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Intuitionistic fuzzy decision-making in the
framework of Dempster-Shafer structures

Liguo Fei∗

Abstract—The main emphasis of this paper is placed on the
problem of multi-criteria decision making (MCDM) in intuitionis-
tic fuzzy environments. Some limitations in the existing literature
that explains Atanassov’ intuitionistic fuzzy sets (A-IFS) from the
perspective of Dempster-Shafer theory (DST) of evidence have
been analyzed. To address the issues of using Dempster’s rule to
aggregate intuitionistic fuzzy values (IFVs), a novel aggregation
operator named OWA-based MOS is proposed based on ordered
weighted averaging (OWA) aggregation operator, which allows
the expression of decision makers’ subjectivity by introducing the
attitudinal character. The effectiveness of the developed OWA-
based MOS approach in aggregating IFVs is demonstrated by the
known example of MCDM problem. To compare different IFVs
obtained from the OWA-based MOS approach, the golden rule
representative value for IFVs comparison is introduced, which
can get over the shortcomings of score functions. The hierarchical
structure of the proposed decision approach is presented based
on the above researches, which allow us to solve MCDM problem
without intermediate defuzzification when not only criteria, but
their weights are represented by IFVs. The proposed OWA-based
MOS approach is illustrated as a more flexible decision-making
method, which can better solve the problem of intuitionistic fuzzy
multi-criteria decision making in the framework of DST.

Index Terms—Intuitionistic fuzzy set, Dempster-Shafer evi-
dence theory, Multi-criteria decision making, Intuitionistic/DST
approach, Ordered weighted average, Golden rule representative
values.

I. INTRODUCTION

AS a crucial component in many fields associated with en-
gineering, technology, economics, management, military,

etc., multi-criteria decision making technology has received
considerable attention in both theory and practice [1], [2].
In the process of multi-criteria decision making, the eval-
uation information derived from different experts or other
sources is usually imperfect, i.e., ambiguous, uncertain and
even conflicting. To express the information more effectively,
quiet a few fuzziness theories, such as fuzzy sets (FSs) [3],
intuitionistic fuzzy sets (IFSs) [4], [5], hesitant fuzzy sets
(HFSs) [6] and pythagorean fuzzy sets (PFSs) [7] have been
developed. Among these fuzziness theories, IFS has been
widely employed in MCDM problems because of its flexibility
in representing and managing fuzzy information. Intuitionistic
fuzzy sets theory was proposed by Atanassov [8], which is
a feasible extension of fuzzy sets theory and appears to be
significant and available in a multitude of applications. Note
that, in the current paper, the Atanassov’s intuitionistic fuzzy
sets is denoted as A-IFS. The degree of membership µ and
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non-membership ν are simultaneous taken into account in the
definition of A-IFS with the requirement that 0 ≤ µ+ ν ≤ 1.
The most paramount applications of A-IFS are the decision
making problems [9], [10]. In the framework of A-IFS, a
decision making problem can be described as follows.

Let A = {x1, x2, . . . , xm} be a set of alternatives, C =
{c1, c2, . . . , xn} be a set of criteria, whose weights are denoted
as W = {w1, w2, . . . , wn}. Let µij be the degree to which xi
satisfies criterion cj and νij be the degree to which xi does not
satisfy criteria cj , and 0 ≤ µ+ν ≤ 1, consequently alternative
xi can be represented as xi = {(w1, < µi1, νi1 >), (w2, <
µi2, νi2 >), . . . , (wn, < µin, νin >)}.

The decision problem in intuitionistic fuzzy environments
is mainly divided into two facets, including developing effec-
tive aggregation operators and determining appropriate score
functions. In the decision process, different criteria need to
be aggregated to obtain the final evaluation of an alternative,
accordingly how to define reasonable aggregation operators
has captured scholars’ attention. Xu [11] developed some
aggregation operators, such as the intuitionistic fuzzy weighted
averaging operator, intuitionistic fuzzy ordered weighted av-
eraging operator, and intuitionistic fuzzy hybrid aggregation
operator. And some geometric aggregation operators, such
as intuitionistic fuzzy weighted geometric operator, the in-
tuitionistic fuzzy ordered weighted geometric operator, and
intuitionistic fuzzy hybrid geometric operator were presented
by Xu and Yager in [12]. Based on which, the induced
intuitionistic fuzzy ordered weighted geometric operator was
proposed by Wei [13]. The intuitionistic fuzzy archimedean
heronian aggregation operator and intuitionistic fuzzy weight
archimedean heronian aggregation operator were introduced
by Liu and Chen [14]. A series of generalized geometric
interaction averaging aggregation operators are developed by
Garg [15], which includes the weighted, ordered weighted
and hybrid weighted averaging operators. And a multitude
of other aggregation operators were presented from different
perspectives [16], [17], [18], [19], [20], [21].

It is worth noting that A-IFS does not exist independent-
ly, but could be combined with other uncertainty modeling
theories. As an example, a dynamic weight Determination
approach was developed based on the intuitionistic fuzzy
Bayesian network and was applied to emergency decision
making in [22]. In addition, combined with A-IFS and rough
sets theory, a pair of lower and upper intuitionistic fuzzy
rough approximation operators induced from an arbitrary
intuitionistic fuzzy relation are defined by Zhou and Wu [23].
And recently an interpretation of intuitionistic fuzzy sets in
terms of Dempster-shafer theory was introduced for decision
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making by Dymova and Sevastjanov [24]. Based on which, in
the current paper, we focus on the shortcomings of using DST
to represent A-IFS, and propose some improved algorithms.
Details are discussed in later sections. To manifest why the
interpretation of A-IFS in terms of DST are indispensable,
we shall first briefly introduce some limitations of traditional
intuitionistic fuzzy decision. Generally, the final evaluation
results of alternatives associated with A-IFS decision are
represented by IFVs, accordingly score functions are needed
for decision making. However, imprecise conclusions may
be obtained in this process, as any defuzzification operation
inevitably leads to loss of information. To address this issue,
a multitude of aggregation operators have been proposed as
described above, which have the common limitation that the
weights wi, i = 1, . . . , n, should be real values, and they
can also be expressed by IFVs in quiet a few cases. In
[24], to break this limitation, a novel approach to aggregate
criteria was presented based on DST. But there are still some
shortcomings of applying DST to the operation of A-IFS,
the details are discussed in Sec. III. In response to these
shortcomings, in this study, we propose the improved DST
approach for intuitionistic fuzzy decision.

In the first place, a local aggregation algorithm for IFVs is
introduced based on the idea in [25] in terms of DST, which
essentially employs the knowledge of average aggregation, i.e.
first averages all criteria and then combines the average p− 1
times using the Dempster’s rule (the number of criteria is p).
Some unreasonable points of this algorithm are observed by a
numerical example, as an improvement, we further develop the
OWA-based mean orthogonal sum (MOS) algorithm inspired
by the idea of soft likelihood functions in [26]. In OWA-
based MOS, the attitudinal character α is introduced to express
the attitude of decision makers, which can be reflected by
OWA weights. If α is closer to 1, it means that the weight
assigned to w (note that w here refers to the weight vector
associated with OWA operator, not the criteria weight) has a
smaller index, i.e. the OWA-based MOS is determined with
more optimistic attitude by decision makers, consequently
the MOS is larger, and vice versa. In OWA-based MOS, all
the IFVs to be aggregated need to be sorted in descending
order based on an index function determined by golden rule
representative values (it will be introduced later), then the step-
by-step combination of ordered IFVs will be performed based
on the defined local aggregation algorithm. Finally, the results
of step-by-step combination will be aggregated based on the
OWA operator. To optimize the proposed OWA-based MOS
algorithm, the index function γ is redefined by considering
reliability and compatibility, respectively. The reliability is
measured from the perspective of entropy (i.e. uncertainty)
of IFVs, and the compatibility is determined by the extent
to which an IFV is supported by other IFVs. Some analysis
is provided to demonstrate the effectiveness of the improved
OWA-based MOS algorithm.

The aggregation results of the OWA-based MOS algorithm
is in the form of IFVs, accordingly the problem of compar-
ison of IFVs arises. This is another facet of the issue that
intuitionistic fuzzy decision-making needs to address. The
classical score function was proposed by Chen and Tan [27]

as S(xj) = µ(xj)−ν(xj). It is obvious that if S(xi) > S(xj)
then xi should be more superior than xj , but S(xi) = S(xj)
does not invariably imply that xi is equal to xj . Consequently,
accuracy function was developed by Hong and Choi [28] as
H(xj) = µ(xj) + ν(xj). So a pair of IFVs can be compared
based on [29] as:

if S(xi) > S(xj), then xi is better than xj ,
if S(xi) > S(xj), then

if H(xi) = H(xj), then xi is equal to xj ,
if H(xi) < H(xj), then xj is better than xi.

