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Abstract 

Gravitation and mass are explained by the fact that spherical pulse responses locally and 

temporarily deform the embedding field. Over time the spherical pulse response integrates 

into the Green’s function of the field. The shape of the Green’s function resembles the shape 

of the gravitation potential of point-like masses. At large enough distance an ensemble of 

massive objects acts as a single point-like mass. These ingredients explain how gravity works. 

The mass has a significance of its own and can characterize discrepant regions. 

1 Gravitation laws 

1.1 Center of mass 

In a system of massive objects , 1,2,3,...ip i n= , each with static mass im  

at locations ir , the center of mass R  follows from 
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In the following, we will consider an ensemble of massive objects 

that own a center of mass R  and a fixed combined mass M  as a single 

massive object that locates at R . R  can be a dynamic location. In that 

case the ensemble must move as one unit. 

1.2 Newton 

Newton’s laws are nearly correct in nearly flat field conditions. The 

main formula for Newton’s laws is 
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 F ma=  (1.2.1) 

Massive objects deform the field that embeds these objects, but if 

this effect is ignored and if the gravitation potential is a static 

function, and if the massive object moves uniformly, then at large 

distances, the gravitation potential describes properly what occurs.  

1.3 Gravitation potential 

A massive object at a large distance acts as a point-like mass. Far 

from the center of mass, the gravitation potential of a group of 

massive particles is 

 ( )
GM

g r
r

  (1.3.1) 

This formula is known as Newton’s potential. The formula does not 

indicate that the gravitation potential can cause acceleration for a 

uniformly moving massive object. 

1.4 The spherical pulse response 

This paper considers the formulas that compute the gravitation 

potential from an integral over a distribution of point-like massive 

objects as incorrect. 

In physical reality, no point-like objects that own a persistent mass 

exist. Instead, spherical pulse responses exist that behave as 

spherical shock fronts and integrate over time into the Green’s 

function of the field that embeds the actuator of the pulse. The pulse 

response temporarily deforms the field, and after injecting the 

volume of the Green’s function of the field, the front wipes this 

volume over the field. Consequently, the deformation quickly fades 

away. The injected volume persistently expands the field. 

The field equations that govern spherical pulse responses are 

 ( ) ( ) ( ), 4 ' 'r r q q         = −    (1.4.1) 

Here ( )   is a step function and ( )q  is an isotropic Dirac pulse.  

https://en.wikipedia.org/wiki/Gravitational_potential
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After the instant ' , the spherical pulse response is described by 
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The normalized vector n does not occur in the solutions of the wave 

equation form of the equation (1.4.1). To get a persistent 

deformation, the spherical pulse must be recurrently regenerated. 

Equation (1.4.1) also governs one-dimensional pulse responses that 

behave as one-dimensional shock fronts.  

 ( )( )' 'f q q c n  = −  −   (1.4.3) 

One-dimensional shock fronts do not deform the embedding field. 

Shock fronts only occur in an odd number of participating 

dimensions. 

1.5 Inertia 

The condition that the gravitation potential is a static function and 

the condition that the massive object moves uniformly, establish that 

inertia rules the dynamics of the situation. These conditions define an 

artificial quaternionic field that does not change. The real part of the 

artificial field is represented by the gravitation potential, and the 

uniform speed of the massive object represents the imaginary 

(vector) part of the field. 

The change of the quaternionic field can be divided into five separate 

changes that partly can compensate each other.  

The first order change of a field contains five terms. Mathematically, 

the statement that in first approximation nothing in the field 

changes indicates that locally, the first-order partial differential   

will be equal to zero. 

 , 0r r r r      = = −  + +  =  (1.5.1) 
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The terms that are still eligible for change must together be equal to 

zero. These terms are. 

 0r r  + =  (1.5.2) 

In the following text plays  the role of the vector field and r plays 

the role of the scalar gravitational potential of the considered object. 

We approximate this potential by using formula 
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  (1.5.3) 

The new artificial field ,
GM

v
r


 

=  
 

considers a uniformly moving 

mass as a normal situation. It is a combination of the scalar potential 
GM

r
 and the uniform speed v .  

If this object accelerates, then the new field ,
GM

v
r

 
 
 

 tries to 

counteract the change of the field v  by compensating this with an 

equivalent change of the real part 
GM

r
 of the new field. According to 

the equation (1.5.2), this equivalent change is the gradient of the real 

part of the field. 
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This generated vector field acts on masses that appear in its realm. 

Thus, if two masses 1M  and 2M  exist in each other’s neighborhood, 

then any disturbance of the situation will cause the gravitational 

force 
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The disturbance by the ongoing expansion of the embedding field 

suffices to put the gravitational force into action. The description also 

holds when the field  describes a conglomerate of platforms and m

represents the mass of the conglomerate. 

The artificial field  represents the habits of the underlying model that 

ensures the constancy of the gravitation potential and the uniform 

floating of the considered massive objects. 

