Justification for Sphere with Surface-Tension as Eddy-Model in a turbulent Fluid.

> Udo E. Steinemann, Findeisen-Str. 5/7, 71665 Vaihingen an der Enz, Germany, e-mail: udo.steinemann@t-online.de http://viXra.org/vixra.1908.0127

Abstract.

Current text is to be considered as an addendum for the earlier text: "Turbulence as structured Route of Energy from Order into Chaos, by Udo E. Steinemann, vixra.com/vixra.1801.0037". The recent script introduced a sphere with surface-tension as an appropriate eddy-model in a discussion on energy-transport through a turbulent fluid-volume. Maybe this vortex-model seemed to be a bit arbitrarily chosen at the publication-time of the article mentioned above. By the current text I have tried to justify the former model-idea on account of outcomes from REYNOLDS-equations and PRANDTLs mixing-distance-theory.

$1.\,Introduction.$

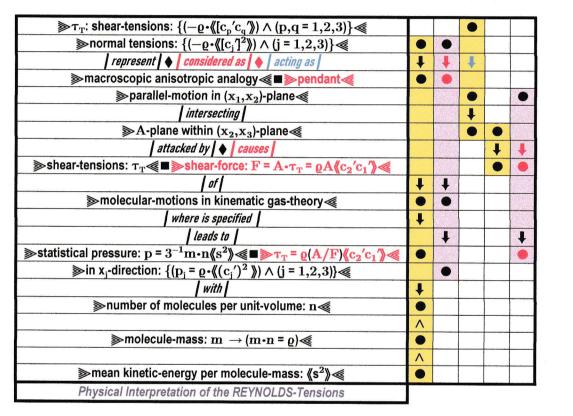
Most Information contained in this chapter has been extracted from [1].

1.1. Fluid properties.

A set of properties presented in the scheme below maybe appropriate for the characterization of a turbulent fluid during subsequent discussions.

	The second second	Contraction of the local division of		-		
≫density: e≪						•
$pressure$ in turbulence fluid: $a(\underline{r},t) = \hat{a}(\underline{r}) + a'(\underline{r},t) \ll$					•	
\gg speed-vector of turbulence fluid: $\underline{c}(\underline{r},t) = \underline{\hat{c}}(\underline{r}) + \underline{c}'(\underline{r},t) \ll$	•	•				
composed of	Ŧ				Ŧ	=
≫mean portion: <u>ĉ(r</u>)≪	•		•			
≫mean portion: â(<u>r</u>)≪∎≫ϱ = const≪					•	•
	Λ				\wedge	
\gg stochastic portion representing fluctuation: $\underline{c}'(\underline{r},t)$ \ll	•			•		
\gg stochastic portion due to fluctuation: $a'(\underline{r},t)$ «					•	
with	Ŧ				ł	
\gg (location-vector: $\underline{\mathbf{r}}$) \wedge (time-variable: t) \ll	•				•	
decomposed into		Ŧ	Ŧ	ł		
⇒ components: $c_1 \land c_2 \land c_3 \ll$ ≡ > components: $\hat{c}_1 \land \hat{c}_2 \land \hat{c}_3 \ll$ ≡ > components: $c'_1 \land c'_2 \land c'_3 \ll$		•	•	•		
according to		₽	Ŧ	Ŧ		
≫rectangular coordinate-system≪		•	1	•		
with		₽	Ŧ	Ŧ		
$(x_1-axis) \land (x_2-axis) \land (x_3-axis) \ll$		•	•	•		
Properties of turbulent Fluid						

$1.2.\ Equations\ of\ Fluids\ Motion.$


As shown below there is direct way from NAVIER–STOKE equation for a non–stationary fluid to the REYNOLDS–equation, which finally will deliver fluid–tensions due stochastic fluctuations of the fluid.