A number of other comparison methods were followed. A
new score and accuracy functions were introduced by Wu
and Chiclana [30] considering decision makers’ attitudinal
character. The novel score function and accuracy function were
proposed by Wang and Chen [31] using the linear program-
ming methodology. And many other score functions have also
been developed [28], [29], [32]. Dymova and Sevastjanov [24]
noted that ”The method for IFVs comparison based on the
functions S and H seems to be intuitively obvious and this
is its undeniable merit. On the other hand, as two different
functions S and H are needed to compare IFVs, this method
generally does not provide an appropriate technique for the
estimation of an extent to which one IFV is grater/smaller than
the other, whereas such information is usually important for a
decision maker.” To overcome the shortcomings of the existent
methods for IFVs comparison and interval comparison, some
associated scalar values are employed in this study, which are
referred to as representative values. Details are introduced in
Sec. IV.

In summary, this paper analyzes the shortcomings in exist-
ing literature using DST to solve the intuitionistic fuzzy de-
cision problems. For these limitations, we propose the OWA-
based mean orthogonal sum algorithm, which can effectively
address these issues and avoid the loss of information caused
by the process of defuzzification. In addition, based on the
theoretical research of this paper, the hierarchical structure
is provided to solve the MCDM problem in the framework
of intuitionistic/DST approach. Some numerical examples
and analysis demonstrate the effectiveness of the developed
decision approach.

The rest of this paper proceeds as follow. Sec. II devotes to
the basic introduction of the DST and A-IFS. Sec. III discusses
the limitations of applying DST to the operation of IFVs.
Sec. IV introduces the representative values and golden rule
for A-IFSs. Sec. V provides the concept of ordered weighted
averaging (OWA) aggregation operator. Sec. VI presents the
improved DST approach for intuitionistic fuzzy decision. Sec.
VII illustrates the decision process of MCDM problems in the
framework of intuitionistic/DST approach. Sec. VIII concludes
this paper and gives some future research perspectives.

II. PRELIMINARIES

A. Dempster-Shafer Theory

Dempster-Shafer theory (DST) is called evidence theory
or belief function theory, and its origins can be traced back
to Dempster’s work [33], where a system of upper and
lower probabilities was developed. Following this work, DST
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was further refined in the book ”A Mathematical Theory of
Evidence” by Shafer [34] in 1976. DST is mostly used for
uncertain information modeling [35], [36], [37], [38], [39],
[40], [40]. The basic concepts of DST are introduced as
follows.

Let us consider a finite discrete set Θ = {θ1, θ2, . . . , θn} in-
cluding n mutually exclusive and exhaustive hypotheses. And
Θ is the frame of discernment (FoD) including the problems
under consideration. Let us denote 2Θ as the power set of Θ.
So for Θ = {θ1, θ2, . . . , θn}, 2Θ = {ϕ, θ1, θ2, . . . , θn, θ1 ∪
θ2, θ1 ∪ θ3, . . . ,Θ}. Each subset (e.g. θi, θi ∪ θj , . . .) in 2Θ

is called a proposition which characterizes the solution to a
decision problem in this paper. If the proposition is represented
by a single subset (e.g. θi ∈ Θ), it indicates that the solution
contains only one alternative. But for the case of multiple
subsets, such as {θi, θj}, it denotes the proposition ”there are
two alternatives θi and θj in the solution, but which one is
better is unknown”.

A basic probability assignment (BPA) is defined as a
function m : 2Θ → [0, 1] satisfying

m(ϕ) = 0,
∑
A∈2Θ

m(A) = 1 (1)

A denotes one of the propositions in 2Θ and is called focal
element if m(A) > 0. The cardinality of focal element is
defined as the number of elements in it.

In [34], some measures associated with BPA were given
by Shafer. The belief measure is defined by a mapping Bel :
2Θ → [0, 1] which satisfies:

Bel(A) =
∑

B∈2Θ|B⊆A

m(B), ∀A ⊆ Θ (2)

The plausibility measure is also defined in [34] by a mapping
Pl : 2Θ → [0, 1] as:

Pl(A) =
∑

B∈2Θ|A∩B ̸=ϕ

m(B),∀A ⊆ Θ (3)

Note that Bel(·) and Pl(·) are the lower and upper bounds
of probability associated with a BPA, respectively, which can
be proved to satisfy Bel(A) ≤ Pl(A) for all A ⊆ Θ. In DST,
the interval [Bel(A), P l(A)] is used to measure the degree
of imprecision for proposition A, which is called the belief
interval (BI).

The DST is most commonly used in multi-source informa-
tion fusion, where the Dempster’s rules of combination [33]
will be used. The rule assumes that the sources of evidence
are independent, and n pieces of evidence can be combined by
orthogonal sum: m = m1 ⊕m2 ⊕ . . .⊕mn, where ⊕ denotes
the operator of fusion. The Dempster’s rule of combination
for two pieces of evidence can be defined as follows.

Definition II.1. Let m1 and m2 be two BPAs, the Dempster’s
rule denoted by m = m1 ⊕m2 is defined as:

m(A) =

∑
B∩C=Am1(B)m2(C)

1−K
(4)

with
K =

∑
B∩C=ϕ

m1(B)m2(C) (5)

Note that the Dempster’s rule can only be employed for m1

and m2 when K < 1.

B. Interpretation of intuitionistic fuzzy sets in the framework
of DST

In [24], a new interpretation of intuitionistic fuzzy sets in
the framework of DST was presented. Based on which, the
relationship between intuitionistic fuzzy sets and Dempster-
Shafer theory will be reviewed briefly as follows. Intuitionistic
fuzzy sets proposed by Atanassov [8] is referred to as A−IFS,
and its basic concepts will be introduced next.

Definition II.2. Let X = {x1, x2, . . . , xn} be a finite univer-
sal set. An intuitionistic fuzzy set A in X can be expressed by
the form: A = {< xj , µA(xj), νA(xj) > |xj ∈ X}, where
functions µA : X → [0, 1], xj ∈ X → µA(xj) ∈ [0, 1]
and νA : X → [0, 1], xj ∈ X → νA(xj) ∈ [0, 1] represent
the degree of membership and degree of non-membership of
element xj ∈ X to the set A ⊆ X , respectively, and satisfy
µA(xj) + νA(xj) ∈ [0, 1] for each xj ∈ X .

Note that πA(xj) = 1 − µA(xj) − νA(xj) is called
hesitation degree (or intuitionistic index) of element xj in set
A. Obviously, we can get πA(xj) ∈ [0, 1] for each xj ∈ X .

The interval representation of intuitionistic fuzzy sets was
proposed in [28] for MCDM problems, specifically, the intu-
itionistic fuzzy set A =< µA(xj), νA(xj) > in X can be rep-
resented by interval [µA(xj), 1− νA(xj)]. Two characteristics
and advantages were summarized as follows. (1) the interval
expression [µA(xj), 1− νA(xj)] is a regular interval because
it is obvious that µA(xj) ≤ 1− νA(xj), which can be regard
as the interval valued fuzzy sets interpretation of A-IFS; (2)
the basic operators of A-IFS can be redefined in terms of
DST. To represent A-IFS with DST, the element µA(xj) and
νA(xj) constitute the FoD in DST as Θ = {µA(xj), νA(xj)}.
For any situation in context of A-IFS, there are three general
hypotheses: xj ∈ A, xj /∈ A and the case where both the
hypotheses xj ∈ A and xj /∈ A cannot be distinguished
(hesitation). These three hypotheses can be denoted in the
environment of DST as {Y es}(xj ∈ A), {No}(xj /∈ A) and
{Y es,No}(xj ∈ A and xj ∈ A).

In this context, µA(xj) can be regard as the belief degree
of xj ∈ A satisfying m({Y es}) = µA(xj). Similarly, we
have m({No}) = νA(xj). For hesitation degree πA(xj),
we have m{Y es,No} = πA(xj). According to Def. II.2,
we have µA(xj) + νA(xj) + πA(xj) = 1, so m({Y es}) =
µA(xj),m({No}) = νA(xj),m{Y es,No} = πA(xj) can
satisfy a standard BPA. Based on Eqs. (2) and (3), we
have BelA(xj) = m({Y es}) = µA(xj) and PlA(xj) =
m({Y es}) + m({Y es,No}) = µA(xj) + πA(xj) = 1 −
νA(xj). The interval representation of the A-IFSs in DST can
be defined as follows.

Definition II.3. Let X = {x1, x2, . . . , xn} be a finite univer-
sal set and xj is an object in X whose degree of membership
and degree of non-membership are represented by functions
µA(xj) and νA(xj), an interval representation of IFS can
be denoted as: A = {< xj , BIA(xj) > |xj ∈ X} where
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BIA(xj) = [BelA(xj), P lA(xj)] = [µA(xj), 1 − νA(xj)] is
called belief interval.

Dymova and Sevastjanov [24] pointed out that DST se-
mantics can enhance the performance of A-IFS in MCDM
problems. What’s more, the IFVs information represented by
belief interval can be aggregated based on Dempster’s rule
of combination, then an approach can be developed without
defuzzification when assessment information and their weights
are expressed by IFVs. The advantages of using interval
representation of A-IFS in DST are very obvious. However,
in some cases, the limitations of aggregating A-IFSs based on
Dempster’s rule can be found in context of MCDM problems.
Several critical examples are given to illustrate this problem
in the next section.

