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Abstract: In quantum mechanics, there is a profound distinction between orbital angular 

momentum and spin angular momentum in which the former can be associated with the 

motion of a physical object in space but the later cannot. The difference leads to a radical 

deviation in the formulation of their corresponding dynamics in which an orbital angular 

momentum can be described by using a coordinate system but a spin angular momentum 

cannot. In this work we show that it is possible to treat spin angular momentum in the same 

manner as orbital angular momentum by formulating spin dynamics using Schrödinger 

equation in an intrinsic coordinate system. As an illustration, we apply the formulation to the 

dynamics of a hydrogen atom and show that the intrinsic spin angular momentum of the 

electron can take half-integral values and, in particular, the intrinsic mass of the electron can 

take negative values. We also consider a further extension by generalising the formulation so 

that it can be used to describe other intrinsic dynamics that may associate with a quantum 

particle, such as when a hydrogen atom radiates a photon, the photon associated with the 

electron may also possess an intrinsic dynamics that can be described by an intrinsic wave 

equation that has a similar form to that for the electron. 

 

1. Dynamical nature of spin angular momentum in quantum mechanics 

In quantum mechanics, despite the fact that spin angular momentum has been shown to play 

an almost identical role to orbital angular momentum, especially in relation to interaction 

with magnetic fields, spin has distinctive properties that make it profoundly different from the 

normal orbital angular momentum. And, probably, the most profound feature that establishes 

the seemingly true quantum character of spin is that it cannot be described in terms of the 

classical dynamics because there is no such classical analogue. Since the main topic that we 

will discuss in this work involves the concepts of both orbital and spin angular momentum in 

quantum mechanics and accordingly use Schrödinger equation to formulate spin dynamics 

therefore we now show more details how these two concepts have been introduced and 

formulated in quantum mechanics. Besides the fundamental concepts, the general results 

obtained in this section will also be implemented to different applications in later sections of 

this work. In classical mechanics, the orbital angular momentum   of a particle is defined as 

     , where   and   are the position and momentum of the particle, respectively. In 

quantum mechanics, however, the orbital angular momentum is interpreted as an operator in 

which the momentum is defined via a differential operator in the form       , therefore, 

          . The Cartesian components of the orbital angular momentum are obtained as 



                   ,                    ,                    . 

Even though they do not mutually commute, therefore they cannot be assigned definite values 

simultaneously, the Cartesian components of the orbital angular momentum commute with 

the operator    and this allows a construction of simultaneous eigenfunctions for    and one 

of the Cartesian components of the orbital angular momentum   [1]. Similarly, the spin 

angular momentum can be introduced into quantum mechanics as an operator with the same 

mathematical formulation as the orbital angular momentum, except for the fact that the spin 

angular momentum does not have a comparable object in classical physics therefore it cannot 

be depicted as spinning around an axis or associated with some form of motion in space. 

Since spin angular momentum is considered as a truly quantum mechanical intrinsic property 

associated with most of elementary particles, it has been suggested that spin must possess 

some form of intrinsic physical property that is needed to be explained, and one possibility 

for its explanation is to use a non-local hidden variable theory [2]. The most distinctive 

property that makes spin different from the normal orbital angular momentum is that spin 

quantum numbers can take half-integral values. It is also believed that the internal degrees of 

freedom associated with the spin angular momentum cannot be described mathematically in 

terms of a wavefunction. In order to incorporate the spin angular momentum of a quantum 

particle into quantum mechanics, Dirac developed a relativistic wave equation that admits 

solutions in the form of multiple-component wavefunctions as            . Dirac 

equation is a system of complex linear first order partial differential equations [3]. Even 

though Dirac equation has been regarded as a quantum wave equation that is used to describe 

spinor fields of half-integral values, we have shown that in fact Dirac equation, as well as 

Maxwell field equations of the electromagnetic field, can be derived from a system of linear 

first order partial differential equations therefore Dirac equation can be used to describe 

classical fields when it is rewritten as a system of real equations. In fact, we have also shown 

that many fundamental potential forms that involve weak and strong interactions can be 

deduced from Dirac equation [4]. To avoid confusion, in this work whenever we mention 

Maxwell or Dirac equation we mean a Maxwell-like or Dirac-like equation that can be 

derived from a system of linear first order partial differential equations. 