NAVIER-STOKE-equation for non-stationary fluids		Γ		T	1	T	T	T
represented by	Ŧ							
$\gg \underline{d\underline{c}}/d\underline{t} = (\partial \underline{c}/\partial \underline{t}) + \underline{c}(\nabla \cdot \underline{c}) = \underline{f} - \underline{\varrho}^{-1}(\nabla \underline{a}) + \nu(\Delta \underline{c}) \ll$	+							
\gg $\underline{\mathbf{u}} \underline{\mathbf{c}} / \mathbf{u} \underline{\mathbf{t}} - (\partial \underline{\mathbf{c}} / \partial \underline{\mathbf{t}}) + \underline{\mathbf{c}} (\nabla \cdot \underline{\mathbf{c}}) - \underline{\mathbf{i}} - \underline{\mathbf{\rho}}^{-1} (\nabla \mathbf{a}) + \nu (\Delta \underline{\mathbf{c}}) \ll$								
	V		ind and					
$\gg dc_j/dt = (\partial c_j/\partial t) + c_k(\partial c_j/\partial x_k) = f_j - \varrho^{-1}(\partial a/\partial x_j) + \nu(\partial^2 c_j/\partial x_k^2) \ll$	•	•	•					
where	+							
\gg [j,k = (1,2,3)] \land [f _j = external forces] \land [ν = viscosity] \ll	•							
takes into consideration 🔺 leads to		+	Ļ					
\gg fluctuation-property: $\underline{c} = \hat{c} + \underline{c}' \ll$		•						
		Λ						
≫time-everage of a property: 《…》≪		•						
$ \gg (\partial \hat{c}_{j} / \partial t) + \hat{c}_{k} (\partial \hat{c}_{j} / \partial x_{k}) = f_{j} - \varrho^{-1} (\partial \hat{a} / \partial x_{j}) + \nu (\partial^{2} \hat{a}_{j} / \partial x_{k}^{2}) - \langle \langle c_{k} / (\partial c_{j} / \partial x_{k}) \rangle \rangle \ll $			•	•				
with				Ŧ				
$ \otimes \langle\!\!\langle \mathbf{c}_{\mathbf{k}}'(\mathbf{d}\mathbf{c}_{\mathbf{j}}'/\mathbf{d}\mathbf{x}_{\mathbf{k}})\rangle\!\!\rangle = \langle\!\!\langle \mathbf{d}(\mathbf{c}_{\mathbf{k}}'\mathbf{c}_{\mathbf{j}}')/\mathbf{d}\mathbf{x}_{\mathbf{k}}\rangle\!\!\rangle - \langle\!\!\langle \mathbf{c}_{\mathbf{j}}'(\mathbf{d}\mathbf{c}_{\mathbf{k}}'/\mathbf{d}\mathbf{x}_{\mathbf{k}})\rangle\!\!\rangle \ll $				•				
				Λ				
\gg continuity-equation: $\partial c_i'/\partial x_i = 0 \ll$				•				
leads to	Ι			Ŧ				
				•				
represented by				Ŧ				
$ \gg (\partial \hat{c}_j / \partial t) + \hat{c}_k (\partial \hat{c}_j / \partial x_k) = f_j - \varrho^{-1} (\partial \hat{a} / \partial x_j) + \nu (\partial^2 \hat{a}_j / \partial x_k^2) - \langle \langle d(c_k c_j) / dx_k \rangle \rangle \ll $				•	•			
with					Ŧ			
$\gg [\nu(\partial^2 \hat{a}_j / \partial x_k^2) = \varrho^{-1}(\partial \tau_{jk} / \partial x_k)] \wedge [\langle d(c_k' c_j') / dx_k \rangle = (d\langle c_k' c_j' \rangle / dx_k)] \ll$					•			

leads to		Ŧ			
$ \gg (\partial \hat{c}_j / \partial t) + \hat{c}_k (\partial \hat{c}_j / \partial x_k) = f_j - \varrho^{-1} (\partial \hat{a} / \partial x_j) + \varrho^{-1} (\partial / \partial x_k [\tau_{jk} - \varrho \langle c_j c_k \rangle]) $		•	•		
results in			Ŧ		
$ \begin{aligned} & \langle (c_1')^2 \rangle \langle c_1'c_2' \rangle \langle (c_1'c_3' \rangle \\ & \gg \text{stress-tensor:} -\varrho \langle (c_j'c_k' \rangle = (-\varrho) \cdot \langle (c_2'c_1' \rangle \langle (c_2')^2 \rangle \langle (c_2'c_3' \rangle \\ & \langle (c_3'c_1' \rangle \langle (c_3'c_2' \rangle \langle (c_3')^2 \rangle \rangle \end{aligned} $			•	•	•
gives				Ŧ	ŧ
≫normal tensions: $\{(-\varrho \cdot \langle (c_j)^2 \rangle) \rightarrow (j = 1,2,3)\}$ ≪				•	
\gg shear-tensions: $\{(-\varrho \cdot \langle c_p c_q \rangle) \rightarrow (p,q = 1,2,3)\}$					•
REYNOLDS-Tensions					