III. THE LIMITATIONS OF APPLYING DST TO THE
OPERATION OF IFVS

Some limitations of using Dempster’s rule of combination
for the aggregation operator of IFVs have been analysed in
[24]. In this section, the additional drawbacks are discussed. To
make our consideration more clearly, the example in [41], [42]
is used, whose background is described as follows. Consider
the problem to select an air-condition system, the alternatives
are denoted by X = {x1, x2, x3}. And there are three
criteria: economical (c1), function (c2) and being operative
(c3), which are denoted by C = {c1, c2, c3}. The degrees µij

of membership and the degrees νij of non-membership for the
alternative xj ∈ X with respect to the criterion ci ∈ C to the
fuzzy evaluation ”excellent” can be obtained by using some
statistical approaches as follows.

(< µij , νij >)3×3 =
c1 c2 c3

x1 < 0.75, 0.1 > < 0.60, 0.25 > < 0.80, 0.2 >
x2 < 0.8, 0.15 > < 0.68, 0.20 > < 0.45, 0.5 >
x3 < 0.4, 0.45 > < 0.75, 0.05 > < 0.60, 0.3 >


(6)

Then the degrees ρi of membership and the degrees τi of
non-membership for criterion ci ∈ C to the fuzzy evaluation
”importance” can be obtained as follows.

(< ρi, τi >)1×3 =[
c1 c2 c3

< 0.25, 0.25 > < 0.35, 0.4 > < 0.3, 0.65 >

]
(7)

Dymova and Sevastjanov [24] considered C as a set of local
criteria, so µij and νij are the degrees to which xj satisfies
and dissatisfies the local criterion ci ∈ C. That is, the air-
condition system selection problem can be reformulated in
terms MCDM. DST interpretation of A-IFS was employed
in [24] to obtain the final alternatives’ evaluations (FAE).
Based on Sec. II-B, for the pair (xi, cj), its BPA representation
can be denoted as me

ij({Y es}) = µij , me
ij({No}) = νij ,

me
ij({Y es,No}) = 1 − µij − νij = πij ; for the relative

weight of criteria, its BPA representation can be denoted as
mw

j ({Y es}) = ρj , mw
j ({No}) = τj , mw

j ({Y es,No}) =
1 − ρij − τij . To select the optimal air-condition system,
for each alternative xi, the weighted local criteria values

will be obtained by aggregated the evaluation information
and its corresponding weight based on Dempster’s rule. To
get the FAE(xi), the weighted evaluation values will be
aggregated by using Dempster’s rule. The final BPA of xi can
be denoted as mi({Y es}), mi({No}) and mi({Y es,No}),
so the corresponding belief interval is [Bel(xi), P l(xi)] =
[mi({Y es}),mi({Y es}) + mi({Y es,No})]. Based on the
above process, the following results for the air-condition
system selection problem can be obtained:

FAE(x1) = [Bel(x1), P l(x1)] = [.9257, .9257],

FAE(x2) = [Bel(x2), P l(x2)] = [.8167, .8168],

FAE(x3) = [Bel(x3), P l(x3)] = [.7377, .7379].

(8)

A limitation can be found from the result that FAE(x1) =
[Bel(x1), P l(x1)] = [.9257, .9257] has degenerated into a real
number, which means that m1({Y es,No}) = 0. This result
can be explained from the calculation process. The weighting
process of the pair (x1, c3) can be expressed as:

mw
1,3({Y es,No}) =

(1− µ13 − ν13)(1− ρ3 − τ3)

1−K
(9)

as 1−µ13−ν13 = 1−0.8−0.2 = 0 in this case, so mw
1,3 = 0

and the final result can be obtained as:

m1({Y es,No}) =
mw

1,1({Y es,No})mw
1,2({Y es,No})mw

1,3({Y es,No})
1−K

= 0

(10)

In terms of A-IFS, the above result means that the final
evaluation of x1 can be expressed by the intuitionistic fuzzy
value < m1, 1 − m1 > which cannot represent hesitancy
degree of ”x1 is excellent”. So the limitation of using the
interpretation of A-IFS in the framework of DST can be
summarized as: if any IFV representation of criteria values has
no hesitation, then the aggregation result of using Dempster’s
rule will has no hesitation. The belief interval representation of
A-IFS was employed in [24], and some aggregation methods
were introduced, which can solve this problem to some extent.
But this means the advantages of DST in terms of combination
have been abandoned. A more reasonable solution will be
proposed in this study.

To further demonstrate the limitation of using Dempster’s
rule as an aggregation operator for A-IFS, a more extreme
example is given as follows. In the above example, to explain
the problem more clearly, we re-present the degrees ρ̄i of
membership and the degrees τ̄i of non-membership for cri-
terion ci ∈ C to the fuzzy evaluation ”importance” as:

(< ρ̄i, τ̄i >)1×3 =[
c1 c2 c3

< 0, 1 > < 0.35, 0.4 > < 0.3, 0.65 >

]
(11)

This case can be interpreted as the decision maker holds
that criterion c1 is not important at all, that is, the air-condition
system can be selected without considering economic issues.
The decision process can be given as in the previous example.
For each pair (xi, cj), the combined BPAs can be calculated
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as in Eq. (9). So the weighted evaluation values of each
alternative xi can be presented by the structure Mi as follows:

M1 = m11({Y es}) = 0 m11({No}) = 1 m11({Y es,No}) = 0
m12({Y es}) = 0.61 m12({No}) = 0.33 m12({Y es,No}) = 0.06
m13({Y es}) = 0.67 m13({No}) = 0.33 m13({Y es,No}) = 0

 (12)

M2 = m21({Y es}) = 0 m21({No}) = 1 m21({Y es,No}) = 0
m22({Y es}) = 0.68 m22({No}) = 0.27 m22({Y es,No}) = 0.05
m23({Y es}) = 0.31 m23({No}) = 0.68 m23({Y es,No}) = 0.01

 (13)

M3 = m31({Y es}) = 0 m31({No}) = 1 m31({Y es,No}) = 0
m32({Y es}) = 0.76 m32({No}) = 0.16 m32({Y es,No}) = 0.08
m33({Y es}) = 0.46 m33({No}) = 0.52 m33({Y es,No}) = 0.02

 (14)

The final BPAs of each alternative xi can be obtained as in
Eq. (10):

• m1({Y es}) = 0,m1({No}) = 1,m1({Y es,No}) = 0,
• m2({Y es}) = 0,m2({No}) = 1,m2({Y es,No}) = 0,
• m3({Y es}) = 0,m3({No}) = 1,m3({Y es,No}) = 0.
So the final alternatives’ evaluations can be obtained as:

FAE(x1) = [Bel(x1), P l(x1)] = [0, 1],

FAE(x2) = [Bel(x2), P l(x2)] = [0, 1],

FAE(x3) = [Bel(x3), P l(x3)] = [0, 1].

(15)

It is obvious that the results are unreasonable. It means that
using Dempster’s rule of combination to aggregate IFVs in
decision-making problems can lead to counterintuitive results.
This result illustrates an important feature of the Dempsters
rule of combination: for multi-source evidence, if one of the
pieces of evidence fully supports a proposition, the fusion
result will still fully distribute the belief to this proposition re-
gardless of how other pieces of evidence are distributed. There-
fore, in intuitionistic fuzzy decision-making environments,
even if x is ”excellent” under most criteria, if x performs
poorly under a certain criterion, e.g. < µj , νj >=< 0, 1 >,
the aggregation result will tell that x is worthless. This is
equivalent to denying everything of an alternative because of
one of its shortcomings, which is obviously unreasonable. A
more efficient approach will be proposed to solve this problem
in this study.

In this section, some limitations of using rules in terms of
DST to A-IFS are summarized by several examples. To address
these issues, one of the aims of this paper is to develop such
frameworks, based on the novel definition of fusion rule in
DST, which make it possible to obtain the set of operations
on A-IFV free of the limitations illustrated by above examples.

IV. REPRESENTATIVE VALUES AND GOLDEN RULE FOR
A-IFSS

In this paper, decision-making is carried out in intuitionistic
fuzzy environments, and belief interval is involved in the study,
so appropriate approaches are needed to compare different
IFVs and BIs for decision-making. In this section, to overcome
the shortcomings of the existent methods for IFVs comparison
and interval comparison, some associated scalar values are
employed in this study, which are referred to as representative
values. Particularly, the golden rule representative values is
mainly used here as a notable representative value.

