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Abstract:  We use  a two states quantum spin system S, and thus  considering the particular case of three 

anticommuting elements 321 ,, eee and the measurement of 3e . We evidence that, during the  wave 

collapse, we have a transition of standard commutation relation of the spin to new commutation relations 

and this  occurs during the interaction of the S system with the macroscopic measurement system M. The 

reason to accept such view point is that it causes the destruction of the interferential factors and of the 

fermion creation and annihilation operators of the S system without recourse to further elaborations based 

on the use of Hamiltonians or other  methods. By this formulation we propose a new method in attempting 

to solve the problem of wave function collapse. The concept of Observable , in use in standard quantum 

mechanics, is resolved in an abstract entity to which is connected a linear hermitean operator that signs 

mathematically the operation that we must perform on the wave function in order to obtain the potential 

and possible values of the observable. It does not commute with a number of other operators 

characterizing the system and the non commuting rules have a fundamental role in quantum mechanics 

.They have a logic that must be analyzed in each phase of the non measuring and the measuring processes. 

When we consider the dynamics of wave function collapse we must account that the observed observable 

becomes a number ,with proper unity of measurements ,during the measurement, thus the linear 

hermitean operator to which is connected before the measurement, disappears and in its place it appears a 

new operator that maintain the non commutativity with the other operators to which the old and 

disappeared operator was connected. 
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1. Introduction 

In ninety years since its beginnings, quantum mechanics has had great functional and theoretical success 

leaving little reason to doubt its intrinsic validity. Nevertheless, we cannot ignore that some questions 

concerning the foundations of this theory remained unsolved, and a historic debates among scientists arose 

and deeply influenced the early development of the theory.  

The first important question concerns the problem of the wave-function collapse by measurement. 

Its solution would be of relevant significance because it would provide us with a self-consistent formulation 

of the theory, which presently depends   on the  von Neumann postulates that have been  added from the 

outside to the body of the theory. 



For a complete examination of the actual problems, as they are resolved to da, we refer the reader to the 

several reviews that may be found in pertinent literature[1,2,8,9,10,11,12,18,19,20]. 

Consider the measurement of a given observable F on a quantum-mechanical system S  that is in a 

normalized superposition of states 
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where i    is a normalized eigenstate of F , relative to an eigenvalue i , iiiF   , ijji  ),( . 

The probability of finding the eigenvalue i during the measurement is 
2

ic , the corresponding eigenstate 

is i  and during the measurement the wave function   is subjected to the transition i 
characterizing the completed collapse. 

The density matrix approach as it was initiated by von Neumann is 
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Usually,  we consider  a macroscopic measuring device M and we postulate that the states of M entangle 

with those of S  
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If the system is not destroyed by the measurement, and if the interaction fits into the so called 

measurement of the first kind, then the quantum state after the measurement will be the eigenstate 

associated  with  the measurement outcome, or more generally (to include degenerancies), the normalized 

projection of the original state onto the eigensubspace associated with the outcome. This rule is known as 

the projection postulate. It originated with Dirac and von Neumann [17], and was later formalized in 

degenerate cases by Luders and Ludwig [14,15]. 

Consider S to be a quantum two states system. The complete phase-damping by using projection postulate 

gives  
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It is known that quantum mechanics has some peculiar features that are missing in the counterpart of 

classical physics. Two basic features are quantum interference and the collapse. 

Starting with 2009 [5,6,7] our tentative approach  was to use the Clifford algebra with the aim to construct 

a bare bone skeleton of quantum mechanics but giving collapse. We will deepen here some basic features 

but remaining fully in the aim of  the foundations of quantum mechanics and thus without recurring to the 

Clifford algebra. 