$1.3.\ Physical\ Interpretation\ of\ the\ REYNOLDS-Tensions.$

Obviously exist an analogy – as demonstrated by scheme below – between tensions as they exist e.g. in mechanics and those entities introduced by O. REYNOLDS, which can rightly be called tensions.

1.4. Energy-Balance of turbulent Fluid-Motion.

Local non-stationary time-modifications of energy in a turbulent fluid-volume are due to interactions of four different time-dependent effects: production, dissipation, convection and diffusion. Two of them - production and dissipation - have to be considered as source and sink of turbulent energy, the other two effects - convection and diffusion - are responsible for transportation of the energy through the turbulent fluid-volume. While production is strongly related with REYNOLDS-tensions and creates order in fluid-volume on this base, dissipation on the other hand transforms turbulent energy by fiction into heat and creates chaos thereby. Production and dissipation - equally sized - turn out to be counterparts in creation and destruction of order.

≫in complete flow-area of the fluid							(
➢local non-stationary time-modification of turbulent energy ≪	•						1
contains 🔶 is constantly fulfilled	Ŧ						
≫terms≪	•						
for	+						
≫production: acceptance of turbulent-energy from tensions	•	•	•		•	•	
due to	Λ	+	+	-			

Udo E. Steinemann, Justification of Sphere with Surface-Tension as Eddy-Model in a turbulent Fluid, 01-08-2019.

≫normal-tensions: ${j=1} \Sigma^3 [\langle (c'_j)^2 \rangle] (\partial \hat{c}_j / \partial x_j)] \ll$		•		•		Τ	Γ			
as can be compared with				Λ				Ŧ	1	=
≫shear-tensions: $-\langle\!\langle c'_1 c'_2 \rangle\!\rangle [(\partial \hat{c}_1 / \partial x_2) + (\partial \hat{c}_2 / \partial x_1)] -$							1			
$\langle c'_1 c'_3 \rangle [(\partial \hat{c}_1 / \partial x_3) + (\partial \hat{c}_3 / \partial x_1)] -$			•	•						
$ [(\partial \hat{c}_2 / \partial x_3) + (\partial \hat{c}_3 / \partial x_2)] \ll $										
≫source≪								•		
can be combined to				Ŧ				\wedge		
$\gg_{\mathrm{j}=1}\Sigma^3\langle_{\mathrm{k}=1}\Sigma^3[au_{\mathrm{jk}}(\partial\hat{\mathrm{c}}_{\mathrm{j}}/\partial\mathrm{x}_{\mathrm{k}})] angle$							1			
Solution: waste of turbulent-energy by transition into heat	•			•	•			•	•	•
specified by 🛛 as 💊 in specific sense of	\wedge				Ŧ			ŧ	4	
$\gg \nu \{ 2 [_{j=1} \Sigma^3 \langle \langle (\partial c'_j \partial x_j)^2 \rangle \} +$										
$\langle\!\langle [(\partial c'_1/\partial x_2) + (\partial c'_2/\partial x_1)]^2\rangle\!\rangle + \langle\!\langle [(\partial c'_1/\partial x_3) + (\partial c'_3/\partial x_1)]^2\rangle\!\rangle +$					•					
$\langle\!\!\langle [(\partial c'_2/\partial x_3) + (\partial c'_3/\partial x_2)]^2 \rangle\!\!\rangle \ll$										
Sink < ■ Senergy-transition from order into chaos								•	•	
Sonvection: transportation of turbulent-energy due to mean-motion <	•					•				
specified by epresent	Λ					Ŧ		I.		
$ \gg - \frac{1}{2} \{ \frac{1}{j=1} \Sigma^3(\partial \hat{c}_j \langle\!\!\langle k=1 \Sigma^3(c'_k)^2 \rangle\!\!\rangle / \partial x_j) \} \ll $						•				
≫diffusion: transportation of turbulen]t-energy due to fluctuations	•						•			
specified by							Ŧ			
$ \gg_{j=1} \Sigma^3(\partial \langle\!\!\langle \mathbf{c}'_j \{ \mathbf{p'/\varrho} + \frac{1}{2} [\sum_{k=1} \Sigma^3(\mathbf{c}'_k)^2] \} \rangle\!\!\rangle / \partial \mathbf{x}_j)] \leqslant $							•			
≫energy-changes in the considered fluid-volume≪								•		
Production for Creation of Order and Dissipation for Destruction into Chaos playing the roles of Counterparts in turbulent Fluid-Volume										