A. Golden rule representative value for belief interval

A scalar value was defined in [43] to address the problem
ranking alternatives in MCDM problems uncer intuitionistic
fuzzy environments, which is called representative value.
Based on representative values, different intuitionistic fuzzy
values for alternatives can be compared, and the bigger the
representative value the more better the alternative. The sub-
jectivity was considered by Yager in MCDM problem from the
dimension of optimism/pessimism, where optimism means that
this representative value prefers to assign weights to support
for membership and pessimism the contrary. To include the
decision makers’ preference, golden rule representative value
was developed by Yager [44], [45] to compare Atanassov type
intuitionistic fuzzy values. In this section, the golden rule for
belief interval will be presented firstly, and then intuitionistic
fuzzy values’ golden rule will be introduced next.

Consider the situations in which the criteria are belief
intervals, and the interval for the overall degree of satisfaction
of an alternative xi to the criteria can be denoted as BI(xi) =
[Beli, P li]. It is obvious that Beli ≤ Pli, so BI(xi) ⊆ [0, 1].
To compare different belief intervals, we indicate the belief
interval of another alternative xj : BI(xj) = [Belj , P lj ].
Obviously, if Belj ≥ Pli then the conclusion can be drawn
that xj is preferred to xi, which is denoted as [Belj , P lj ] ≻
[Beli, P li]. To be the optimal alternative in {x1, x2, . . . , xn},
xk should satisfy [Belk, P lk] ≻ [Beli, P li], ∀i ̸= k, which
is very difficult to meet generally. To address this issue, a
representative scalar value Rep(xi) was assigned to each belief
interval BI(xi) so that alternatives can be compared by their
representative value. In this case, if Rep(xj) ≥ Rep(xi)
we have xj is preferred to xi. In addition, it is clear that
if [Belj , P lj ] ≻ [Beli, P li] then Rep(xj) ≥ Rep(xi). In
employing the representative values, the subjective preferences
of decision makers are used implicitly by Yager [44]. So we
need to determine an appropriate function Rep to compare
different belief intervals considering with the preferences and
attitude of decision makers. Allowing some subjective space
is important to select the appropriate function Rep, especially
when we have some intuitive understanding of the attitude in
MCDM problem. One common Rep function is the mid-point:

RepBI(xi) = mi =
Beli + Pli

2
(16)

Although it is simple and effective, it will lead to unreasonable
conclusions in some cases. Consider the case in Fig. 2, where
alternatives xi and xj have the same mid-point value, but
ranges (denoted as r. = Pl.−Bel.) for their possible degrees
of satisfactions are different. Some decision makers may prefer
larger range (variability), where xj is preferred to xi; in other
cases, decision makers may prefer smaller variability, where
xi is better.

So the more general formulation for the Rep function of
belief intervals which includes the mid-point m., the range r.
and a subjective parameter λ ∈ [−1, 1] reflecting the attitude
of decision makers is given as:

RepBI(x.) = m. + λ
r.
2

(17)
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mi

mj
0 1

Beli Pli

Belj Plj

Fig. 1. Example of two belief intervals.

where parameter λ > 0 stands for decision maker’s opti-
mistic attitude toward the uncertainty; λ < 0 expresses the
pessimistic attitude toward the uncertainty associated with the
satisfaction by an alternative; λ = 0 indicates the neutral atti-
tude of the decision maker. Some extreme cases are analyzed
as follows:

• if λ = 0, RepBI(x.) = m. =
1
2 (Pl. +Bel.);

• if λ = 1, RepBI(x.) = Pl.;
• if λ = −1, RepBI(x.) = Bel..

the conclusion can be drawn that optimistic decision makers
prefer wider r value, while pessimistic decision makers prefer
narrower r values. So for two alternatives with the same m.,
if λ > 0 the one with the larger r will be selected, and if
λ < 0 the one with the smaller r will be chosen.

A rule-based specification of Rep function was suggested
in [46] and implemented by Takagi-Sugeno method [47], [48],
which can be illustrated by four rules reflecting the preference
of decision makers as follows:

• if m. is large and r. is small, RepBI(x.) = 1;
• if m. is large and r. is large, RepBI(x.) = 0.5;
• if m. is small and r. is large, RepBI(x.) = 0.5;
• if m. is small and r. is small, RepBI(x.) = 0.

These rules can be explained by decision makers: if the mean
of the belief interval is large I am satisfied and I prefer no
variability, but if the mean is small I want a large variability.
According to [47], [48], the Rep function of alternative x.:
BI(x.) = [Bel., P l.] can be defined as:

RepBI(x.) =
m.(1− r.) + 0.5m.r. + 0.5(1−m.)r. + 0(1−m.)(1− r.)

m.(1− r.) +m.r. + (1−m.)r. + (1−m.)(1− r.)

= m. + (
1

2
−m.)r.

(18)
where m. =

Bel.+Pl.
2 , r. = Pl. − Bel.. This function Rep is

called golden rule representative value which can be used to
compare different belief intervals.

B. Golden rule representative value for A-IFS

The golden rule representative value for belief intervals has
been introduced in the lase section, based on the relationship
between belief interval and A-IFS, the golden rule represen-
tative value for A-IFS can be deduced directly as follows.

Consider the situations in which the criteria are intuitionistic
fuzzy sets, we assume the IFS representation of alterna-
tive xi is denoted as < µ(xi), ν(xi) >. Based on Def.
II.3, its corresponding belief interval can be expressed as
BI(xi) = [Bel(xi), P l(xi)] = [µ(xi), 1 − ν(xi)]. Now we
define Hes(xi) = π(xi) = 1−(µ(xi)+ν(xi)) as the hesitancy
degree of xi, and Bias(xi) = µ(xi)−ν(xi) as the bias degree
of xi. Let RepA−IFS(xi) denote the representative value of

< µ(xi), ν(xi) > and the bigger the representative value the
more preferred the alternative. According to Eq. (17), we have:

RepBI(xi) = mi + λ
ri
2

=
Bel(xi)(1− λ) + Pl(xi)(1 + λ)

2

=
µ(xi)(1− λ) + (1− ν(xi))(1 + λ)

2

=
1 +Bias(xi) + λHes(xi)

2

(19)

so the Rep function under A-IFS environment of xi, which
includes mid-point mi, range ri and subjective parameter λ
can be defined as:

RepA−IFS(xi) =
1 +Bias(xi) + λHes(xi)

2
(20)

where λ ∈ [−1, 1], and if λ > 0 the hesitancy degree is added
to the representative value and if λ < 0 it is subtracted. several
extreme cases are also analyzed as follows:

• if λ = 0, RepA−IFS(xi) =
1+Bias(xi)

2 ;
• if λ = 1, RepA−IFS(xi) =

1+Bias(xi)+Hes(xi)
2 ;

• if λ = −1, RepA−IFS(xi) =
1+Bias(xi)−Hes(xi)

2 .
It is obvious that λ is a kind of description of attitude of
decision makers. And λ > 0 represents optimistic with the
larger λ the more optimistic. On the other hand λ < 0
indicates pessimistic with the smaller λ the more pessimistic.
Further, the golden rule representative value for A-IFS based
on Takagi-Sugeno model [47], [48] can be obtained as:

RepA−IFS(xi) = mi + (
1

2
−mi)ri

=
Bel(xi) + Pl(xi)

2
+

(
1−Bel(xi)− Pl(xi)

2
)(Pl(xi)−Bel(xi))

=
1

2
+
µ(xi)− ν(xi)

2
(µ(xi) + ν(xi))

=
1

2
+

1

2
Bias(xi)(1−Hes(xi))

(21)
This function Rep is called golden rule representative value
for A-IFS which can be used to compare different IFVs.

V. ORDERED WEIGHTED AVERAGING AGGREGATION
OPERATOR

The OWA operator was originally proposed by Yager [49].
An n dimension OWA operator is a mapping: F : Rn →
R, which has an associated weighting vector W : W =
(w1, w2, . . . , wn)

T , such that
∑

j wj = 1 and wj ∈ [0, 1].
Then F (a1, . . . , an) = w1b1 + w2b2 + · · · + wnbn, where bj
is the jth largest element of {a1, a2, . . . , an}.
W denotes the OWA weighting vector and its elements,

wj , represent the OWA weights. Many methods [50], [51],
[52], [53] have been proposed to determine OWA weights. But
these methods are often highly dependent on the application
environment. Some illustrative examples of different types of
aggregation were provided by Yager [49].
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Let λ be an index function, so λ(j) is the index of jth
largest value, then we have

OWA(a1, . . . , an) =

n∑
j=1

wjaλ(j) (22)

Some special cases are given to demonstrate the effect of
different weight distributions on the final aggregation result.

1) W ∗: w1 = 1 and wj = 0 (j ̸= 1). So we have
OWA(a1, . . . , an) = aλ(1) = maxi(ai).

2) W∗: wn = 1 and wj = 0 (j ̸= n). So we have
OWA(a1, . . . , an) = aλ(n) = mini(ai).

3) Wn: wj = 1/n (j = 1, . . . , n). So we have
OWA(a1, . . . , an) = (1/n)

∑n
i=1 ai.

4) Wk: wk = 1 and wj = 0 (j ̸= k). So we have
OWA(a1, . . . , an) = aλ(k).