Now, contrary to the belief that the spin angular momentum cannot be described 

mathematically in terms of a wavefunction, we will show in Section 3 that spin angular 

momentum with half-integral values can be formulated similar to the case of orbital angular 

momentum by simply using Schrödinger equation in quantum mechanics. Normally 

Schrödinger equation is written as a single wave equation with respect to a particular 

coordinate system that describes a spinless particle with no intrinsic properties, except for 

their charge and mass. The time-independent Schrödinger wave equation for a point-like 

particle of mass   and charge   moving in a potential       in three-dimensional Euclidean 

space    is given as follows 

 
  

  
                                                                                                                         



where   is the reduced mass in the centre of mass coordinate system [5]. In the three-

dimensional continuum, if the potential      is spherically symmetric, then Equation (1) can 

be written in the spherical polar coordinates         as [6] 

 
  

  
 
 

  
 

  
   

 

  
  

  

  
                                                                                 

where the orbital angular momentum operator    is given by 

       
 

    

 

  
     

 

  
  

 

     

  

   
                                                                                

Solutions to Equation (2) can be found using the separable form                       

where     is radial function and     is spherical harmonic. Then the wave equation given in 

Equation (2) is reduced to the following system of equations 

                                                                                                                                  

  
  

  
 
  

   
 
 

 

 

  
  

        

    
                                                                         

In the case of the hydrogen atom for which               , solutions to Equations (4) 

and (5) can be obtained, respectively, as follows 

               
           

        
 

 
 

  
                                                                           

          
          

                                                                                                                       

where   
        is Legendre functions,                ,      

        is the associated 

Laguerre polynomial. The bound state energy spectrum is also found as  

    
 

   
 
   

    
 

 
 

  
                                                                                                                          

According to the present formulation of quantum mechanics, the energy difference between 

the two levels of the energy spectrum equals the energy of the photon that is emitted or 

absorbed by a hydrogen atom, and the radiating process is due to an instantaneous quantum 

transition of the corresponding electron that interacts with the photon. We will show in 

Section 4 that the process of radiation of photons may also be accompanied by an intrinsic 

dynamics similar to the process of spin dynamics that we will discuss in Section 3. However, 

we will also show that such spin dynamics can be observable only if the photon has an 

inertial mass. 

As being shown in Section 3, the most important feature that relates to our discussion on the 

formulation of spin dynamics by using Schrödinger equation is the quantisation of an orbital 



angular momentum in a two-dimensional Euclidean space. In spherical coordinates        , 

simultaneously to the equation given in Equation (4), the operator    and its corresponding 

normalised eigenfunctions      can be found as follows 

      
 

  
                   

 

   
                                                                                                

where                  with the quantum numbers   are integers. As a consequence, 

the quantum number   can only take integer values. However, there are many physical 

phenomena that involve the magnetic moment of a quantum particle cannot be explained 

using the quantisation of orbital angular momentum with integer values. For example, in 

order to interpret the Stern-Gerlach experiment the quantum number   must be assumed to 

take half-integral values, and this is inconsistent with other experimental results that can be 

explained by assuming integral values for the orbital angular momentum. Therefore, the spin 

angular momentum operator   was introduced similar to Equation (4) for the orbital angular 

momentum as       
             

, in which the spin angular momentum   takes half-

integral values. However, unlike the orbital angular momentum, the spin angular momentum 

has no direct relationship with the coordinates that define the coordinate system for 

mathematical investigations.  

2. Formulating two-dimensional dynamics using Dirac equation 

In this section we show that the spin dynamics of a quantum particle may also have a 

classical character by recalling our work on the fluid state of Dirac quantum particles that 

