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Abstract

As a high-school-level example of solving a problem via Geometric

(Clifford) Algebra, we show how to calculate the distance and direction

between two points on Earth, given the locations’ latitudes and longitudes.

We validate the results by comparing them to those obtained from online

calculators. This example invites a discussion of the benefits of teaching

spherical trigonometry (the usual way of solving such problems) at the

high-school level versus teaching how to use Geometric Algebra for the

same purpose.

“Given the latitudes and longitudes of the starting point A and the

destination B, calculate the distance between these points, and the

bearing of B from A.”
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Figure 1: Points A and B are at longitudes and longitudes (λA, `A) and (λB,

`B), respectively.

1 Problem Statement

“Given the latitudes and longitudes of the starting point A and the

destination B (Fig. 1), calculate the great-circle distance between

these points, and the bearing of B from A along the same great circle.”

2 Background

2.1 Geography

2.1.1 Latitude and longitude

The latitude of a location is its angle above the plane of the equator (Fig. 2).

Latitudes of locations in the Northern Hemisphere are defined as positive, and

those of locations in the Southern Hemisphere are designed as negative. Values

of longitudes range from −90◦ to +90◦. To understand longitudes, we need

to review the concept of meridians, which are half-circles that pass through

both poles (Fig. 3). The longitude of a location is the angle between the plane

that contains the Prime Meridian, and that which contains the meridian of the

location of interest (Fig. 4). Longitudes of locations east of the Prime Meridian

are defined as positive, and longitudes of locations west of the Prime Meridian

are defined as negative. Thus, the values of longitudes range from −180◦ to

+180◦.



Figure 2: The latitude of a location is its angle above the plane of the equator.

Latitudes of locations in the Northern Hemisphere are defined as positive,

and those of locations in the Southern Hemisphere are designed as negative.

Therefore, the latitude λ of location P is positive.

Figure 3: Meridians are half-circles that pass through both poles.
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Figure 4: The longitude of a location is the angle between the plane that contains

the Prime Meridian, and that which contains the meridian of the location of

interest. Longitudes of locations east of the Prime Meridian are defined as

positive, and longitudes of locations west of the Prime Meridian are defined as

negative. Thus, the longitude l of location P is positive.

2.1.2 The bearing, and local north

We’ll start by imagining that we are on a flat, horizontal plaza at location P in

Fig. 5. Now, we draw two arrows on the plaza, starting from the point on which

we’re standing. First, we draw an arrow in the direction ‘north” for location P,

and then we draw an arrow pointing in the direction that we would take to follow

a great-circle course to a second point, Q. The bearing for that course is the

angle between the “local north” arrow and the arrow that shows the direction

to Q.1

Now, let’s pull back to look at the whole globe, taking note of the positions

and orientations of same plaza and those same arrows (Fig. 6). We can see

that the “plaza” is a plane that is tangent, at point P, to the globe (which

we´ll assume to be a perfect sphere). The “local north” arrow is tangent to

P’s meridian, and the “direction to Q” arrow is tangent to the great circle that

passes through P and Q.

Before leaving our review of geography, we should follow some advice that

is useful in almost any geometry problem, and extend the radius that passes

through P (Fig. 7). Recalling previous lessons in geometry, we see that the

extension of that radius is perpendicular to the directions “local north” and the

“direction to Q” arrow (Fig. 8). In addition, that radius is perpendicular to the

plaza (Fig 9). This configuration is a striking one that Geometric Algebra (GA)

is particularly suitable for handling.

1To be more correct, the angle that we’ve just described is the initial bearing from P to

Q. The so-called final bearing is the angle between local north at Q, and the direction from

which we would approach Q along the great circle that connects P and Q.
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Figure 5: The bearing for the course from P tp Q is the angle between the “local

north” arrow and the arrow that shows the direction to Q.

Figure 6: The position and orientation, on the globe, of the plaza and directions

shown in Fig. 5. The “plaza” is a plane that is tangent, at point P, to the globe

(which we assume to be a perfect sphere ). The “local north” arrow is tangent

to P’s meridian, and the “direction to Q” arrow is tangent to the great circle

that passes through P and Q.
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Figure 7: Following a good piece of typical advice, we’ve extended the radius

through P. (Compare to Fig. 6.)

Figure 8: The extension of the radius through P is perpendicular to the directions

“local north” and the “direction to Q” arrow shown in Fig. 7.
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Figure 9: The extension of the radius through P is perpendicular to the plaza

at P.

2.2 Geometric Algebra

We’ll present only the aspects of GA that are relevant to this problem. For

more-complete treatments, see References [1] and [2] .