It can be seen that if more weight with small index is assigned
to wj , the aggregated result will be larger. Conversely, if more
weight with large index is assigned to wj , the aggregated
result will be smaller. From another perspective, the weighting
vectors can be regard as the the attitudes of decision makers,
optimism or pessimism. The attitudinal character [49], [52]
extended from OWA operator can be defined as:

AC(W ) =
n∑

j=1

n− j

n− 1
wj (23)

We can have AC(W ) ∈ [0, 1], AC(W ∗) = 1, AC(W∗) = 0,
AC(WN ) = 0.5 and AC(Wk) = n−k

n−1 . That is, the more
of the weight is assigned to the smaller index, the larger the
AC(W ). So the greater the attitudinal character, the larger
the aggregated result, namely, the more optimism the decision
makers, the larger the aggregated result. Attitudinal character
can express risk or benefits in decision problems.

Here we introduce a function method to obtain the OWA
weights. Assume function f: [0, 1] → [0, 1] is monotonic,
namely, if x > y, then f(x) > f(y), with f(0) = 0 and
f(1) = 1. Accordingly, the weight can be calculated by the
following formula

wj = f(
j

n
)− f(

j − 1

n
) (24)

It is obvious that wj ∈ [0, 1],
∑n

j=1 wj = 1, and wj has all the
properties of the OWA weights [52], [54]. Yager [52] pointed
out that the degree of optimism can be measured from the
given function f , and the attitudinal character was defined as:

Opt(f) =

∫ 1

0

f(x)dx (25)

A significant function is f(x) = xm for m ≥ 0, which is
useful to determine the optimism degree α as:

α =

∫ 1

0

xmdx =
xm+1

m+ 1

∣∣∣∣1
0

=
1

m+ 1
(26)

that is m = 1−α
α . From the above definition, we have

α ∈ [0, 1], and the larger α the more optimism. By the above
functional form, the OWA weights can be obtained as:

wj = f(
j

n
)− f(

j − 1

n
) = (

j

n
)m − (

j − 1

n
)m (27)

for a given α, we have

wj = (
j

n
)

1−α
α − (

j − 1

n
)

1−α
α (28)

VI. IMPROVED DST APPROACH FOR INTUITIONISTIC
FUZZY DECISION

Consider the MCDM problem in which the criteria are
intuitionistic fuzzy values. Let the set X consisting of the
elements xi, for i = 1 to m, be the set of alternatives. And n
criteria are denoted as C = {cj |j = 1, . . . , n}. Let Iij be the
intuitionistic fuzzy representation that the optimal solution is
xi under evidence cj .

For a set of intuitionistic fuzzy values I = {Ij |j =
1, . . . , n}, to aggregate them to obtain the final result, the novel
combination algorithm based on Dempster’s rule is proposed,
which can improve the shortcomings of the traditional method.
The detailed steps of the new rule are given as follows.

As analyzed in Sec. III, in two cases, the Dempster’s rule
of combination cannot obtain satisfactory results for fusing
the evidence representation of IFVs. (1) If there exist one IFV
without hesitancy degree in the IFVs to be aggregated, then the
combination result obtained by Dempster’s rule is not hesitant;
(2) If one of the IFVs satisfies that all the weights are assigned
to the membership degree or the non-membership degree, i.e.
< 1, 0 > or < 0, 1 >, the aggregation result will also be
< 1, 0 > or < 0, 1 >. These two issues are fatal in MCDM
problem because they can produce erroneous decision results.

The golden rule representative value of each IFV Ij will be
calculated based on Eq. (21) and denoted as RepA−IFS(Ij),
which is abbreviated as ℜ(Ij). The ordering of different IFVs
will be determined based on ℜ, and let γ be an index function
so that γ(k) is the index of the kth largest IFV. So Iγ(k) is the
kth largest IFV of all the IFVs to be aggregated, specifically,
Iγ(1) is the largest one. A local aggregation algorithm for IFVs
will be introduced based on the literature [25] in terms of DST
as follows.

Definition VI.1. Let Iloc = {Il|l = 1, . . . , p} be a set
of IFVs from I , which is called local IFVs to be aggre-
gated. For IFV Ii =< µi, νi >, its DST representation
can be denoted as mi({Y es}) = µi, mi({No}) = νi,
mi({Y es,No}) = 1 − µi − νi. The average of membership
degree, non-membership degree and hesitation degree in terms
of A-IFS can be calculated by DST representation as follows.

m({Y es}) = 1

p

p∑
i=1

mi({Y es}) =
1

p

p∑
i=1

µi (29)

m({No}) = 1

p

p∑
i=1

mi({No}) =
1

p

p∑
i=1

νi (30)

m({Y es,No}) = 1

p

p∑
i=1

mi({Y es,No}) =
1

p

p∑
i=1

(1−µi−νi)

(31)
It is easy to prove m({Y es})+m({No})+m({Y es,No}) =
0, so m is still a BPA in DST. To obtain the final aggregation
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result, m will be combined p− 1 times based on Dempster’s
rule.

mf = ⊕(m1,m2, . . . ,mp) = m⊕m⊕ . . .⊕m︸ ︷︷ ︸
p−1

(32)

Note that the BPA representation of the final aggregation
result can be expressed in terms of A-IFS theory as µf =
mf ({Y es}), νf = mf ({No}) and πf = mf ({Y es,No}).

More generally, the definition of local aggregation algorithm
of IFVs can be used to the overall IFVs to be aggregated.
However, some particular cases can be found in the above
process, where the counterintuitive results will appear. To
illustrate this issue, a numerical example is given as follows.

Example VI.1. Here a fictitious case is constructed for a
decision problem. To select the best employees, 5 experts
are invited by the company to evaluate the candidates, and
the evaluation results are expressed as IFVs. We mainly
focus on the results of candidate x: I1 =< 0.1, 0.6 >,
I2 =< 0.5, 0.4 >, I3 =< 0.5, 0.4 >, I4 =< 0.5, 0.4 > and
I5 =< 0.5, 0.4 >, where the degree of membership indicates
that the candidate is qualified for the job, while the degree of
non-membership indicates that the candidate is not qualified
for the job. According to the evaluation information, the first
expert believes that x is competent for the job, but the last
four experts consider he could not. As common sense, this
candidate will be selected by the company. To determine if
candidate x should be hired, the local aggregation algorithm
proposed in Def. VI.1 is employed to assist decision making.
First the BPA representation of five evaluation results will
be obtained as: m1 = {′Y es′, 0.1;′No′, 0.6;′ Y esNo′, 0.3},
m2 = {′Y es′, 0.5;′No′, 0.4;′ Y esNo′, 0.1},
m3 = {′Y es′, 0.5;′No′, 0.4;′ Y esNo′, 0.1},
m4 = {′Y es′, 0.5;′No′, 0.4;′ Y esNo′, 0.1} and m5 =
{′Y es′, 0.5;′No′, 0.4;′ Y esNo′, 0.1}. Then the average BPA
representation of m1 −m5 can be calculated based on Eqs.
(29-31) as: m = {′Y es′, 0.42;′No′, 0.44;′ Y esNo′, 0.14},
and the final result can be calculated based on Eq. (32) as
mf = {′Y es′, 0.4560;′No′, 0.5435;′ Y esNo′, 0.0005}.
It can be expressed in terms of A-IFS theory as
If =< 0.4560, 0.5435 >, based on which the decision
can be made as: candidate x will not be selected. This is
obviously contrary to common sense. So it is not appropriate
to apply this algorithm directly to the global environment,
which is the reason why it is defined as the local aggregation
method.

To make the decision more reasonable, the following ap-
proach is proposed based on the defined local aggregation
algorithm and OWA operator. Based on the index function
γ(k), the mean orthogonal sum (MOS) of the j largest IFVs
associated with ℜ.

Definition VI.2. For a set of IFVs I = {Ij |j = 1, . . . , n}, the
golden rule representative value of Ij is ℜ(Ij), so the mean
orthogonal sum (MOS) of the j largest IFVs can be defined
as:

MOS(j) = ⊕j
k=1Iγ(k) (33)

where Iγ(k) represents the kth largest IFV, and ⊕ is the
operation of mean orthogonal sum defined in Def. VI.1.
Specifically, MOS(n) indicates the orthogonal sum of n IFVs,
which can be denoted as MOS(n) = ⊕n

j=1Ij . The ordering
of the IFVs in this case does not need to be considered.

Inspired by the idea of soft likelihood functions in [26], a
class of softer orthogonal sum function is defined based on
MOS(j) by using the OWA aggregation operator as follows.

Definition VI.3. Let MOS(j) be the mean orthogonal sum of
the j largest IFVs in I = {Ij |j = 1, . . . , n}, and the weighting
vector be w, the OWA-based mean orthogonal sum (OWA-
based MOS) can be defined as:

MOSw =
n∑

j=1

wjMOS(j) (34)

where weighting vector w satisfies wj ∈ [0, 1] and
∑n

j=1 wj =
1.

The specific form of the OWA-based mean orthogonal sum,
is determined by the weighting vector w. Several special cases
of the OWA-based MOS will be discussed based on OWA
operator introduced in Sec. V.