Dirac equation can in fact be derived from a general system of linear first order partial 

differential equations, and from Dirac equation we can obtain a physical structure for 

quantum particles that can be endowed with a spin angular momentum that takes half-integral 

values [7]. As a general remark, it should be mentioned here that normally in formulating 

physical theories in classical physics we either apply purely mathematical equations into 

physical problems or formulate mathematical equations according to dynamical laws 

established from experiments. It may be said that this mutual relationship between 

mathematics and physics was initiated by Newton’s work on classical mechanics when he 

himself invented the mathematics of differential calculus to describe the dynamics of natural 

laws in his three books on the mathematical principles of natural philosophy [8]. It has been 

known that Maxwell field equations of the electromagnetic field were also derived from 

experimental laws. On the other hand, it can be said that Dirac derived his relativistic 

equation to describe the dynamics of quantum particles from an established physical law 

which is a consequence of Einstein’s theory of special relativity [9]. In general, a common 

method in mathematical physics is to apply the same differential equations, such as Laplace 

or Poisson’s equations, into different physical systems, and in fact we have shown in our 

works on formulating Maxwell and Dirac equations that both Maxwell and Dirac equations 

can be derived from an established system of mathematical equations instead of experimental 

laws or established physical theories [10] [11]. The established system of mathematical 

equations in this case is a general system of linear first order partial differential equations 

given as follows 



     
    
   

 

   

 

   

      
 

 

   

      
                                                                                  

The system of equations given in Equation (10) can be rewritten in a matrix form as 

    
 

   

 

   

                                                                                                                          

where               
 ,                                    ,   ,   and   

are matrices representing the quantities    
 ,   

  and   , and    and    are undetermined 

constants. Now, if we apply the operator          
    on the left on both sides of Equation 

(11) then we have 

    
 

   

 

   

     
 

   

 

   

       
 

   

 

   

                                                                    

If we assume further that the coefficients    
  and   

  are constants and        , then 

Equation (12) can be rewritten in the following form 

    
  

 

   
 

 

   

              
  

      

 

   

 

   

     
                 

  

   

 

   

         

In order for the above systems of partial differential equations to be used to describe physical 

phenomena, the matrices    must be determined. It is observed that in order to obtain 

Maxwell and Dirac equations the matrices    must take a form so that Equation (13) reduces 

to the following equation 

    
  

 

   
 

 

   

    
  

 

   
 

 

     

     
                 

  

   

 

   

                                      

To obtain an equation similar to Dirac equation for free quantum particles, we identify the 

matrices    with the gamma matrices    of the form 

    

    
    
     
     

         

    
    
     
     

          

     
    
    
     

          

    
     
     
    

                 

If we set         and       then Equation (11) reduces to Dirac equation [12] 

                                                                                                                                              

For references and to show that Maxwell field equations of the electromagnetic field can also 

be derived from a system of linear first order partial differential equations, in the appendix we 



give a detailed formulation of Maxwell field equations with specified forms of the matrices 

  . Now, by expanding Equation (16) using Equation (15), we obtain 

 
   
  

       
 

  
  

 

  
    

   
  

                                                                                          

 
   
  

       
 

  
  

 

  
    

   
  

                                                                                          

   
  

        
 

  
  

 

  
    

   
  

                                                                                          

   
  

        
 

  
  

 

  
    

   
  

                                                                                          

From the form of the field equations given in Equations (17-20), we may interpret that the 

change of the field         with respect to time generates the field        , similar to the 

case of Maxwell field equations in which the change of the electric field generates the 

magnetic field. With this observation it may be suggested that, like the Maxwell 

electromagnetic field, which is composed of two essentially different physical fields, the 

Dirac field of massive particles may also be viewed as being composed of two different 

physical fields, namely the field         and the field        . The similarity between 

Maxwell field equations and Dirac field equations can be carried further by showing that it is 

possible to reformulate Dirac equation as a system of real equations. When we formulate 

Maxwell field equations from a system of linear first order partial differential equations we 

rewrite the original Maxwell field equations from a vector form to a system of first order 

partial differential equations by equating the corresponding terms of the vectorial equations. 