2.2.1 Rotation of a vector through a bivector angle

Let û and v̂ be two unit vectors (Fig. 10). Their outer product û ∧ v̂ is the

bivector parallel to the plane that contains û and v̂, and whose orientation is

that which rotates û into v̂ . To make a unit bivector out of û ∧ v̂, we divide

that bivector by its norm (‖û ∧ v̂‖) . Now, consider a third vector, z, which

is parallel to the plane that contains û and v̂ (Fig. 11). Then, the product

z [(û ∧ v̂) /‖û ∧ v̂‖] is a vector. Specifically, the vector that results from a 90◦

rotation of z in a plane parallel to that which contains û and v̂, and whose

orientation is that which rotates û into v̂ (Fig.11)).

In contrast, the product [(û ∧ v̂) /‖û ∧ v̂‖] z is the vector that results from

the rotation of z in the opposite direction. This result is an example of a useful

rule: if a vector z is parallel to bivector M, then Mz = −zM.

2.2.2 The unit bivector perpendicular to a given unit vector

The vector known as the dual of a given bivector B is given by BI−13 , where I3
is the unit trivector for three-dimensional GA. The direction of that vector is as

given by the right-hand rule. Thus, unit bivector B̂ perpendicular to the unit

vector ŵ is ŵI3 (Fig. 12).
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Figure 10: Let û and v̂ be two unit vectors (Fig. 10). Their outer product

û ∧ v̂ is the bivector parallel to the plane that contains û and v̂, and whose

orientation is that which rotates û into v̂ .

Figure 11: If vector z is parallel to the plane that contains û and v̂ (Fig. 11),

then the product z [(û ∧ v̂) /‖û ∧ v̂‖] is a vector. Specifically, the vector that

results from a 90◦ rotation of z in a plane parallel to that which contains û and

v̂ , and whose orientation is that which rotates û into v̂ (Fig.11)). In contrast,

the product [(û ∧ v̂) /‖û ∧ v̂‖] z is the vector that results from the rotation of z

in the opposite direction.
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Figure 12: The unit vector ŵ in this figure is the dual of the unit bivector B̂.

Because ŵ = B̂I−13 , where I3 is the unit trivector for three-dimensional GA,

B̂ = ŵI3. The curved arrow shows the rotation of B̂ according to the right-hand

rule.

Figure 13: The geometric product of two unit bivectors, ûv̂, can be written in

terms of the angle of rotation φ from û to v̂: ûv̂ = û · v̂+ û∧ v̂ = cosφ+ B̂ sinφ,

where the unit bivector B̂ is parallel to the plane that contains û and v̂, and

whose orientation is that which rotates û into v̂ .

2.2.3 Finding the angle between two vectors via the geometric prod-

uct

The geometric product of two unit bivectors, ûv̂, can be written in terms of the

angle of rotation φ from û to v̂:

ûv̂ = û · v̂ + û ∧ v̂

= cosφ+ B̂ sinφ,

where B̂ is parallel to the plane that contains û and v̂, and whose orientation is

that which rotates û into v̂ (Fig. 13). From the previous equation,

cosφ = û · v̂,

B̂ sinφ = û ∧ v̂.
(2.1)
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Figure 14: We model the Earth as a perfect sphere of radius R.The directions of

the radii from the Earth’s center to the points A and B are â and b̂, respectively,

the direction from the center to the North Geographic pole is ĉ (Fig. 14). “Local

North” at A is n̂A, and the initial direction from A to B along the great-circle

route that connects those points is d̂. Angle θ is that between the vectors â and

b̂.

2.2.4 The definition of the inner and outer products that we will

use Here

Macdonald ([1], p. 101) provides general formulas that reduce, for inner and

outer products of vectors, to the following:

w · z = 〈wz〉0
w ∧ z = 〈wz〉2,

(2.2)

where 〈wz〉0 and 〈wz〉2 are, respectively, the scalar and bivector parts of the

product wz.

3 Our Model, and Its Expression in GA Terms

We model the Earth as a perfect sphere of radius R. The directions of the radii

from the Earth’s center to the points A and B are â and b̂, respectively; the

direction from the center to the North Geographic pole is ĉ (Fig. 14). “Local

North” at A is n̂A, and the initial direction from A to B along the great-circle

route that connects those points is d̂. Angle θ is that between the vectors â and

b̂.

Because the direction of rotation from â to n̂A is the same as that from â

to ĉ , and because the angle between â to n̂A is 90◦ (Fig. 15), we may write
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Figure 15: Because the direction of rotation from â to n̂A is the same as that

from â to ĉ , and because the angle between â to n̂A is 90◦, we may write

n̂A = â

[
â ∧ ĉ

‖â ∧ ĉ‖

]
.

