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Current text is to be considel'ed as an addendum for the earlier text: "Turbulence as structured Route of
Energy from Order into Chaos, by Udo E. Steinemann, vixra.com/vixra.1801.0037". The recent script introduced
a sphere with surface-tension as an appropriate eddy-model in a discussion on energy-transport through a
turbulent fluid-volume. Maybe this vortex-model seemed to be a bit arbitrarily chosen at the publication-time
of the article mentioned above. By the current text I have tried to justify the former rnodel-idea on account of
outcomes from REYNOLDS-equations and PRANDTLs mixing-distance-theory.
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L. Introduct'ion.

Most Information contained in this chapter has been extracted from [1].

1.1. Fluid propert'ies 
"

A set of properties presented in the scheme below maybe appropriate for the charactetization of a turbulent
fluid during subsequent discussions.

)density:p4 o
)pressure in turbulence fluid: a(g,t) = äk)+a'k,t)K a

) speed-vector of turbulence fluid: c(r,t) = e(r)+c'(r,t)K o o
conposed ofl + +

)mean portion: eG)K a a
)mean portion: ä(r)€rlo = const€ o a

)stochastic portion representing f luctuation : g'(f ,t) ( o O
)stochastic portion due to fluctuation: a'(1,1)( o

with + +
)(location-vector: 1) n (time-variable: t)( o o

I deconposed into + + +
)components: crAcrAc"<r>components: erAözAö3<I>components: c'1^c'2^c'3< o o o-

according to + + +
)rectangu lar coordinate.system( O I o

with + + +
)(x1-axis) n (xr-axis) A (x"-axis)( o o a

Properties of turbulent Fluid

]..,1. j': !;;a.::,t ri,,! a.r: j l.t;::i. ,r..!,.,i.;;;,j.

As shown below there is direct way from |[AVIER-STOKtr equation for a non-stationary f]uid to the
REYNOLDS-equation, which finally will deliver fluid-tensions due stocha^stic fluctuations of the fluid.

>NAVIER-STOKE-equation for non.stationary fluids( o
represented by +

}dqldt = (o e/ ot)+e(V.q) = f-a-1(Va)+v(AdK a

)dc,/ dt = {O c, I Ot\+co(äc,/ Exo) = f i- p-l(äa / A x,\+v(02 c, / O xuz) 4 o o a
where +

>[i,k = (1,2,3)] A [f, = external forcesl n [y = viscosity] K o
takes into consideration I I I leads to I + +

)fluctuation-property: c = ö+c'( o

)time-everage of a property: (...»< a
> @ e j / A ü + e"(O e 

i / O x"l = fi- e 
- r(ää 

/ O x,l +v (il ä, f O xnzl - (c*' (O c i / O x*))1 ( o a
with I +

)(c*'(dc,'/dx")) = (d(c*t,')/dxu)-(c,'(dco'/dxu))( a

)continuity-equation: O c,' f Ox, = O§ o
leads to I +

>REYNOLDS.equation( a
represented by I +

> @ e 
i I a q + en(o e, / o xol = f i- Q 

-'( ää / ö x,) +v (o2 a 
1 / 0 xkzl - «d(cu t,') /dxu) ( a o

with +
*lvl? 2 

ä,, / O4.') = p-t(a.r,o/ Oxo)l n [(d(c*t,')/dxk» = (d((co'c,]/dxjl ( o
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leads to +
> (A e j / A il + en(O e, / O xo) = f i - I -1( aä / O x,l + p*a (O/ äxo [r,*- p (c,'cu)] ) o o

resnlts in I +

)stress-tensor: - p(c,'co) =

((c. J2)(c r'c r)) Kc r' c r)
( - p ) - (.r'. r)(("r')'X("r'., )

(c *'c, 1X(c *'c, 1X((c 
"')2» 

<
a a o

gires + +
*normaltensions: {(-p.(("iJ'») --+ § = 1,2,3)}( o
)shear-tensions: {(-q.(c,c")) -(p,q = 1,2, 3)}( o

REYilODS-Iensions

L.3. Phg si,cal Interpr etation of tfß REYN O LD S -T ensi,ons.

Obviously exist an analogy - as demonstrated by scheme below - between tensions as they exist e.g. in
mechanics and those entities introduced by O. REYNOLDS, which can rightly be called tensions.

)rr: shear-tensions: {(-p.(([",'.")) n (p,q = 1,2,3)]( o
)normaltensions: {(-p.([c,1')) A (i = 1,2,3)]< o o

I represut | 1 | coosidered as I I I acting as I + + +
)macroscopic anisotropic analogy( r )pendant< o a

)parallel-motion in (x,,xr).planeK a o
intercecting I +

)A-plane within (xr,x.).plane( a o
attackedbyl ) | caaees + +

)shear-tensions: rr( t )shear.force: F = A.Tt = gA(c2'c1)( o o
of + +

)molecular-motions in kinematic gas.theory( a o
where is specified I +

leads ts + +
)statistical pressure: p = 3*lm.n(s')K r }'", = p(A/F)(c2'crT( o O

)in \:direction: {(pi = g.((cj')2 ))n (i= 1,2,3»< o
wfth I +

)number of molecules per unit-volume: n( o

)molecule-mass: m + (m.n = A)< o

)4ean kinetic-energy per molecule.mass: (s2)4 a
Physical lnterpretation of the REYNOLDS-Iensions