Now, since, in principle, a complex quantity is equivalent to a vector quantity therefore in 

order to form a system of real equations from Dirac complex field equations we equate the 

real parts with the real parts and the imaginary parts with the imaginary parts. In this case 

Dirac equation given in Equations (17-20) can be rewritten as a system of real equations as 

follows 

 
   
  

 
   
  

 
   
  

                
   
  

 
   
  

 
   
  

                                                                        

 
   
  

 
   
  

 
   
  

               
   
  

 
   
  

 
   
  

                                                                         

   
  

             
   
  

               
   
  

              
   
  

                                          

If the wavefunction                
  satisfies Dirac field equations given in Equations 

(21-23) then we can derive the following system of equations for all components 

    
   

                                                                                                                                            



    
   

 
    
   

 
    
   

                                                                                                                         

Solutions to Equation (24) are  

            
            

                                                                                                         

where     and     are undetermined functions of      . The solutions given in Equation (26) 

give a distribution of a physical quantity along the y-axis. On the other hand, Equation (25) 

can be used to describe the dynamics, for example, of a vibrating membrane in the      -

plane. If the membrane is a circular membrane of radius   then the domain   is given as 

            . In the polar coordinates given in terms of the Cartesian coordinates 

      as        ,        , the two-dimensional wave equation given in Equation (25) 

becomes 

 

  
   

   
 
   

   
 
 

 

  

  
 
 

  
   

   
                                                                                                    

The general solution to Equation (27) for the vibrating circular membrane with the condition 

    on the boundary of   can be found as [13] 

                                              

 

   

                    

 

     

                                                                               

where           is the Bessel function of order   and the quantities    ,    ,     and 

    can be specified by the initial and boundary conditions. It is also observed that at each 

moment of time the vibrating membrane appears as a 2D differentiable manifold which is a 

geometric object whose geometric structure can be constructed using the wavefunction given 

in Equation (28). Even though elementary particles may have the geometric and topological 

structures of a 3D differentiable manifold, it is seen from the above descriptions via the 

Schrödinger wave equation and Dirac equation that they appear as 3D physical objects 

embedded in three-dimensional Euclidean space. Interestingly, we have shown that the 

solution given in Equation (28) can be used to describe a standing wave in a fluid due to the 

motion of two waves in opposite directions. At its steady state in which the system is time-

independent, the system of equations given in Equations (21-22) reduces to the following 

system of equations 

   
  

 
   
  

              
   
  

 
   
  

                                                                                                 

   
  

 
   
  

               
   
  

 
   
  

                                                                                                



In this case Dirac equation for steady states consisting of the field         and the field 

        satisfies the Cauchy-Riemann equations in the      -plane. We have shown in our 

work on the fluid state of Dirac quantum particles that it is possible to consider Dirac 

quantum particles as physical systems which exist in a two-dimensional fluid state as defined 

in the classical fluid dynamics. In the next section we will show that when Schrödinger wave 

equation is applied into the dynamics of a physical system in two-dimensional space the 

angular momentum associated with the system can take half-integral values which may be 

identified with the intrinsic spin angular momentum of a quantum particle. The results also 

show that the spin angular momentum can also be introduced through a coordinate system, 

similar to that of the orbital angular momentum operator. 

3. Formulating intrinsic spin dynamics using Schrödinger equation 

As we have discussed in the previous sections that the profound difference between orbital 

angular momentum and spin angular momentum is that the former can be associated with the 

motion of a physical object in space but the later cannot. This difference has led to another 

profound difference in the formulation of their corresponding dynamics in which an orbital 

angular momentum can be described by using a coordinate system but a spin angular 

momentum cannot. In this section we show that it is possible to treat spin angular momentum 

in the same manner as orbital angular momentum by introducing a coordinate system to 

describe spin angular momentum. However, it is obvious that the coordinate system that is 

used to describe a spin angular momentum must be an intrinsic coordinate system which is 

independent of the coordinate system that describes an orbital angular momentum operator. 

Therefore, instead of introducing a spin operator, we introduce a differential operator that 

depends on an intrinsic coordinate system and can be used to formulate a spin dynamics. 

Furthermore, since spin angular momentum and orbital angular momentum are similar in 

nature therefore it is possible to suggest that the spin operator in the intrinsic coordinate 

system should also have similar form to that of the orbital angular momentum operator. From 

this perspective we now write a Schrödinger wave equation that is used to describe both the 

orbital and spin dynamics as follows 

 
  

  
                      

  

   
  
                                                    

The quantity   can be identified with a reduced mass. However, since we are treating spin 

angular momentum as a particular case of angular momentum therefore we retain the Planck 

constant and the quantity    also retains the dimension of mass. We call the quantity    an 

intrinsic mass and it could be related to the curvature that determines the differential 

geometric and topological structure of a quantum particle, as in the case of Bohr model, or 

charge. On the other hand, the quantity      can be identified with normal potential, such as 

Coulomb potential but the quantity        represents an intrinsic potential that depends on 

physical intrinsic properties associated with the spin angular momentum of a quantum 

particle. Since the two dynamics are independent, the wave equation given in Equation (31) is 

separable and the total wavefunction         can be written as a product of two 



wavefunctions as                  . Then Equation (31) is separated into two equations 

as follows 

 
  

  
                                                                                                                         

 
  

   
  
                                                                                                                       

where        .  