Case 1: W∗: wn = 1 and wj = 0 (j ̸= n). The OWA-based
mean orthogonal sum can be expressed as:

MOSw =MOS(n) = ⊕n
j=1Ij (35)

In this case, the OWA-based MOS degenerates into the special
case analyzed in Def. VI.2. This is the most pessimistic case
to determine the orthogonal sum of a set of IFVs.

Case 2: W ∗: w1 = 1 and wj = 0 (j ̸= 1). The OWA-based
mean orthogonal sum can be expressed as:

MOSw =MOS(1) = Iγ(1) (36)

In this case, the OWA-based mean orthogonal sum is equal
to the largest IFV associated with ℜ. It is obvious the largest
IFV and the most optimistic form of MOSw.

Case 3: Wn: wj = 1/n (j = 1, . . . , n). The OWA-based
mean orthogonal sum can be expressed as:

MOSw =
1

n

n∑
j=1

MOS(j) =
1

n

n∑
j=1

(⊕j
k=1Iγ(k)) (37)

The form in this case can be considered as a kind of simple
average of the MOS(j).

Generally, if the weight assigned to wj has a smaller index,
it indicates the OWA-based MOS is determined with more
optimistic attitude by decision makers, and vice versa. So the
form of MOSw depends on the weighing vector w, which
can be mapped to a attitudinal character α. If α is closer to 1,
then the attitude is optimistic, and MOSw is larger, while if
α is closer to 0, then the attitude is pessimistic, and MOSw

is smaller.
Case 4: Based on Eq. (24), the weighing vector can be

obtained based on function f(x) = xm. And the factor of
attitude α can be calculated by m = 1−α

α . Then the OWA-
based mean orthogonal sum can be expressed as:

MOSα =
n∑

j=1

((
j

n
)

1−α
α − (

j − 1

n
)

1−α
α )⊕j

k=1Iγ(k) (38)
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Example VI.1 is used again to illustrate the computation
process and show the effectiveness of the proposed OWA-
based MOS.

Example VI.2. (Continued Example VI.1) To make more
reasonable decisions on the issue of human resource selection
presented in Example VI.1, the OWA-based MOS is employed
as follows. Step 1: the golden rule representative values of
evaluation information of candidate x will be calculated based
on Eq. (21); Step 2: the index of the kth largest IFV γ(k) can
be obtained based on index function γ; Step 3: the kth largest
IFV of all the IFVs to be aggregated can be obtained next;
Step 4: the mean orthogonal sum MOS(j) can be calculated
based on Def. VI.2. The results of the above four steps are
shown in Table I. Step 5 is to aggregate the mean orthogonal
sum MOS(1)−MOS(5) using the OWA operator. A special
case is provided to illustrate the process of calculating the
OWA-based mean orthogonal sum MOSα, in which α = 0.5.
We have wj = ( j5 )− ( j−1

5 ) = 1/5, so MOSα = MOS0.5 =
1
5

∑5
j=1 ⊕

j
k=1Iγ(k) =< 0.6114, 0.3645 >. From this result,

the conclusion can be drawn that the candidate x should
be selected, which is consistent with the common sense and
can demonstrate the effectiveness of the (OWA-based) mean
orthogonal sum. In addition, the sensitivity analysis of attitude
factor α to aggregation results is performed. As shown in Fig.
2, when the value of α changes from 0 to 1, with regard
to the aggregation result, the degree of membership µf is
always greater than the degree of non-membership νf , so it
is always possible to conclude that candidate x should be
selected, which is consistent with common sense.

0 0.2 0.4 0.6 0.8 1

0.4

0.5

0.6

0.7

α

µf

νf

α=0.5

µf=0.6114

νf=0.3645

Fig. 2. Illustration of the sensibility of α to the aggregation result by using
the OWA-based mean orthogonal sum.

According to Example VI.2, the OWA-based mean orthogo-
nal sum has proven to be effective in aggregating IFVs in terms
of DST. To further discuss the performance of the OWA-based
MOS, the following example is conducted, which is based on
Example VI.1.

Example VI.3. (Continued Example VI.1) In this example,
we used the decision-making context consistent with Example
VI.1, but we re-evaluate the performance of candidate x as:

I1 =< 0.6, 0.1 >, I2 =< 0.4, 0.5 >, I3 =< 0.4, 0.5 >,
I4 =< 0.4, 0.5 > and I5 =< 0.4, 0.5 >. It is easy to observe
that we have exchanged the degree of membership and the
degree of non-membership of all evaluation information. It is
obvious, in this case, the company should not hire candidate
x based on common sense. Then the OWA-based MOS is
employed to aggregate all the IFVs and the result is MOSα =
MOS0.5 = 1

5

∑5
j=1 ⊕

j
k=1Iγ(k) =< 0.7471, 0.1720 >. The

result shows that the company should hire candidate x, which
is contrary to common sense. The cause of this phenomenon
is analyzed as follows.

In OWA-based MOS, the first step is to determine the index
function γ of all the IFVs, which is based on the golden rule
representative value ℜ. In our opinion, the index function
γ is an essential part of the OWA-based MOS algorithm.
The ordering of IFVs will affect the final aggregation results
according to the characteristics of Dempster’s rule. The index
function γ thereby needs to be refined, and more factors need
to be taken into account to determine the more reasonable
ordering of IFVs. In this part, the other two aspects are also
considered as the factors to determine the index function γ,
which are denoted as reliability and compatibility respectively.
With regard to reliability, we consider it from the perspective
of entropy of IFVs, i.e. uncertainty, which is an important
indicator to measure the quality of IFVs. To define the
reliability of an IFV, the distance and entropy measures of
IFVs will be given as preliminary knowledge as follows.

Definition VI.4. Let A =< µA, νA > and B =< µB, νB >
be two IFVs, the normalized Hamming distance of them can
be defined as:

D1(A,B) =
1

2
(|µA − µB |+ |νA − νB |) (39)

the normalized Euclidean distance of them can be defined as:

D2(A,B) =

√
1

2
((µA − µB)2 + (νA − νB)2) (40)

Based on the Jousselme distance [55] of evidence, we re-define
the distance of IFVs in terms of DST as follows. Two vectors
IA = [µA, νA, 1−µA − νA] and IB = [µB, νB , 1−µB − νB ]
and a matrix M are provided as intermediate variables.

M =

 1 0 1/2
0 1 1/2
1/2 1/2 1

 (41)

the Jousselme distance of IFVs can be defined as:

D3(A,B) =

√
1

2
(IA − IB)M(IA − IB)T (42)

According to [10], there exists a one-to-one correlation
between similarity and distance measures for IFVs such that
the distance D and its corresponding similarity measure S
satisfy S +D = 1. Based on the distance measure of an IFV,
its entropy measure can be defined as follows.

Definition VI.5. Let A =< µA, νA > be an IFV and Di,
i=1,2,3 be the aforementioned three distance measures, then
A’s entropy function can be defined as:

Ei(A) = 1− 2Di(A,< 1/2, 1/2 >), i = 1, 2, 3 (43)
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TABLE I
THE INTERMEDIATE RESULTS OF THE MEAN ORTHOGONAL SUM FOR CANDIDATE x.

Ij Golden rule value γ(k) Iγ(k) MOSj

I1 =< 0.1, 0.6 > ℜ(I1) = 0.325 γ(1) = 2 Iγ(1) = I5 =< 0.5, 0.4 > MOS1 = Iγ(1) =< 0.5, 0.4 >
I2 =< 0.5, 0.4 > ℜ(I2) = 0.545 γ(2) = 3 Iγ(2) = I1 =< 0.5, 0.4 > MOS2 = ⊕(MOS1, Iγ(2)) =< 0.5833, 0.4000 >
I3 =< 0.5, 0.4 > ℜ(I3) = 0.545 γ(3) = 4 Iγ(3) = I2 =< 0.5, 0.4 > MOS3 = ⊕(MOS2, Iγ(3)) =< 0.6324, 0.3647 >
I4 =< 0.5, 0.4 > ℜ(I4) = 0.545 γ(4) = 5 Iγ(4) = I3 =< 0.5, 0.4 > MOS4 = ⊕(MOS3, Iγ(4)) =< 0.6745, 0.3250 >
I5 =< 0.5, 0.4 > ℜ(I5) = 0.545 γ(5) = 1 Iγ(5) = I4 =< 0.1, 0.6 > MOS5 = ⊕(MOS4, Iγ(5)) =< 0.6669, 0.3330 >

specifically,

E1(A) = 1− (|µA − 1/2|+ |νA − 1/2|) (44)

E2(A) = 1−
√
2((µA − 1/2)2 + (νA − 1/2)2) (45)

E3(A) = 1−
√
(µA − νA)2 + (1− µA − νA)2 (46)

It is easy to prove that Di ∈ [0, 1] and Ei ∈ [0, 1], i = 1,2,3.
The entropy function of IFVs is a kind of uncertainty measure,
while in practice, the reliability measure is more commonly
employed. Therefore, the reliability of IFVs is developed based
on the definition of entropy as follows.

