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Abstract 

Gravitation and mass are explained by the fact that spherical pulse responses locally and 

temporarily deform the embedding field. Over time the spherical pulse response integrates 

into the Green’s function of the field. The shape of the Green’s function resembles the shape 

of the gravitation potential of point-like masses. At large enough distance an ensemble of 

massive objects acts as a single point-like mass. These ingredients explain how gravity works. 

The mass has a significance of its own and can characterize discrepant regions. 

1 Gravitation laws 

1.1 Center of mass 

In a system of massive objects , 1,2,3,...ip i n= , each with mass im  at 

locations ir , the center of mass follows from 
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1.2 Newton 

Newton’s laws are nearly correct in nearly flat field conditions. The 

main formula for Newton’s laws is 

 F ma=  (1.2.1) 

Massive objects deform the field that embeds these objects, but if 

this effect is ignored and if the gravitation potential is a static 



function, and if the massive object moves uniformly, then the 

gravitation potential describes properly what occurs.  

1.3 Gravitation potential 

A massive object at a large distance acts as a point-like mass. Far 

from the center of mass, the gravitation potential of a group of 

massive particles is 
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This formula does not indicate that the gravitation potential can 

cause acceleration to a uniformly moving massive object. 

1.4 The spherical pulse response 

This paper considers the formulas that compute the gravitation 

potential from an integral over a distribution of point-like massive 

objects as incorrect. 

In physical reality, no point-like massive objects exist. Instead, 

spherical pulse responses exist that behave as spherical shock fronts 

and integrate over time in the Green’s function of the field that 

embeds the actuator of the pulse. The pulse response temporarily 

deforms the field and after injecting the volume of the Green’s 

function of the field, the front wipes this volume over the field. 

Consequently, the deformation quickly fades away. The injected 

volume persistently expands the field. 

The field equations that govern spherical pulse responses are 

 ( ) ( ) ( ), 4 ' 'r r q q         = −    (1.4.1) 

Here ( )   is a step function and ( )q  is a Dirac pulse response.  

After the instant ' , this solution is described by 
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https://en.wikipedia.org/wiki/Gravitational_potential


The normalized vector n does not occur in the solutions of the wave 

equation form of the equation (1.4.1). 

1.5 Inertia 

The condition that the gravitation potential is a static function and 

the condition that the massive object moves uniformly, establish that 

inertia rules the dynamics of the situation. These conditions define a 

quaternionic field that does not change. The real part of the field is 

represented by the gravitation potential, and the uniform speed of 

the massive object represents the imaginary (vector) part of the field. 

The change of the quaternionic field can be divided into five separate 

changes that partly can compensate each other.  

The first order change of a field contains five terms. Mathematically, 

the statement that in first approximation nothing in the field 

changes indicates that locally, the first-order partial differential   

will be equal to zero. 

 , 0r r r r      = = −  + +  =  (1.5.1) 

The terms that are still eligible for change must together be equal to 

zero. These terms are. 

 0r r  + =  (1.5.2) 

In the following text plays  the role of the vector field and r plays 

the role of the scalar gravitational potential of the considered object. 

We approximate this potential by using formula 
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considers a uniformly moving mass as a 

normal situation. It is a combination of the scalar potential 
Gm

r
 and 

the uniform speed v .  



If this object accelerates, then the new field ,
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v
r
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 tries to 

counteract the change of the field v  by compensating this with an 

equivalent change of the real part 
Gm

r
 of the new field. According to 

the equation (1.5.2), this equivalent change is the gradient of the real 

part of the field. 

 
3

Gm Gmr
a v

r r

 
= = − = 

 
 (1.5.4) 

This generated vector field acts on masses that appear in its realm. 

Thus, if two masses 1m  and 2m  exist in each other’s neighborhood, 

then any disturbance of the situation will cause the gravitational 

force 
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The disturbance by the ongoing expansion of the field suffices to put 

the gravitational force into action. The description also holds when 

the field  describes a conglomerate of platforms and m represents 

the mass of the conglomerate. 

In compound modules such as ions and atoms, the field   of a 

component oscillates with the deformation rather than with the 

platform. 

1.6 Pulse location density distribution 

It is false to treat a pulse location density distribution as a set of 

point-like masses as is done in formulas (1.1.1) and(1.1.2). Instead, 

the gravitation potential follows from the convolution of the location 

density distribution and the Green’s function. This calculation is still 

not correct, because the exact result depends on the fact that the 

deformation that is due to a pulse response quickly fades away and 

the result also depends on the density of the distribution. If these 



effects can be ignored, then the resulting gravitation potential of a 

Gaussian density distribution would be given by 
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Far from the center of this distribution, the gravitation potential (blue 

line) looks again like the Green’s function (red line) of the embedding 

field. 

 

1.7 Elementary particles 

For elementary particles, a private stochastic process generates the 

hop landing locations of the ongoing hopping path that recurrently 

forms the same hop landing location density distribution. The 

characteristic function of the stochastic process ensures that the 

same location density distribution is generated. This does not mean 

that the same hop landing location swarm is generated! The squared 

modulus of the wavefunction of the elementary particle equals the 

generated location density distribution. 

2 Mass 

2.1 Mass as a deformation strength characteristic 

The fact that far from a massive object, the gravitation potential 

always takes the shape of the Green’s function, gives the property 

mass an extra significance. The amplitude at a distance r can 

characterize the strength of the deformation that the massive object 

causes. Thus, if a spherical object is inserted into a continuum, then 

the deformation by this object is characterized by the amplitude of 



the gravitation potential ( )
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  at a significant distance r . Thus. 

this amplitude determines the mass m  of the object. It does not 

matter what the object is.  

2.2 Blackhole 

The object can be an encapsulated bubble that is generated by a non-

continuous region that is encapsulated by a minimal surface. The 

surface is also a continuum. Inside the region, field excitations cannot 

exist. So, field excitations also cannot penetrate or leave the region. 

The phenomenon can be quite large and is known as a black hole. 

In its simplest form, the region has the shape of a sphere. The black 

hole produces so much deformation and corresponding gravitation 

potential that one-dimensional shock fronts lose their energy before 

they reach the region. The encapsulating surface enables new physics 

because pulse responses behave differently in two dimensions. The 

direct surround of the region will attract many elementary particles 

that will cling with their geometric center to the encapsulating 

surface. This will introduce special conditions and corresponding 

phenomena. In the base model, elementary particles are represented 

by separate Hilbert spaces and the embedding field is represented by 

an eigenspace of an operator in a non-separable Hilbert space. The 

discrepant region may correspond to a subspace of the underlying 

vector space that does not own a private version of a number system 

to sequence the members of that subspace. Therefore, the black hole 

region does not show a specific symmetry other than what follows 

from the minimal encapsulating surface condition. 

2.3 Mass versus volume 

The pulses that generate the footprint of elementary particles 

temporarily deform the embedding field and permanently extends 

the volume of that field. The pulse causes an increment of the mass 

of the elementary particle. However. the corresponding deformation 

quickly fades away and must be recreated to ensure persistent mass. 



Volume addition is persistent. Thus, here, a temporary increment of 

mass corresponds to a persistent increment of the volume of the 

embedding field. An increment of the mass of the black hole 

corresponds with an increment of the radius of the black hole. The 

corresponding increment of the volume of the black hole region is 

much larger than in the case of the elementary particle. Increasing 

the volume of the black hole causes an equivalent increase in the 

volume of the field that embeds the black hole. The mass that is 

added to the black hole does not quickly fade away. 
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