Now, we consider the particular case in which the Schrödinger equation given in Equation 

(32) describes the dynamics of a hydrogen atom and the Schrödinger equation given in 

Equation (33) describes the spin dynamics of the electron of the hydrogen atom. In this case 

the wavefunctions and the corresponding energy spectrum for Equation (32) have been 

obtained and given in Section 1, therefore we only need to show how half-integral values for 

the spin angular momentum can be obtained from Equation (33). In fact we have shown in 

our previous works that elementary particles possess an intrinsic angular momentum that can 

take half-integral values by considering Schrödinger wave equation in two-dimensional 

Euclidean space in which a quantum particle can be viewed as a planar system whose 

configuration space is multiply connected [14] [15] [16]. If we also assume that the potential 

       that holds the quantum particle together has the form             , where    is a 

physical constant that is needed to be determined, then using the planar polar coordinates in 

an intrinsic two-dimensional space, the Schrödinger wave equation given in Equation (33) 

takes the form 

 
  

   
 
 

 

 

  
  

 

  
  

 

  
  

   
        

  
 
                                                                

For simplicity in Equation (34) we have written   instead of    as indicated in Equation (33). 

Solutions of the form                 reduce Equation (34) to two separate equations 

for the functions      and      as follows 

   

   
   

                                                                                                                                           

   

   
 
 

 

  

  
 
  
 

  
  

   
  

 
  
 
                                                                                            

where    is identified as the intrinsic angular momentum of the quantum particle. Equation 

(35) has solutions of the form 

                                                                                                                                                   

where   is a constant. Normally, the intrinsic angular momentum    must take integral 

values for the single-valuedness condition to be satisfied. However, if we consider the 

configuration space of the quantum particle to be multiply connected and the polar 



coordinates have singularity at the origin then the use of multivalued wavefunctions is 

allowable. As shown below, in this case, the intrinsic angular momentum    can take half-

integral values. If we define, for the case     , 

   
        

  
 

   

                 
    

        
 
   

                                                                          

then Equation (36) can be re-written in the following form 

   

   
 
 

 

  

  
 
  
 

  
  

 

 
  

 

 
                                                                                                    

If we seek solutions for      in the form                       then we obtain the 

following differential equation for the function      

   

   
  

     

 
   

  

  
  

     
 
 

 
                                                                                

Equation (40) can be solved by a series expansion of      as           
   

    with the 

coefficients    satisfying the recursion relation 

      
      

 
 
  

                
                                                                                                    

The energy spectrum from Equation (38) can be written explicitly as follows 

    
    

          
 
 
 
                                                                                                                    

Even though it is not possible to specify the actual values of the intrinsic angular momentum 

  , however, if the result given in Equation (42) can also be applied to the hydrogen-like 

atom in two-dimensional physical system similar to Bohr model of the hydrogen atom then 

the intrinsic angular momentum    must take half-integral values. For the case of the 

hydrogen atom then the total energy spectrum can be found as the sum of two energy spectra 

given in Equations (8) and (42) as 

             
 

   
 
   

    
 

 
 

  
 

    

          
 
 
 
                                                             

It is seen that the total energy spectrum has a fine structure depending on the intrinsic 

quantum numbers    and   . Furthermore, the total energy spectrum also depends on the 

undetermined physical quantities    and    that define the intrinsic properties of a quantum 

particle, which is the electron in this case. Without restriction, the quantity    can take zero, 

positive or negative values. Then, we can have three different levels of energy as follows 



                                       
 

   
 
   

    
 

 
 

  
                                                                  

                                      
 

 
                     

 

   
 
   

    
 

 
 

  
 
    
   

           

                                    
 

 
                    

 

   
 
   

    
 

 
 

  
 
      

   
        

If we assume the splitting energy is the Zeeman effect caused by the interaction between the 

magnetic moment associated with the spin of the electron and an external magnetic field  , 

which results in a magnetic potential energy of          , where   is the electron  -

factor and           is the Bohr magneton, then the quantity    can be determined by 

the following identifying relation 

      

   
 
 

 
     

   

   
                                                                                                                     

As shown in Figure 1, the splitting of energy levels due to the intrinsic dynamics is similar to 

the Zeeman effect with the energy difference of        . 