.':i: | :j: j:::,:,,;i:::;l : :: ,

Local non-stationary time-modifications of energy in a turbulent fluid-volume are due to interactions of
four different time-dependent effects: production, dissipation, corrvection and diffusion. Two of them -production and dissipation - have to be considered as source and sink of turbulent energy, the other two effects -convection and diffusion - are responsible for transportation of the energy through the turbulent fluid-volume.
While production is strongly related with REYNOLDS-tensions and creates order in fluid-volume on this base.
dissipation on the other hand transforms turbulent energy by fiction into heat and creates chaos thereby.
Production and dissipation - equally sized - turn out to be counterparts in creation and destruction of order.

)in complete flow.area of the fluid( o
Xocal non.st4ionary time-modification of turbulent energy( o

contains | | b constantly fitllilled, + +
)terms( o

lor I +
)production: acceptance of turbulent.energy from tensions( o o o o o a

dae to + +
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} normal.tensions: -,=rX" [((c'r )'»] ( A \ / O xr)l § o a
as | | | can he conpared with t +

)shear-tensions: -(c'.c' r\[@ e1 / Ox) + (O e2 / Oxr)l-
(c'1c'r) [( äö, / O4) + (O e, / O*r)l-
(c'rc'r) [(äö2/Ex")+( äö, / A*r\14

a o

)source( o
can he conbined to I +

},=rE'( u=rE3 lr,n( O e, I Ox* ) ])<
)dissipation: waste of turbulent-energy by transition into heat( a o o a o a

specifred byl I I at l I I in specific sense of + +
).u{2 [ 5=1]3(( äc!äx')2[+

([(O c' 1/ Ox2)+(O c' 2 / Oxr)]2]+([(Ac' r/ Oxr)+(O c' 3 / Ox)12}+
(l( ö c' r. / A x"l +( o c', / 0 x")l 2)< o

äsinkKr D'energy.transition from order into chaos( a '''.
)convection: transpodation of turbulent.energy due to mean.motion( a o

spaifred byll I npresent + +
/ -Yzd=1E'(Aöi(k=1tr( c' )2\ / Ox,)l ( o

)diffusion: transportation of turbulenlt.energy due to fluctuations( a a
specilied by +

} - i= r I " ( ä (c',{p' I p+Yz[n=rX' ( c'o)'] ]) / ax, ) I K a
)energy-changes in the considered fluid-volume( o

Production for creation of order and Dissipation for Destruction into chaos ptaying
fhe roles of Counterparts in turbulent Fluid-Volume

I.5. Measure for Sizes of energeti,cVorti,ces and dissi,pati,ng Vorti,ces'in a D,iss,ipati,on-
S tate'independent o f REY N O LD S - Number s.

Dissipation in turbulent fluid for large REYNOLDS-numbers enables estimates about mea,sures of average-
sizes (L) for energetic vortices and (X) for dissipating vortices as well. This is made obvious in the following
scheme:

)dissipqtlon: waste of turbulent.energy by transition into heat( o
as specified by +

/v {2[ r=r23( ( äc j äx, ) 
2) +

(l(O c' 1/ 0x2) +(O c' 2/ Oxr)1'?)+([(Ac' r/ Ox) +(A c', / Ax)12]+
{l(O c' 2 / O xs) + ( O c's / Ox, )l TK

o

I written nore densety +
y'v 

[ :,u=. x'( [( ä c', äxo ) + ( ä c'oä x, ) 
j ( a Uuaa yy.4 o o

I teads to +
)- v((as)'»l\'< o a

l,r ll lwherel + +
)turbulent state independent of REYNOLDS.numbers( a a

>\ = ,=rE'((c'r)2 / (Oc1/ äx,)2)r/24 o o
except for I I I to be coa§dered as | | I becones independent for + + t

*small structures strongly influenced by: v (rltypicalsize (micro.scale)of disaipating vortices< o a
>REYNOLDS-number: Re" = (L/X)'?< o

where +
)L: "integral correlation.lengths" or typical size of energetic vortices( o

$4e*sirr*s i'or §$*stt-§rees *f ?'*rff*es i* a S;ssryafi*n"§raf* rnd*pexd*rf *are Afyru'*i*S+irm*ers

Further measures were added by PRANDTL on base of his "mixing distance hypothesis". Llnder assumptions:

. er =er(xr) n ez =6s= 0A ci;=1-3y * 0

he developed an impulse-exchange-model for turbulent shear-tensions. Starting from kinetic gas-theory he
specified a molecular viscosity ix product of molecular speed and average-free-clistance of the molecules and
proposed for the pendant - the turbulent motion - a similar connection will have to exist. This means, he
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proposed for vortices a viscosity as product of a characteristic velocity of the turbulent flow and a length (the so-
called mixing-distance length). Details of PRANDTLs theory are sketched shortly by the scheme below:

)transported quality< a
)turbulent motion of a fluid( a a

I assmed to be I I I transoorts I ) I becsmes I + +
)macroscopic pendant(rlquality: q(x2)< O a

)Q = (c'r[(q(x2)2»-q(xz) J)( o o
lotl + +

lwithl +
)kinetic gas-theoryK o o

)a turbulence-ball( r )q(xr)r-(q(*r)r) = q(rr+Ax2)1-(q(xz)r)€ o o
expanded into +

)TAYLOR-series( o
teads to I + +

with + +
)molecular viscositv: u = \-(s2)1/2<tlvelocity: c',€ o a

yq = (c'24x2)(dq/dx2\12+Yz(c' 2(Äx2 )2)(d2q/d(xr) 2) 
| z+... K o

)a similar correlation€ o o
where I ) I neans I I I across I I I teads to + + + Ä

>mean distance between molecules: L<r>vortex.viscosity( o o
)Q = (c'rAx2)(dq/dx2)12( O o

becones 0 lorl I leads to + +
)speed of a molecule: q(rlproduct(Ilvery small: Axr( o a

of +
)characteristic speed( r 2>Q = -l*(( c' r)'»' /' < o a

where I +
)characteristic length(r >Axz = (xz)z-(xz)r€ a o

}-(c'2Ax2)) = 1*((c'r)'»' /' < o o
for I I whercl + +

) c'sLx2 < 0< I >exchang*length: l*( a a
Overyiew of PRATVDft's Mirtng -Distance-Hypotäesrs

As outcome - in connection with the above considerations - a length (ln, = mixing-distance-length) can be
be estimated, which informs about the average-distance a turbulent-ball (vortex) must tlavel rrntil it loses its
individuality - being transformed into another vortex or due to viscosity into heat. This is further demonstrated
in the following scheme:

}[c'r = Ax2(dc1/dxr)]n [((c'r)) = (Axr2(dc, /drr)'D|n [(c'J - ("'r)]( O a
)quality:q(x2)< a

identifiedby|| I leads to + +
)impulse: (p) = p(c.)K o o

X( c', )')'/'? - (Axr21d cL f dx2lz»t / 2 
= «ax2»1/'? I «dc1/dx) [ 

( O o
leads to + +
where +

*c'r = (cr( x1)))-(c1(x2))( o
shear-tension: r, = -p(c'1c'r) = -pl*(4x22»'/' l(dc1/dy)l(dc1/dy)K a o

)r, = -pl*z l(dc./dy) | 
(dcrldy)K a a

where +
)l-'= l*(ax 2»t/2< o o

specifies +
)measure for distance where in transported enti§ loses its individuality( o

Conseguences from Mixing-Distance-Hypothesis
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The existence of REYNOLDS-tensions within a turbulent fluid-volume give rise to a picture of sub-
structures within the fhrid-volume (e.g. shaped as spheres or balls as proposed by PRANDTL in the development
of his mixing-distance-theory). The sub-structures are separated from each other by complicated surfaces with
individual surface-tensions, directly or indirectly related to the REYNOLDS-tensions. The spheres are filled
with certain amotrnts of turbulent translation- and rotation-energy and due to the dynami. o1 th" turbulence
permanent forces will act on their surfaces, which finally cause a cascacle of splitting-steps.

Discussions [2] arc relevant in a turbulence-range with dissipation independent from REyNOLDS-numbers;
the REYNOLDS-equations enable these nrtmbers to be estimate (as shown in chapter 1). Additionatly typical
size-measures:

o L: for energetic vortices and
. \: for dissipating vortices

could be obtained from REYNOLDS-equations as well; these estimates are of relevance in riiscussions [2]
because:

. The splitting-cascade starts with a vortex of size (L) and
r Difference between (L) and (\) is decisive for the step-number of the splitting-cascade.

A final parameter (1,,,) of turbulence could be estimated from PRANDTLs "mixing-distance-theory,,and is
decisive for a measure where a vortex loses its individuality under the actual turbulence-conditions:

o Measure fbr the distance where energetic vortices will split into follower-vortices and
r Measure where dissipating vortices are transformed into heat on account of the fluids viscosity (u).

l

From the proceeding explanations in connection with the statements of chapter 1, it becomes obvious that the
assumption of discussion [2] seems to be appropriate, to corrsider eddies in turbulent flow as spheres. The
assumption seems appropriate because it harmonizes with turbulent-tensions and measures a-s outcomes from
REYNOLDS-equations and PRANDTLs "mixing-distance-theory". Moreover is an existence of a splitting*
cascade - from energetic to dissipating vortices with the final dissolution of the latter ones into heat I supported
by PRANDTLs "mixing-distance-theory".

.i. j rl,,.iri, j'rr rii'ir .*r.

[1i Fiedler. H.tr. Turbulente Strömungen, Vorlesungsskript, TU Berlin (Hermann-
Föttinger-Institut) & TIJ Braunschweig (Institut für Strömungsmechanik), 2003

t2] Steinemann, U. E. Turbulence as structured Route of Energy from Order into Chaos, 201g,
http: / / vixra.org/vixra. 180 1. 0037
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