1.5. Measure for Sizes of energetic Vortices and dissipating Vortices in a Dissipation– State independent of REYNOLDS–Numbers.

Dissipation in turbulent fluid for large REYNOLDS-numbers enables estimates about measures of averagesizes (L) for energetic vortices and (λ) for dissipating vortices as well. This is made obvious in the following scheme:

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	•			1	
as specified by	Ŧ				<u> </u>
$\gg \nu \{ 2 [_{j=1} \Sigma^3 \langle \! \langle (\partial c'_j \partial x_j)^2 \rangle \! \rangle +$					<u> </u>
$\langle\!\langle [(\partial c'_1/\partial x_2) + (\partial c'_2/\partial x_1)]^2 \rangle\!\rangle + \langle\!\langle [(\partial c'_1/\partial x_3) + (\partial c'_3/\partial x_1)]^2 \rangle\!\rangle +$	•				
$ \langle \langle [(\partial c'_2 / \partial x_3) + (\partial c'_3 / \partial x_2)]^2 \rangle \rangle $					
written more densely	Ŧ				
$\gg \nu [_{j,k=1} \Sigma^3 \langle \langle [(\partial c'_j \partial x_k) + (\partial c'_k \partial x_j)] (\partial c'_k \partial x_j) \rangle \rangle \langle \langle \langle c'_k \partial x_j \rangle \rangle \rangle \langle c'_k \partial x_j \rangle \rangle \rangle \langle c'_k \partial x_j \rangle \rangle \rangle \langle c'_k \partial x_j \rangle \rangle \rangle \langle c'_k \partial x_j \rangle \rangle \langle c'_k \partial x_j \rangle \rangle \rangle \langle c'_k \partial x_j \rangle \rangle \rangle \langle c'_k \partial x_j \rangle \rangle \rangle \langle c'_k \partial x_j \rangle$	•	•			
leads to		Ŧ			
$\gg \sim \nu \langle\!\!\langle (\partial \underline{c}')^2 \rangle\!\!\rangle / \lambda^2 \langle\!\!\langle$		•	0		
if ♦ where		Ŧ	ļ		-
≫turbulent state independent of REYNOLDS-numbers		•			0
$\gg \lambda = \sum_{i=1} \sum_{j=1}^{3} \langle \langle (c'_{1})^{2} / (\partial c_{1} / \partial x_{i})^{2} \rangle \rangle^{1/2} \ll$			•	•	
except for to be considered as becomes independent for		ł		Ŧ	1
≫small structures strongly influenced by: v ≪■>typical size (micro-scale) of dissipating vortices≪		•		•	-
$REYNOLDS$ -number: $\operatorname{Re}_{L} \approx (L/\lambda)^{2} \ll$					•
where					Ŧ
\gg L: "integral correlation-lengths" or typical size of energetic vortices \ll					•
Measures for Mean-Sizes of Vortices in a Dissipation-State independent from REYNOLDS-Numbers		L		1	

Further measures were added by PRANDTL on base of his "mixing distance hypothesis". Under assumptions:

•
$$\hat{c}_1 = \hat{c}_1(x_2) \wedge \hat{c}_2 = \hat{c}_3 = 0 \wedge c'_{(j=1\rightarrow 3)} \neq 0$$

he developed an impulse–exchange–model for turbulent shear–tensions. Starting from kinetic gas–theory he specified a molecular viscosity as product of molecular speed and average–free–distance of the molecules and proposed for the pendant – the turbulent motion – a similar connection will have to exist. This means, he

proposed for vortices a viscosity as product of a characteristic velocity of the turbulent flow and a length (the so-called mixing-distance length). Details of PRANDTLs theory are sketched shortly by the scheme below:

≫transported quality≪	Γ			Ι	•			Atlan onder
≫turbulent motion of a fluid		•		•				
assumed to be 🔶 transports 🔶 becomes		+		Ŧ	4			
>>macroscopic pendant ≪ ■>> quality: q(x ₂) ≪		•		۲				
$ Q = \langle c'_2 [\langle q(x_2)_2 \rangle - q(x_2)_1] \rangle $					•	•		
of		ŧ		Ŧ				
with						ŧ		
≫kinetic gas-theory <i>≪</i>	•	•						
a turbulence-ball $q(x_2)_1 - \langle q(x_2)_2 \rangle = q(x_2 + \Delta x_2)_1 - \langle q(x_2)_2 \rangle$				•		٠		
expanded into						ŧ		
TAYLOR-series						•		
leads to	+					Ŧ		
with		+		ŧ				
\gg molecular viscosity: $\nu = \lambda_m \langle \underline{s}^2 \rangle^{1/2} \langle \underline{s} \underline{s}^2 \rangle$ velocity: $c'_2 \langle \underline{s} \rangle$	•			•				
$ Q = \langle c_2 \Delta x_2 \rangle \langle dq/dx_2 \rangle _2 + \frac{1}{2} \langle c_2 (\Delta x_2)^2 \rangle \langle d^2 q/d(x_2)^2 \rangle _2 + \dots \ll $						•		
≫a similar correlation <i>≪</i>		•	•					
where 🔶 means 🔶 across 🔶 leads to	Ŧ		\	₽		ł		
\gg mean distance between molecules: $\lambda_m \ll \blacksquare \gg$ vortex-viscosity \ll	•		•					
$Q = \langle c'_2 \Delta x_2 \rangle \langle dq / dx_2 \rangle _2 \ll$						•	•	
becomes 🔶 for leads to	\wedge		₽			Ŧ	Ŧ	
\gg speed of a molecule: $\underline{s} \ll \blacksquare \gg$ product $\ll \blacksquare \gg$ very small: $\Delta x_2 \ll$	•		•			۲		
of			Ŧ				3 4	
$>$ characteristic speed $\ll \blacksquare > Q = -1^* \langle (c'_2)^2 \rangle^{1/2} \ll$			•				•	
where			\wedge				ł	
≫characteristic length \ll ■ $> \Delta x_2 = (x_2)_2 - (x_2)_1 \ll$			•					
$\gg - \langle \langle c'_2 \Delta x_2 \rangle \rangle = l^* \langle \langle (c'_2)^2 \rangle \rangle^{1/2} \ll$							•	•
for 🔷 where							Ŧ	Ŧ
$c_2 \Delta x_2 < 0 \ll \mathbf{I}$ exchange-length: $\mathbf{I}^* \ll$							•	•
Overview of PRANDTL's Mixing-Distance-Hypothesis								

As outcome – in connection with the above considerations – a length ($l_m = mixing$ -distance–length) can be be estimated, which informs about the average–distance a turbulent–ball (vortex) must travel until it loses its individuality – being transformed into another vortex or due to viscosity into heat. This is further demonstrated in the following scheme:

$ \gg [c'_1 = \Delta x_2 (dc_1/dx_2)] \wedge [\langle\!\langle (c'_1)^2 \rangle\!\rangle = \langle\!\langle \Delta x_2^{-2} (dc_1/dx_2)^2 \rangle\!\rangle] \wedge [\langle\!\langle c'_1 \rangle\!\rangle \sim \langle\!\langle c'_2 \rangle\!\rangle] \ll $	Γ		•	•		
≫quality: q(x ₂)≪	•					
identified by 🔶 leads to	+		ŧ	Λ		
\gg impulse: $\langle p \rangle = \varrho \langle c_1 \rangle \ll$	•	•				
$\gg \langle\!\!\langle (c'_2)^2 \rangle\!\!\rangle^{1/2} \sim \langle\!\!\langle \Delta x_2^{\ 2} (dc_1/dx_2)^2 \rangle\!\!\rangle^{1/2} = \langle\!\!\langle \Delta x_2 \rangle\!\!\rangle^{1/2} \langle\!\!\langle dc_1/dx_2 \rangle\!\!\rangle \ll$			•	•		
leads to	+			Ŧ		
where		Ŧ				
$\gg c'_1 = \langle c_1(x_1) \rangle - \langle c_1(x_2) \rangle \langle c_1(x_2) \rangle$		•				
shear-tension: $\tau_T = -\varrho \langle c'_1 c'_2 \rangle = -\varrho l^* \langle \Delta x_2^2 \rangle^{1/2} \langle dc_1/dy \rangle \langle dc_1/dy \rangle \ll$	•			•		
				V		
$\gg \tau_{\mathrm{T}} = -\varrho l_{\mathrm{m}}^2 \langle \mathrm{d} \mathrm{c}_1 / \mathrm{d} \mathrm{y} \rangle \langle \mathrm{d} \mathrm{c}_1 / \mathrm{d} \mathrm{y} \rangle \ll$				•	•	
where					Ŧ	
$\gg l_m^2 = l^* \langle \Delta x_2^2 \rangle^{1/2} \ll$					•	•
specifies						¥
≫measure for distance where in transported entity loses its individuality		1				•
Consequences from Mixing-Distance-Hypothesis						

2.1. About Eddies shaped as spherical Fluid-Elements.

The existence of REYNOLDS-tensions within a turbulent fluid-volume give rise to a picture of substructures within the fluid-volume (e.g. shaped as spheres or balls as proposed by PRANDTL in the development of his mixing-distance-theory). The sub-structures are separated from each other by complicated surfaces with individual surface-tensions, directly or indirectly related to the REYNOLDS-tensions. The spheres are filled with certain amounts of turbulent translation- and rotation-energy and due to the dynamic of the turbulence permanent forces will act on their surfaces, which finally cause a cascade of splitting-steps.

2.2. Measures relevant for Sizes of the Splitting-Cascade.

Discussions [2] are relevant in a turbulence-range with dissipation independent from REYNOLDS-numbers; the REYNOLDS-equations enable these numbers to be estimate (as shown in chapter 1). Additionally typical size-measures:

- L: for energetic vortices and
- λ : for dissipating vortices

could be obtained from REYNOLDS—equations as well; these estimates are of relevance in discussions [2] because:

- The splitting-cascade starts with a vortex of size (L) and
- Difference between (L) and (λ) is decisive for the step-number of the splitting-cascade.

A final parameter (l_m) of turbulence could be estimated from PRANDTLs "mixing-distance-theory" and is decisive for a measure where a vortex loses its individuality under the actual turbulence-conditions:

- Measure for the distance where energetic vortices will split into follower-vortices and
- Measure where dissipating vortices are transformed into heat on account of the fluids viscosity (ν) .

2.3. Concluding Remarks with regards to Discussion [2].

From the proceeding explanations in connection with the statements of chapter 1, it becomes obvious that the assumption of discussion [2] seems to be appropriate, to consider eddies in turbulent flow as spheres. The assumption seems appropriate because it harmonizes with turbulent-tensions and measures as outcomes from REYNOLDS-equations and PRANDTLs "mixing-distance-theory". Moreover is an existence of a splitting-cascade – from energetic to dissipating vortices with the final dissolution of the latter ones into heat – supported by PRANDTLs "mixing-distance-theory".

3. References.

[1]	Fiedler, H.E.	Turbulente Strömungen, Vorlesungsskript, TU Berlin (Hermann– Föttinger–Institut) & TU Braunschweig (Institut für Strömungsmechanik), 2003
[2]	Steinemann, U. E.	Turbulence as structured Route of Energy from Order into Chaos, 2018, http://vixra.org/vixra.1801.0037