 

Figure 1:  Splitting of energy levels by intrinsic spin dynamics 

Furthermore, if we also identify the intrinsic mass with the inertial mass of the electron, 

       , then the quantity    can be determined by all known physical quantities as  

   
     

   
 
                                                                                                                                              

The quantity    depends not only on the intrinsic properties associated with the electron but 

also on the external magnetic field  . This result shows that, unlike the elementary charge, 

the intrinsic quantity    is a dependent property of a quantum particle which changes its 

magnitude when the particle interacts with an external field. The dependence of quantity    

on an external field is similar to the case of the inertial mass of an elementary particle that 



depends on the speed of the particle relative to a coordinate system formulated in Einstein’s 

special relativity as              . It is interesting to mention here that in fact we 

have shown in our work on the fluid state of an electromagnetic field that the electric field 

and the magnetic field can also be identified as velocity fields of a fluid [17]. 

4. A generalised formulation of intrinsic dynamics using Schrödinger equation 

From our discussion of the possibility to describe the spin angular momentum of a quantum 

particle as an intrinsic dynamics using the Schrödinger wave equation, we may consider 

further extension by generalising the equation given in Equation (31) to a more general form 

so that it can be used to describe other intrinsic dynamics that associate with a quantum 

particle, such as when a hydrogen atom absorbs a photon, the photon may be considered to be 

correlated with the electron and accordingly behaves as an intrinsic dynamics of the electron. 

A general equation that include possible intrinsic dynamics associated with an elementary 

particle can be written as 

 
  

  
                               

    
  

   
  
                                 

 

   

                                                                                                                         

where each potential        is needed to be determined for a particular dynamics associated 

with the quantum particle under investigation. Even though the quantities    have the 

dimension of mass they should be considered as parameters of the equation because they are 

related to the intrinsic dynamics that must be determined based on the characteristics of the 

motion under consideration. If all intrinsic dynamics are independent then Equation (49) can 

be separated into a system of equations as follows  

 
  

  
                                                                                                                         

 
  

   
  
                                                                                                                     

  

 
  

   
  
                                                                                                                

where             . For example, if we assume that there are    two-dimensional 

and    three-dimensional dynamics so that        , and all  intrinsic dynamics have the 

intrinsic potentials of the form               then using Equations (8) and (42) we would 

obtain an expression for the total energy spectrum as 



             
 

   
 
   

    
 

 
 

  
  

  
   

          
 
 
 
 

  

   

  
  
   

      

  

   

                             

As an example for the case of a three-dimensional intrinsic dynamics, let us consider an 

intrinsic dynamics that can be described as a spin dynamics of a photon when it is absorbed 

and then emitted from a hydrogen atom. If we assume that the photon exhibits a three-

dimensional dynamics then we would obtain a normal three-dimensional Schrödinger wave 

equation for the hydrogen atom and an intrinsic three-dimensional Schrödinger wave 

equation for the photon, similar to the system of equations given in Equations (32) and (33). 

In this case the total energy spectrum can be found as 

         
 

   
 
   

    
 

 
 

  
 
  
   

      
                                                                                             

When the electron of the hydrogen atom at the energy level   absorbs a photon and moves to 

a higher energy level   , we may suggest that the photon also changes its energy levels from 

the level    to the level   
 . We then obtain the new total energy level 

       
    

 

   
 
   

    
 

 
 

     
 

  
   

         
                                                                                 

If we also assume that the energy difference        
           equals the Planck energy 

   then we obtain 

   
 

   
 
   

    
 

 

 
 

  
 

 

     
  

  
   
   

 
 

   
 

 

      
                                                                  

The quantity    may be identified with the mass of a photon. Therefore, if the photon is 

massless then we would obtain the usual result for the energy spectrum of the hydrogen atom 

as shown in quantum mechanics. 

