (20), the 

cl
~

 corresponds to the rest length of the circle. From Eqs. (69) and (70), /~~ tdtd  . Dividing both 

sides of Eq. (65) by  , we have 

c

l
t c
D

 


~
2~  .                                                            (72) 

The time difference (72) is exactly identical to Eq. (52) for the circular path. 

 

2. Speeds of light in inertial frames 

As shown above, the exact time difference can be obtained through the traditional methods based on 

SGR, which does not imply its consistency, though. Traditional approaches face self-contradictions 

when discovering the velocities of light in the rotating frame [2, 3, 14]. The rotating frame can be 
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regarded as locally inertial. Thus the local speed of light is considered the constant c  because inertial 

frames are isotropic according to the postulates of special relativity. If the speed of light is really c  at 

every point on the circumference, however, the travel times of b  are the same and the Sagnac effect 

cannot take place. Invoking the conventionality of simultaneity to escape this dilemma, many 

relativists have often claimed that different synchronizations should be introduced for the local and the 

global speeds of light [15–17]. The Sagnac effect is a global event and the time difference is due to the 

difference in the global, i.e., average, speeds, to which different synchronizations, not the standard 

synchrony, are applied. The travel times correspond to the PTs of the light detector, which are 

independent of the synchronization of clocks. Hence, the gauge freedom of synchronization can be 

applied to the analysis of the Sagnac effect. As a result, the exact travel times are obtained under the 

standard synchrony, as explained above. However, we can show by applying the same traditional 

method that the Sagnac effect takes place in inertial frames as well, which has been empirically 

observed [10, 11]. The conventionality of simultaneity cannot save the light speed constancy in inertial 

frames.  

Suppose that S   moves at a constant velocity   in the x-axis direction relative to the isotropic 

frame S . A co-propagating light beam b  travels from 0x  to 1x  and the counter-propagating b  

does from 1x  to 0x  on the x’-axis where 01 xx  . Let us first employ the GT between S   and 

S : 

tt  , ctxx  , yy  , zz  .                                        (73) 

The line element is expressed in S   as 

2222 )(2)( ldcdtxdtcdds    ,                                        (74) 

where 2/1222 )( zdydxdld  . Note that Eq. (62) becomes equal to Eq. (74) if tildes and ~~dr  

are replaced by primes and xd  . The non-zero tensor elements are given by 

2
00

 g ,  1001 gg , 1332211  ggg .                               (75) 

Then /dttd   and 2/1222 )( wdxdld    where 2/122 )( zdydwd  . From 0ds  

|)cos/|()( 2   xdxdcdttcd ,                                         (76) 

where xdwd   /tan . For b , 1cos  . As 0wd , || xdld   . The times taken 

during the travels of b  are calculated as 

c

l
t

)1(2  
 ,                                                          (77) 

where 01 xxl  . The travel time difference is given in terms of PT by  
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c

l
tD

 



 2

,                                                            (78) 

where ll    is the rest length of the segment in S  . Equation (78) is consistent with Eq. (52) and 

with the experimental result of the generalized Sagnac effect. 

Even if LT is exploited for the transformation, the same time difference is obtained. According to 

LT, the coordinates of S   are related to those of S  by 

)( xcttc   , )( ctxx   , yy  , zz  ,                            (79) 

and then its metric tensor is given by 

100 g , 1332211  ggg .                                              (80) 

Recall that in Eqs. (61) and (73), the transformed time is the same as that in S . In the traditional 

methods, the travel time differences have first been found, as Eq. (65), in terms of time in S  and then 

they are converted to the PT differences, as Eq. (72), observed by the light detector. Though LT is 

employed, we utilize Eq. (76) to obtain elapsed times in S . Equation (76) is rewritten as 

|)cos/|(2   xdxdcdt ,                                              (81) 

where ctxx   and xdwd   /tan  with 2/122 )( zdydwd  . In the GT, dxxd  . 

On the contrary, the length contraction occurs in LT. From the second equation of the transformation 

(79) with 0dt , )( xddxxd   , which leads to xdwd  /tan . The    indicates the 

propagation angle of light with respect to the x -axis in S  . From Eqs. (69) and (80), /dttd  . 

