Lemma 1 If *p* is a prime number, then $p^2 \nmid p!$. *Proof.*

Since $(p-1)! \equiv -1 \mod p$ and $-1 \equiv p-1 \mod p$, $(p-1)! \equiv p-1 \mod p$. Moreover, $p! \equiv (p-1)p \mod p^2$. Hence $p! = kp^2 + (p-1)p$ for some integer k. Since $p > 1, 0 < (p-1)p < p^2$. Thus (p-1)p is the remainder when p! is divided by p^2 . Since the remainder is nonzero, $p^2 \nmid p!$.

Lemma 2 For all integers n > 2, $p^n \nmid p!$. *Proof.* Suppose $p^n \mid p!$. Since $p^2 \mid p^n$ and $p^n \mid p!$, $p^2 \mid p!$ which is a contradiction by Lemma 1.

Lemma 3 If G is a finite group and $H \neq G$ is a subgroup of G such that $|G| \nmid i(H)!$, then H must contain a nontrivial normal subgroup of G. *Proof.*

This is Lemma 2.9.1 in [1].

Theorem 1 Any subgroup of order p^{n-1} in a group G of order p^n , p a prime number, is normal in G. *Proof.*

The proof is by induction on *n*. Suppose the result is true for n - 1. To show that it then must follow for *n*. Let *G* be a group of order p^n and *H* be its subgroup of order p^{n-1} . Since $|G| \nmid i(H)!$, that is $p^n \nmid p!$ by Lemma 2, *H* must contain a normal subgroup $N \neq (e)$ of *G*. Thus $|N| = p^k$ such that $1 \leq k \leq n - 1$. Since *p* divides |N|, by Cauchy's theorem, *N* has an element $b \neq e$ of order *p*. Let *B* be the subgroup of *G* generated by *b*. So |B| = p. Since $b \in N$, *B* must be normal in *G*. Since G/B is a group of order p^{n-1} and H/B is its subgroup of order $p^{(n-1)-1}$, by the induction hypothesis H/B is normal in G/B. To conclude *H* is normal in *G*.

References

[1] I.N.Herstein, *Topics in Algebra*, John Wiley & Sons, New York, 1975.