Definition VI.6. Let A =< µA, νA > be an IFV and Ei,
i=1,2,3 be the three proposed entropy measures of IFVs, the
reliability of A can be defined as:

R(A) = − 2

1 + exp(−δEi(A))
+ 2, i = 1, 2, 3 (47)

where δ is a tuning parameter, the function image under
different δ value has been given in Fig. 3, to completely map
E to R ∈ [0, 1], we set δ = 6 in this study.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Ei(A)

R

δ=6

Fig. 3. Function image of R under different δ values.

With regard to a set of IFVs to be aggregated, compatibility
is mainly used to describe the extent to which an IFV is
supported by other IFVs. If there are more IFVs similar to
it, the more support degree it holds. So the compatibility of
an IFV is defined based on its similarity with other IFVs, and
the specific definition is as follows.

Definition VI.7. Let I =< I1, I2, . . . , In > be a set of IFVs
need to be aggregated, the similarity measure matrix (SMM)

can be constructed firstly, which represents the agreement
among different IFVs.

SMM =


1 S12 · · · S1n

S21 1 · · · S2n

...
...

. . .
...

Sn1 Sn2 · · · 1

 , (48)

where Sij indicates the similarity of IFVs Ii and Ij introduced
in Def. VI.4, then the support degree of IFV Ii can be
calculated as:

Sup(Ii) =
∑

j=1,j ̸=i

Sij = 1−Dϱ(Ii, Ij), ϱ = 1, 2, 3 (49)

where D is one of the distance measures introduced in Def.
VI.4. Further, the credibility degree of Ii can be calculated
as:

Crdi =
Sup(Ii)∑n
i=1 Sup(Ii)

(50)

So the compatibility of the IVFN representation of Ai under
criterion Cj can be obtained as:

C(Ii) = (Crdi − min
1≤j≤n

Crdj)/( max
1≤j≤n

Crdj − min
1≤j≤n

Crdj)

(51)

The reliability and compatibility of IFVs have been defined
above, now we also consider the representative values of
IFVs as a component of the index function, so function γ
consists of three parts, which are reliability, compatibility, and
representation, respectively.

γ(i) = ∇n
i=1[ϕ ∗ R(Ii) + ψ ∗ C(Ii) + ξ ∗ ℜ(Ii)] (52)

where ϕ, ψ, ξ ∈ [0, 1] are three parameters that satisfy ϕ +
ψ + ξ = 1, and ’∇’ represents the operation: sorting a set of
numbers in descending order and taking indices.

In this part, the index function is redefined by increasing
more factors in the sorting process, which overcomes the
shortcomings of using the representative value only. The fol-
lowing aggregation process is consistent with the OWA-based
mean orthogonal sum. To illustrate the performance of the
improved OWA-based MOS, the decision problem in Example
VI.3 is resolved as follows. Four cases are constructed to
demonstrate this issue. In case 1, parameters ϕ,ψ and ξ take
all the values that satisfy the condition in Eq. (52), the degree
of non-membership (i.e. candidate x should not be hired,
which is consistent with common sense) of the aggregation
result based on the improved OWA-based MOS are shown
in Fig. 4. The degree of non-membership of the aggregation
results in different perspectives are shown in Fig. 4a, b and c,
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Fig. 4. Illustration of the effectiveness of the improved OWA-based
mean orthogonal sum. a,c,e, the degree of non-membership (consistent with
common sense) of the aggregation result when considering three factors,
reliability, compatibility and representation. b, the aggregation result only
when considering reliability and compatibility. d, the aggregation result only
when considering reliability and representation. f, the aggregation result only
when considering compatibility and representation.

respectively. In case 2, only reliability and compatibility are
considered (i.e. ξ = 0), and parameters ϕ and ψ take all the
values that satisfy the condition in Eq. (52), the corresponding
aggregation results are shown in Fig. 4b. In case 3, only
reliability and representation are considered (i.e. ψ = 0), and
parameters ϕ and ξ take all the values that satisfy the condition
in Eq. (52), the corresponding aggregation results are shown
in Fig. 4c. In case 4, only compatibility and representation are
considered (i.e. ϕ = 0), and parameters ψ and ξ take all the
values that satisfy the condition in Eq. (52), the corresponding
aggregation results are shown in Fig. 4d. The results of the
four cases are analyzed as follows.

With regard to case 1, as a whole, the aggregation result
consistent with common sense exist only in certain areas based
on the improved OWA-based MOS. The essential cause is that
the different values of ϕ, ψ and ξ affect the index function (i.e.
the ordering of IFVs), thereby affecting the final aggregated
result further. It can be found from Fig. 4a that the smaller the
ϕ (i.e. reliability) is, the better the aggregation result is, and the
larger the ψ (i.e. compatibility) is, the better the aggregation
result is. It can be found from Fig. 4c that the smaller the ϕ
(i.e. reliability) is, the better the aggregation result is, and the
smaller the ξ (i.e. representation) is, the better the aggregation
result is. It can be found from Fig. 4e that the larger the
ψ (i.e. compatibility) is, the better the aggregation result is,
and the smaller the ξ (i.e. representation) is, the better the
aggregation result is. In addition, it can be observed from Fig.
4d and f that considering representation will reduces the utility

of our method, especially in Fig. 4d. Therefore, the general
conclusion can be drawn that the representation does not apply
to the OWA-based MOS. This conclusion will be explained
from the perspective of evaluation information as follows.

Now let us review this decision problem in Example VI.3.
The evaluation information of candidate x is represented by
IFVs as I1 =< 0.6, 0.1 >, I2 =< 0.4, 0.5 >, I3 =<
0.4, 0.5 >, I4 =< 0.4, 0.5 > and I5 =< 0.4, 0.5 >. It is
easy to observe that I2 to I5 are the negative evaluation, and
I1 is the positive evaluation, so I1’s compatibility with others
should be more smaller. In addition, it can be found that for
I2 to I5, their degree of membership and non-membership
are very similar, i.e. their entropy should be more larger, so
the reliability of them should be more smaller than I1. In
summary, compatibility and reliability of IFVs should be two
very significant factors for index function γ. In essence, the
representative value of an IFV is similar to a score function
that is used to IFV comparison, and based on the above
analysis we will no longer use the representation in OWA-
based MOS algorithm, but apply it to IFV comparison as a
score function. So the index function can be redefined based
on reliability and compatibility of IFVs as:

γ(i) = ∇n
i=1[ϕ ∗ R(Ii) + ψ ∗ C(Ii)] (53)

where ϕ, ψ ∈ [0, 1] and ϕ + ψ = 1, and ’∇’ stands for the
descending operation.

Without considering the representation of IFVs, the aggre-
gation results are shown in Fig. 4b. It can be seen that the
counterintuitive result only appears when ϕ is greater than 0.9,
which means that the aggregation result is correct more often.
In fact, the compatibility should have a greater proportion in
this case, so the experimental results are consistent with the
facts, which indicates the effectiveness of the proposed OWA-
based MOS algorithm. In practical applications, parameters ϕ
and ψ can be determined by training in order to obtain optimal
decision results.

VII. MCDM PROBLEM IN THE FRAMEWORK OF
INTUITIONISTIC/DST APPROACH

A. The proposed decision approach

An extended Dempster’s rule of combination (OWA-based
MOS) for multi-criteria decision making based on intuition-
istic fuzzy values consists of the following four main steps
presented in Fig. 5.

1) Problem description: including determining the MCDM
problem and selecting all the potential alternatives and im-
portant criteria. Consider a MCDM problem in intuitionistic
fuzzy environments, assume there are n alternatives, denoted
as Ai (i = 1, . . . ,m), and n criteria, indicated by Cj

(j = 1, . . . , n), where the weight of each criterion is expressed
as wj (j = 1, . . . , n) by using intuitionistic fuzzy value. The
assessment results of alternative Ai under criterion Cj can be
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Fig. 5. Hierarchical structure of the proposed decision method based on the
developed MOC algorithm.

represented by IFVs as Iij , then the decision matrix can be
given as:

DM =

C1 C2 · · · Cn

A1

A2

...
Am


I11 I12 · · · I1n
I21 I22 · · · I2n

...
...

. . .
...

Im1 Im2 · · · Imn

 (54)

where Iij =< µij , νij >, µij and νij indicate the degree
of membership and non-membership associated with the sat-
isfaction by alternative Ai. Note here that for the decision
environment of our approach we are assuming all the criteria
are independent. The hierarchical structure of the decision
problem is shown in the top half of Fig. 5. The goal of
the decision problem is to select the best alternative with the
greatest satisfaction for all criteria based on the decision matrix
provided.

2) Criterion weight: calculating all the weighted criteria
of each alternative. In this study, the criteria values and their
weights are provided by intuitionistic fuzzy values. To obtain
weighted criteria, the proposed OWA-based mean orthogonal
sum is employed to aggregate criteria and weights associated
with each alternative. The weighted IFV representation Iwij for
alternative Ai under criterion Cj can be calculated based on
Eq. (34) as: Iwij = Iij⊕wj . As an extension of the criterion

weighting, the other two ways are taken into account in
expressing and processing weight information. Several special
cases are introduced below.