Multiplying both sides of Eq. (81) by /1  yields 

|cos/|   xdxdtcd  .                                                  (82) 

The differential distance is )()( 2/1222
ldzdydxdld   in S   and ldxd  /cos . It is 

obvious that   cos/|cos/| xdxd )( ld  . The speed of light with respect to PT is expressed as 





td

ld
c




                                                                 (83a) 

 


cos1

c
.                                                         (83b) 

Note that Eq. (83b) is equal to Eq. (49b). For b , 1cos  . The difference between their travel 

times becomes identical to Eq. (78) where 01 xxl  . 

The same speed as Eq. (83b) can be obtained directly from LT. Substituting )( cdtdxxd    

into Eq. (68) and recalling that dyyd   and dzzd  , we have 

22222222 )()(2)()()( dldxcdtdxcdtldld   ,                      (84) 

where 2/1222 )( dzdydxdl  . For a light signal, cdtdl  . Equation (84) is rewritten as 
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222 )( dxcdtld  
 .                                                     (85) 

The distance that a light signal travels in S   is given by 

)( dxcdtld   .                                                       (86) 

The propagation direction of light is   with respect to the x -axis so that dldx /cos   

)/( cdtdx . Substituting Eq. (86) into Eq. (83a) results in the same speed as Eq. (57). As proven in 

Appendix, Eqs. (57) and (83b) are identical. The ld   is equal to ))(( dxcdttcd    and the 

speed of light with respect to AT is c  in S  , as expected. 

PT is irrelevant to the synchronization of clocks. In virtue of the irrelevance, elapsed times in terms 

of PT can be exactly discovered regardless of synchronization procedures. However, the exact 

calculation of elapsed times does not always imply the consistency of coordinate transformations. We 

can find exact travel times even if GT is employed for the coordinate transformation between inertial 

frames. The spatial vector is also independent of the synchronization of clocks. As a result, exact 

speeds, with respect to PT, can be obtained regardless of clock synchronizations. The speeds (57) and 

(83b) with respect to PT are the local speeds of light, which show anisotropy in inertial frames even if 

LT in place of GT is used for the coordinate transformation. 

 

VI. CONCLUSION 

We have presented a relativistic coordinate transformation, TCL-SA, between a rotating world 

system S ~
 and the isotropic system S . In TCL-SA, the angle of rotation in the primed is identical 

with that in the unprimed so that the period of angle is 2  in both, in contrast to TCL-DA in which 

the period is not equal to 2  in the primed. As in TCL-DA, TCL-SA shows the constancy of the 

two-way speed of light and enables us to find the inertial transformation between S  and an inertial 

world system through the limit operation of circular motion to linear motion. Additionally TCL-SA is 

consistent with the MS framework as the conversion matrix )(A  is derived from it, as shown in 

Section III. According to Ref. 1, “For uniform rotation in the case of the Sagnac effect one would 

expect on intuitive grounds that a Galilean rotation (absolute time) might give the correct choice of 

space-time coordinate transformation. In consideration, however, of well-known experiences with 

electromagnetic theory in the realm of uniform translations where the Galilean translation (absolute 

time) is not an adequate substitute for a Lorentz translation, it is useful to give special attention to the 

question of selecting the right transformation for uniform rotations.” The TCL-SA has been, not 

“selected”, derived for “the right transformation for uniform rotations” based on the LT. The derived 

coordinate transformation is not only compatible with the MS framework but also consistent with the 

null result of the Michelson-Morley experiment [24], the transverse Doppler effect in circular motion 
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[25], the time differences in the Hafele-Keating experiment [26], and, of course, the Sagnac effect. 