 

2. Theoretical Elaboration 

Consider the measurement of 3e spin z-component. We have three operators , ,e,e 21
 and 3e  that satisfy 

the  relation  

jkjkkj eeee 2       for  321 ,,,k,j                               (5) 

with the following basic relations  
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In matrix form we have that 
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These  basic operators, ie , with 321 ,,i    , satisfy the following relations  

a) it exists the scalar square for each basic operator: 

111 kee   , 
222 kee  , 333 kee    with  ik  .                              (9)  

In particular we have also the unit element, 0e , such that that  

100 ee , and 00 eeee ii  

b) The basic elements ie  are anticommuting operators , that is to say 

1221 eeee   ,    2332 eeee  ,  3113 eeee  .                                   (10)  

Theorem n.1. 

Assuming the two postulates given in (a) and (b) with 1ik , the following commutation relations 

hold for such algebra : 
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Proof. 

Consider the general multiplication of the three basic operators  ,,, 321 eee  using scalar coefficients 

kkk  ,, pertaining to some field: 

33221121 eeeee     ; 33221132 eeeee    ;  

33221113 eeeee   .                   (11a)  

Let us introduce left and right alternation: for any )j,i( , associativity exists jiijii eeeeee )(  and 

)( jjijji eeeeee  that is to say  

211211 )( eeeeee  ; )( 221221 eeeeee  ; 322322 )( eeeeee  ; )( 332332 eeeeee  ; 133133 )( eeeeee  ;      

)( 113113 eeeeee  .                                                                  (12)  



Using the (11) in the (12) it is obtained that  

3132121121 eeeekek   ; 2332221112 eekeeek   ; 

3232212132 eekeeek   ; 3332231123 keeeeek   ; 

3323213113 keeeeek   ;  1331221131 eeeekek    .                    (13)  

From the (13), using the assumption (b), we obtain that 
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 We have that it must be  

0313221                                                                             (15)  

and  

02211  kk    03322  kk           03311  kk                       (16) 

 The following set of solutions is given: 

,321 k  312 k  , 213 k                                             (17) 

that is to say  

i 213                                                                    (18) 

In this manner, as a theorem, the existence of such operators is proven. The basic features   are given in the  

following manner 
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Note that the ie ( 3,2,1i ) have an intrinsic potentiality that is to say an ontic potentiality or equivalently 

an irreducible intrinsic indetermination. Since 12 ie ( 3,2,1i ),  the numerical value +1 or the numerical 

value –1  are potentially  possible . Such two alternatives  (+1 and -1) both coexist ontologically and this 

potential possibility  intrinsically travels  in each possible formal application of this operators .   

 

Consider now  the following new operators 
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and we will verify that the (21) holds if the result of the measurement has given the value +1 for 3e . 

 

We have instead   
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and we will verify that the (22) holds if the result of the measurement has given the value -1 for 3e  

 

Theorem n.2 . 

Assuming the relations  given in (20) , having  11 k , 12 k , 13 k , the following  commutation rules 

hold  : 
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iee 21  , iee 12 , 12 eie  , 12 eie  , 21 eie  , 21 eie              (23)                                                      

Proof                                                

To give  proof,  rewrite  the (11a) in our case,  and perform  step by step the same calculations of the 

previous proof, we arrive to the solutions of the corresponding homogeneous algebraic system  that  in this 

new case are given in the following manner: 

321 k ; 312 k ; 213 k                                  (24)    

where this time it must be 121  kk and 13 k . It results 

11  ; 12  ; 13                           (25)                                  

and the proof is given. 

The content of the theorem 2 is thus established. When we attribute to 3e the numerical value +1, we pass 

from the previous one relations 
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 to the following new basic rules: 
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When we attribute  to 3e  the numerical value of 1  , we have the new fundamental relations  
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To give proof , consider the solutions of the (24)  that  are given in this new case by  

11  ; 12  ; 13                      (28)                                         

and the proof is given. 

The content of the theorem n.2 is thus established. When we attribute to 3e the numerical value –1,  we 

pass to new commutation relations  with the following new basic rules: 
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In the case of previous measurement we have that the imaginary unit i  has its mathematical 

representation by 

321 ,, eee , by the following relation  321 eeei  . In the case of 13 e measurement we have instead 

 i 21ee  , and , in the case of 13 e measurement, we have i 21ee  . In both cases i becomes an 

operator  that completes the triplet with 1e   and 2e while , before the measurement, it is the scalar 

321 eeei    .                    