Appendix 

In this appendix we show in details the formulation of Maxwell field equations from the 

system of linear first order partial differential equations given in Equation (10) of Section 2. 

The system of equations given in Equation (10) can be written the following matrix form as 

   
 

  
   

 

  
   

 

  
   

 

  
                                                                                               

where                       
 ,                     

  and the matrices    are given as 

follows 

   

 

  
 

       
       
       
      
      
       

  
 
                       

 

  
 

      
       
      
      
       
       

  
 
                       

 

  
 

      
      
       
      
      
        

  
 
                         



    

 

  
 

       
      
      
       
      
       

  
 
                      

 

 
 
 

      
      
      
      
      
       

 
 
 
                                                                                                               

The system of equations given in Equation (1) becomes 

 
   
  

 
   
  

 
   
  

                                                                                                                          

 
   
  

 
   
  

 
   
  

                                                                                                                         

 
   
  

 
   
  

 
   
  

                                                                                                                         

   
  

 
   
  

 
   
  

                                                                                                                               

   
  

 
   
  

 
   
  

                                                                                                                               

   
  

 
   
  

 
   
  

                                                                                                                               

Using the identification              and             , the above system of 

equations can be rewritten in normal forms in classical electrodynamics as  

    
  
 
                                                                                                                                                      

                                                                                                                                                           

    
  

  
                                                                                                                                          

      
  

  
                                                                                                                                   

where the charge density    and the current density    satisfy the conservation law 

     
   
  

                                                                                                                                           

From the forms of the matrices    given in Equation (2) we obtain 

  
  

 

  
 

      
      
      
      
      
       

  
 
                        

  

 

  
 

      
       
       
      
       
        

  
 
                     

  

 

  
 

       
      
       
       
      
        

  
 
                     



  
  

 

  
 

       
       
      
       
       
       

  
 
                           

  

 

 
 
 

       

       

       
      
      
       

 
 
 
                                                                                                    

          

 

  
 

      
      
      
      
      
       

  
 
                     

 

  
 

      
      
      
      
      
       

  
 
                      

 

  
 

      
      
      
      
      
       

  
 
      

                                                                                                                                   

Now, if we apply the differential operator                               to 

Equation (1) then we arrive at 

 

 
 
 
 

 

  
 

      
      
      
      
      
       

  
   

   
 

 

  
 

      
       
       
      
       
        

  
   

   
 

 

  
 

       
      
       
       
      
        

  
   

   

 

 

  
 

       
       
      
       
       
       

  
   

   
 

 

  
 

      
      
      
      
      
       

  
   

    
 

 

  
 

      
      
      
      
      
       

  
   

    

 

 

  
 

      
      
      
      
      
       

  
   

    

 

 
 
 
 

   

 

 
 
 
 

 

 
 
 

      
      
      
      
      
       

 
 
  

  

 

 
 
 
 

                                             

From Equation (15), we obtain the following system of equations for the electric field 

                        

    
   

 
    
   

 
    
   

 
 

  
 
   
  

 
   
  

    
   
  
                                                                     

    
   

 
    
   

 
    
   

 
 

  
 
   
  

 
   
  

    
   
  
                                                                     

    
   

 
    
   

 
    
   

 
 

  
 
   
  

 
   
  

    
   
  
                                                                     

If the electric field also satisfies Gauss’s law  

    
   
  

 
   
  

 
   
  

 
  
 
                                                                                                            

then we obtain the following relations 

 

  
 
   
  

 
   
  

  
 

  
 
  
 
 
   
  

   
    
   

 
 

  
 
  
 
                                                             



 

  
 
   
  

 
   
  

  
 

  
 
  
 
 
   
  

   
    
   

 
 

  
 
  
 
                                                             

 

  
 
   
  

 
   
  

  
 

  
 
  
 
 
   
  

   
    
   

 
 

  
 
  
 
                                                              

From Equations (16-18) together with relations given in Equations (20-22), we obtain, in 

vector form, the wave equation for the electric field as 

   

   
       

  
 
   

   
  
                                                                                                                

where              . Similarly for the magnetic field                         we 

obtain the following equations and relations 
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