Under the uniqueness of the isotropic frame [18], the speeds of light have been investigated in the 

rotating and the inertial world systems via TCL-SA and via the MS framework. The analysis results 

are in agreement with the experimental results for the Sagnac effect including the generalized one that 

involves linear motions as well. As described in Section V, the difference between the travel times of 

light in the experiment of the Sagnac effect can be exactly found through the traditional approach, 

which does not imply that the local speed of light is the constant c . Applying the same traditional 

methods, we have shown that the travel times of the two light beams traversing a line segment in 

opposite directions are different and that the speed of light is anisotropic also in inertial frames. Even 

though inertial frames are not isotropic, exploiting the LT that requires only relative velocities without 

the need for absolute velocities, we can exactly obtain some physical quantities such as PT, Doppler 

shift, and spatial length independent of clock synchronization [18]. The predictions of the LT 

associated with these quantities have been shown to be very accurate through numerous experiments 

[15, 23, 27–30, and references therein]. It may have led to the firm belief that special relativity has 

been experimentally verified. When the relative velocity is ji  the first row of the LT matrix is equal 

to the right side of Eq. (36). The reason why LT can provide exact quantities is because the first rows 

of ),( ijG T  and )( jiG T  under the standard synchronization are the same. Adopting the 

standard synchrony, despite the anisotropy of the light speed, but not being subject to the postulates of 

special relativity, the useful LT that requires relative velocities only can be utilized. It must be a very 

effective method to approach physics problems. Even the local speed of light can be exactly 

discovered from the LT, as shown in Section V. Moreover it can also solve the generalized Sagnac 

effect [18]. 

It is an easy task to see the mathematical infeasibility of the postulates. To this end, I raise a 

question: given four inertial frames iS  with relative velocities ji , 4,,1, ji , what are the 

relationships between their coordinate vectors? I believe any physicists, if they are unable to give 

consistent answers to this easy question, would not think that the equivalence of inertial frames under 

light speed constancy is mathematically feasible, unless they are blind believers in the sacred tenet of 

the postulates. The speed of light is anisotropic in inertial frames. Nature itself reveals the uniqueness 

of the isotropic frame. TCL and the inertial transformation (23) are consistent with the unique 

isotropic frame. 
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APPENDIX 

Without loss of generality, the direction of   is assumed to be parallel to the x-axis. Recall 

 cos  and i/tan   . Including the z-components, the differential coordinate vectors of r S
~

 

and S  are related by 

pTp dd I )(~  ,                                                          (A.1) 

where Tzddrdd ],
~

,[~  p , Tdzdxdd ],,[ p , and  


















100

0

00/1

)( 


 iIT .                                                   (A.2) 

As illustrated in Fig. 3, when a photon traverses sdp~  in r S
~

, it does sdp  in S . From 0|| pd   

iddl  ,                                                              (A.3) 

where 2/122 )(|)|( dzdxddl s  p . Let the propagation angle, the angle from   to ĉ , be  . 

Then 

dx

dz
tan ,                                                            (A.4a) 

ĉˆcos 
dl

dx .                                                      (A.4b) 

Using Eqs. (A.2) – (A.4), we have 

)cos(
~   dldr .                                                  (A.5) 

From Eq. (A.4), dldz /sin  . The squared differential distance in r S
~

 is calculated as 

2

222

2222

)]cos1([

)sin()cos()(

)|~|()
~

(
~













dl

dldl

dzddrld sp

                                      (A.6) 

and the distance is given by 

)cos1(
~   dlld .                                                    (A.7) 

Recall cdtdl /  and tddt / . Substituting Eqs. (A.7) and (A.4b) into Eq. (49a) yields Eq. (57). 

Alternatively we can show the equality by exploiting the relationship between    and   known 

in special relativity. The propagation angle of light is    (with respect to the direction of motion of 

S   in Fig. 3). The spatial vector is independent of synchronization vectors, as can be seen from Eqs. 

(25) and (A.1), and so is the direction. It is well known in special relativity that  cos  is represented 

as 
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


cos1

cos
cos




 .                                                      (A.8) 

Substituting Eqs. (A.8) and (A.4b) into Eq. (49b) yields Eq. (57). 
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Fig. 1. Unprimed coordinate systems S  and S
~

 and primed ones 'S  and S
~  corresponding to S  

and S
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, respectively. 
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Fig. 2. Rotation of the   - x  and  ~ - x ~  planes by  . 
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