Case 1: When the criterion weight is expressed in positive
integer, it should satisfy wj ∈ [0, 1],

∑n
j=1 wj = 1. In [56],

De et al. defined the IFV ϖI for any positive integer ϖ as:
ϖI =< µϖI , νϖI >, where µϖI = 1− (1−µI)

ϖ and µϖI =
[νI ]

ϖ, based on which the weighted criteria Iwij in this case
can be obtained as: Iwij = Iijwj =< µwjIij , νwjIij >, where
µwjIij = 1− (1− µIij )

wj and νwjIij = [νIij ]
wj .

Case 2: When criterion weights are represented by fuzzy
numbers wj = µwj , it can be considered as a special IFV
wj =< µwj , 0 > with the degree of non-membership 0. The
following calculation process is consistent with the case of
IFV expression.

Case 3: When criterion weights are represented by intu-
itionistic fuzzy values, it can also be converted to the weight
vector in the form of positive integers. The Rep value of each
weight will be calculated firstly based on Eq. (21) as ℜ(wj),
then they will be normalized as w̃j = ℜ(wj)/

∑n
j=1 ℜwj . The

following calculation process is consistent with in case 1.
In this study we calculate the weighted criteria by way of

aggregation based on the proposed OWA-based MOS algorith-
m.

3) Criterion aggregation: obtaining all the aggregated cri-
teria of each alternative. To obtain the final IFV representation
of each alternative, its multiple evaluation information under
different criteria will be aggregated based on the proposed
OWA-based MOS algorithm as Ii = ⊕n

j=1Iij , i = 1, . . . ,m.
When using the OWA-based MOS algorithm to aggregate
IFVs, it will involve the selection of parameters, including
the tuning parameters (i.e. ϕ and ψ) to determine the index
function defined in Eq. (53) and the attitudinal character α
introduced in Sec. V. The determination of the parameters
needs to be implemented according to the actual application
environment. For example, when determining the index func-
tion, if the reliability is more important, ϕ should be larger,
and if the compatibility is more important, ψ should be larger.
When determining the attitudinal character, if decision makers
hold a more optimistic attitude, then α is greater, and vice
versa. The ranking of alternatives will be obtained based on
their IFV representation Ii in the next section.

4) Alternative selection: including computing the golden
rule representative value for each alternative, ranking them and
selecting the optimal one. To determine the ordering of all the
alternatives, their Rep values need to be calculated as ℜ(Ai).
According to the descending values of ℜ(Ai), all alternatives
Ai(i = 1, . . . ,m) are rank ordered and the best one can be
selected.

B. Numerical example

The air-condition system selection problem [41], [42] in-
troduced in Sec. III is employed again in this section. This
decision problem will be solved using the OWA-based MOS
algorithm proposed in this paper. The framework of air-
condition system selection problem is provided in Fig. 6.
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Fig. 6. The framework of air-condition system selection problem.

The decision matrix can be seen in Eq. (6). Then, the
weighted criteria can be calculated based on Eq. (34). The
weighted decision matrix can be obtained as:

Iwij = (< µw
ij , ν

w
ij >)3×3 = c1 c2 c3

x1 < 0.798, 0.097 > < 0.647, 0.256 > < 0.818, 0.182 >
x2 < 0.837, 0.128 > < 0.728, 0.196 > < 0.275, 0.697 >
x3 < 0.320, 0.332 > < 0.805, 0.067 > < 0.315, 0.654 >


(55)

Note that in this numerical example, we let α = 0.5. The
different criteria of each alternative will be aggregated based
on Eq. (34) in the following steps. To use the proposed
OWA-based MOS algorithm, the first step is to determine
the index function based on Eq. (53). The different values
of the parameters can affect the ordering of the IFVs to
be aggregated. The orderings of different criteria with the
changing parameter ϕ for alternatives x1, x2 and x3 are shown
in Fig. 7. The specific analysis is as follows. For alternative
x1, when ϕ ∈ [0, 0.27], the ordering of criteria is c1 ≻ c3 ≻ c2
and the Rep value of aggregation result is ℜ(x1) = 0.9148,
while the ordering is c3 ≻ c1 ≻ c2 and ℜ(x1) = 0.9188
when ϕ ∈ [0.27, 1]. For alternative x2, when ϕ ∈ [0, 0.49],
the ordering of criteria is c1 ≻ c2 ≻ c3 and the Rep value
of aggregation result is ℜ(x2) = 0.9222, while the ordering
is c2 ≻ c1 ≻ c3 and ℜ(x2) = 0.8693 when ϕ ∈ [0.49, 1].
For alternative x3, when ϕ ∈ [0, 0.24], the ordering of criteria
is c2 ≻ c1 ≻ c3 and the Rep value of aggregation result
is ℜ(x3) = 0.8772, when ϕ ∈ [0.24, 0.39], the ordering is
c1 ≻ c2 ≻ c3 and ℜ(x3) = 0.5979, while the ordering is
c1 ≻ c3 ≻ c2 and ℜ(x3) = 0.4678 when ϕ ∈ [0.39, 1]. In
this example, we let ϕ = 0.5, so we have ℜ(x1) = 0.9188,
ℜ(x2) = 0.8693 and ℜ(x3) = 0.4678. Further, the ordering
of alternatives is x1 ≻ x2 ≻ x3, so the best one is x1.

C. Some discussions

According to Eq. (53), the parameter ϕ reflects the propor-
tion of the IFVs’ reliability in determining index functions.
The larger the value of ϕ, the more important the reliability
is. The smaller the value of ϕ, the more important the
compatibility. In Fig. 7, it can be found that the different values
of ϕ can affect the index function, which in turn affects the
aggregation process and ultimately leads to different ordering
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Fig. 7. Illustration of index functions and Rep values of alternatives under
different ϕ values.

of alternatives. This feature can be considered as an advantage
of the method proposed in this paper, as long as the appropriate
parameters are selected according to the actual application
environments.

In addition, the evaluation results of most intuitionistic
fuzzy decision approaches are represented by IFVs, which
requires real valued score functions to rank all alternatives,
and this process inevitably leads to loss of information due
to the intermediate defuzzification process. The merit of the
developed OWA-based MOS algorithm based on the interpre-
tation on A-IFS in terms of DST is that it allows intuitionistic
fuzzy decision making without defuzzification when criteria
and their weights are represented by IFVs.

What’s more, some limitations of using Dempster’s rule
of combination for the aggregation operator of IFVs have
been analysed and resolved in this study by improving the
combination rule and considering the reliability of the source
of information.

VIII. CONCLUSION

Dymova and Sevastjanov [24] pointed out that ”DST can
serve as an effective methodological base for interpretation of
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A-IFS”, and then some following studies have been carried
out to solve the problems of A-IFS with the methods in terms
of DST. The shortcomings of existing methods are firstly
analyzed in this paper, including the information loss caused
by defuzzification and the deviation of decision results caused
by traditional score functions. To remedy the limitations of
Dempster’s rule of combination in aggregating intuitionistic
fuzzy values, a new aggregation operator called OWA-based
mean orthogonal sum (MOS) is proposed based on ordered
weighted averaging (OWA) operator, which can not only effec-
tively aggregate IFVs, but also take into account the subjective
attitude of decision makers. In addition, to sort alternatives
according to the results of aggregating criteria based on OWA-
based MOS approach, the golden rule representative value for
IFVs comparison is introduced as an alternative of score func-
tion. The multi-criteria decision-making (MCDM) framework
is constructed in intuitionistic fuzzy environments based on the
proposed OWA-based MOS method. The proposed decision
framework is employed in the well-known example of MCDM
problem and its usefulness can be demonstrated by detailed
analysis. Note that there still remains some problems to be
solved in future research. Below are summaries of several
significant points.

Although the proposed OWA-based MOS approach has
better aggregation effects than the classical Dempster’s rule,
it cannot satisfy some good properties (e.g. associativity) of
Dempster’s rules, which is determined by the unique aggrega-
tion characteristics of the approach. An optimized alternative
can be developed in the future study to meet the corresponding
property. Then, OWA formulations of aggregation operator
are employed in the proposed OWA-based MOS approach,
in which the parameter α is variable but crucial for the
aggregation results. So a reasonable formula is indispensable
to determine the value of α in the future study. In addition,
as an extension of the OWA-based MOS approach, the OWA-
based aggregation operator on belief intervals can be studied
in future research.

In short, although the current version of OWA-based MOS
approach has some shortcomings, it is still a flexible and
effective multi-criteria decision-making approach in intuition-
istic fuzzy environments. It provides a more reasonable inter-
pretation of A-IFS in terms of DST. In future research, the
framework of the intuitionistic fuzzy decision-making with
Dempster-Shafer structures will continue to be studied and
improved further.
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