In a similar way, proofs may be obtained when we consider  the cases  attributing numerical values ( )1  to 

1e   or to  2e . 

 Consider the previous two states of system S with its proper representation in Hilbert space. 

The complex coefficients ic ( )2,1i are the well known probability amplitudes for the considered 

quantum state 
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For a pure state in quantum mechanics it is  2 . We have a corresponding Clifford algebraic member 

that is given in the following manner  

321 decebeaS 
                                                                                     (31) 
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In our old scheme a theorem may be demonstrated in Clifford algebra [3,4]. It is that 
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Let us write again the state of the two state spin z-component quantum system S with connected quantum 

observable 33 eS  . We have 
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As we know, the density matrix of such system is easily written  
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where in matrix notation, 
1e  , 

2e , and 3e  are the well known Pauli matrices 
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The ( 31) and (34) coincide . 

Write the (34)  in the two  forms. 
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The ( 37) and (38)  contain the following  interference terms.  
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We may write (38) in the following terms  
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or equivalently 

int,S = ))((
2

1
))((

2

1
212

*

121

*

21 ieeccieecc                                                                                             (44) 

and respectively for the (37) and the (38). 

The mechanism that induces the collapse of the wave function is now evident. During the interaction of the 

system S with the macroscopic apparatus M the previous interference terms are destroyed.  It never can 

happen until we assume that in the ( )MS  interaction and during such coupling ( )MS  , the system 

undergoes an operator transition. If , probabilistically speaking, the macroscopic instrument reads 
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h
S  , it means that the (37) has prevailed . If instead the macroscopic instrument reads 

2
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means that the (38) has prevailed. 

In the first case the basic commutation rules that hold are those given in (26) ,    

i21ee  , i12ee ,                                                                                             (45)  

12 ee i ,
12 ee i ,

21 ee i , 
21 ee i                                    (46)  

The density matrix becomes   
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In the second case the basic commutation rules that hold are those given in (29), 

i21ee  , i12ee , 
12 ee i ,

12 ee i ,
21 ee i , 

21 eie                   (49)  

The density matrix becomes  
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The macroscopic apparatus has the task to differentiate 1,S  from 1,S  destroying interference.  

There is another important feature in such mechanism. The basic matrix density expression, written 

previously in equivalent manner in the (37) and (38), contains two algebraic elements that in quantum 

mechanics relate the Fermion annihilation and creation operators. In fact they are explicitly expressed in 

such basic matrix density expression  
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 (52) 

They act before of the interaction of S withM . When the system S  interacts withM , the new 

commutation relations, the (45) or the (49), act and they  completely cancel the presence of the algebraic 

terms corresponding to the  two fermion creation and annihilation operators. Quantum collapse requires 

the cancellation of such two operators and it happens during the transition from previous measurement to 

during the measurement. This is of course at the basis of the mechanism of the ( )MS   interaction. 

3. Conclusion 

We have given  indication of the mechanism of quantum collapse in quantum mechanics for a quantum 

system having only three anticommuting elements. The central approach is that during the interaction of 

the given quantum system with the macroscopic apparatus, we have a transition from the basic and 

standard commutation relations among the well known Pauli matrices to new commutation relations. This 

must be a basic feature of quantum collapse and this is the basic reason because it is so difficult to 

construct a real theory of wave function collapse. In this case the linear hermitean operator connected to 

the given Observable disappears because the Observable becomes a truly physical quantity in its proper 

unity of measurement but in its place a new operator appears that does not commute with the old 

operators of the system and not commuting with the operator that has disappeared. We have reached this 

result by using the Clifford algebra in an old paper and we reach the same result now , in this paper, using 

only the algebra of the linear hermitean operators. 
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