1.6 Pulse location density distribution 

It is false to treat a pulse location density distribution as a set of 

point-like masses as is done in formulas (1.1.1) and (1.1.2). Instead, 

the gravitation potential follows from the convolution of the location 

density distribution and the Green’s function. This calculation is still 

not correct, because the exact result depends on the fact that the 

deformation that is due to a pulse response quickly fades away and 

the result also depends on the density of the distribution. If these 

effects can be ignored, then the resulting gravitation potential of a 

Gaussian density distribution would be given by 
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  (1.6.1) 

Here ( )ERF r  is the error function. 

Far from the center of this distribution, the shape of the gravitation 

potential (blue line) looks again like the shape of the Green’s function 

(red line) of the embedding field. 
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Due to the convolution, and the coherence of the location density 

distribution, the blue curve does not show a sign of the singularity 

that is contained in the blue curve. 

1.7 Elementary particles 

For elementary particles, a private stochastic process generates the 

hop landing locations of the ongoing hopping path that recurrently 

forms the same hop landing location density distribution. The 

characteristic function of the stochastic process ensures that the 

same location density distribution is generated. This does not mean 

that the same hop landing location swarm is generated! The squared 

modulus of the wavefunction of the elementary particle equals the 

generated location density distribution. This explanation means that 

all elementary particles and all conglomerates of elementary particles 

are recurrently regenerated. 

2 Mass 

2.1 Mass as a deformation strength characteristic 

The fact that far from a massive object, the gravitation potential 

always takes the shape of the Green’s function, gives the property 

mass an extra significance. The amplitude at a distance r can 

characterize the strength of the deformation that the massive object 

causes at this distance. Thus, if a spherical object is inserted into a 

continuum, then the deformation by this object is characterized by 

the amplitude of the gravitation potential ( )
GM

g r
r

  at a significant 

distance r . Thus. this amplitude determines the mass M  of the 

object. It does not matter what the object is.  

2.2 Black hole 

The object can be an encapsulated bubble that is generated by a non-

continuous region that is encapsulated by a minimal surface. The 

surface is also a continuum. Inside the region, field excitations cannot 
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exist. So, field excitations also cannot penetrate or leave the region. 

The phenomenon can be quite large and is known as a black hole. 

In its simplest form, the region has the shape of a sphere. The black 

hole produces so much deformation and corresponding gravitation 

potential that one-dimensional shock fronts lose their energy against 

the gravitational potential energy before these energy packages 

reach the region. Photons are strings of equidistant one-dimensional 

shock fronts that obey the Einstein-Planck relation E h= . Thus, also 

these objects cannot enter or leave a black hole.  

The encapsulating surface enables new physics because pulse 

responses behave differently in different numbers of participating 

dimensions. The direct surround of the region will attract many 

elementary particles that will cling with their geometric center to the 

encapsulating surface. This will introduce special conditions and 

corresponding phenomena. In the base model, elementary particles 

are represented by separate Hilbert spaces and the embedding field 

is represented by an eigenspace of an operator in a non-separable 

Hilbert space. The discrepant black hole region may correspond to a 

subspace of the underlying vector space that does not own a private 

version of a number system to sequence the members of that 

subspace. Therefore, the black hole region does not show a specific 

symmetry other than what follows from the minimal encapsulating 

surface condition. 

2.3 Mass versus volume 

The pulses that generate the footprint of elementary particles 

temporarily deform the embedding field and permanently extend the 

volume of that field. The pulse causes an increment of the mass of 

the elementary particle. However, the corresponding deformation 

quickly fades away and must be recreated to ensure persistent mass. 

The volume addition is persistent. Thus, here, a temporary increment 

of mass corresponds to a persistent increment of the volume of the 
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embedding field. An increment of the mass of the black hole 

corresponds with an increment of the radius of the black hole. The 

corresponding increment of the volume of the black hole region is 

much larger than the increase of the volume of the embedding field 

in the case of the elementary particle. Increasing the volume of the 

black hole causes an equivalent increase in the volume of the field 

that embeds the black hole. The mass that is added to the black hole 

does not quickly fade away. 

2.4 Dark matter 

The effect of the spherical shock fronts is so tiny that these field 

excitations cannot be perceived in isolation. For that reason, these 

phenomena are perfect candidates for what is called dark matter. In 

the universe, the isolated spherical pulse responses appear as a halo 

around the visible matter. There they produce the gravitational 

lensing effects. 

3 Charges 

3.1 Symmetry-related charges 

Symmetry-related charges only appear at the geometric center of the 

private parameter space of the separable Hilbert space that acts as 

the floating platform for an elementary particle. These charges 

represent sources or sinks for the corresponding symmetry-related 

field. Since these phenomena disturb the corresponding symmetry-

related field in a static way that can be described by the Green’s 

function of the field, the same trick that was used to explain inertia 

can be used here to explain the attraction or the repel of two 

symmetry-related charges 1Q  and 2Q . 
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3.2 Color confinement  

Some elementary particle types do not possess an isotropic 

symmetry. Mainstream physics indicates this fact with a 

corresponding color charge. Spherical pulse responses require an 

isotropic pulse. Thus, colored elementary particles cannot generate a 

gravitation potential. They must first cling together into colorless 

conglomerates before they can manifest as massive objects. Mesons 

and baryons are the colorless conglomerates that become noticeable 

as particles that attract other massive particles. 
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