(based upon Section 2.2.1),

n̂A = â

[
â ∧ ĉ

‖â ∧ ĉ‖

]
. (3.1)

Similarly, based upon Section 2.2.1 and Fig. 16,

d̂ = â

[
â ∧ b̂

‖â ∧ b̂‖

]
. (3.2)

The bivector parallel to the “plaza” at A is âI3 (Fig. 17).

In our solution, we will use the angles θ and δ, shown in Figs. 14 and 17,

respectively. The angle θ will be used only to find the distance between A and B,

so we will not define its algebraic sign. Thus, it will range from 0 to π radians.

In contrast, the angle δ is signed, and ranges from 0◦ to 180◦.

4 Solution

We will begin by solving for θ, δ, the initial bearing, and the distance in terms

of GA operations, after which we will define a coordinate system so that we may

express our solution in terms of the latitudes and longitudes of the points A and

B.
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Figure 16: Because the direction of rotation from â to d̂ is the same as that

from â to b̂ , and because the angle between â to d̂ is 90◦, we may write

d̂ = â

[
â ∧ b̂

‖â ∧ b̂‖

]
.

Figure 17: The bivector parallel to the “plaza” at A is âI3. The direction of

rotation shown for âI3 is defined as the positive direction for δ.
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4.1 Solution in Terms of GA Operations

4.1.1 Distance between A and B

The distance between A and B is Rθ. Because θ is between 0 and π radians,

we can determine θ from its cosine alone —we needn’t find its sine. Therefore,

using cos θ = â · b̂,

Distance = R arccos
(
â · b̂

)
. (4.1)

4.1.2 The initial bearing

From Figs. 5 and 17, we can deduce that

Bearing =

{
360◦ − δ 0◦ ≤ δ ≤ 180◦,

−δ −180◦ < δ < 0.
(4.2)

Therefore, we need to know δ’s algebraic sign as well as its magnitude. Thus,

we need to know the sine and cosine of δ.

The cosine of δ is equal to the inner product of n̂A and d̂:

cos δ = n̂A · d̂.

Therefore, using Eqs. (3.1), (3.2)(2.2)

cos δ = 〈
{

â

[
â ∧ ĉ

‖â ∧ ĉ‖

]}{
â

[
â ∧ b̂

‖â ∧ b̂‖

]}
〉0

To simplify that result, we note that because the vector â is parallel to the

bivector â ∧ ĉ, â (â ∧ ĉ) = − (â ∧ ĉ) â:

cos δ = 〈
{
−
[

â ∧ ĉ

‖â ∧ ĉ‖

]
â

}{
â

[
â ∧ b̂

‖â ∧ b̂‖

]}
〉0

= −〈
(â ∧ ĉ)

(
â ∧ b̂

)
‖â ∧ ĉ‖‖â ∧ b̂‖

〉0. (4.3)

Here, we might with benefit write â∧ ĉ and â∧ ĉ as 〈âĉ〉2 and 〈âb̂〉2, respectively,

to obtain

cos δ = −〈 〈âĉ〉2〈âb̂〉2
‖〈âĉ〉2‖‖〈âb̂〉2

〉0. (4.4)

To find sin δ, we use Eq. (2.1), recognizing that the unit bivector parallel

to the plane that contains n̂A and d̂ is âI3 (Fig. 17). Therefore,

âI3 sin δ = n̂A ∧ d̂,

13



Figure 18: Our right-handed, orthonormal coordinate system. The endpoint of

vector e2 is the intersection of the Equator with the meridian 90◦ E. Using this

system, I3 = e1e2e3.

from which

sin δ = (âI3)
−1
(
n̂A ∧ d̂

)
= I−13 â

(
n̂A ∧ d̂

)
= −I3â

(
n̂A ∧ d̂

)
.

Now, we note that n̂A ∧ d̂ = 〈n̂Ad̂〉2 (Eq.(2.2) ), and use Eqs. (3.1), (3.2) in a

way similar to that which led us to Eq. (4.4), thereby obtaining

sin δ = I3â〈
〈âĉ〉2〈âb̂〉2
‖〈âĉ〉2‖‖〈âb̂〉2

〉2. (4.5)

4.2 Solution in Terms of Latitudes and Longitudes of A

and B

4.2.1 Coordinate system

We will use a right-handed, orthonormal system (Fig. 18). The endpoint of

vector e2 is the intersection of the Equator with the meridian 90◦ E. Using this

system, I3 = e1e2e3.
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Figure 19: Latitudes and longitudes of locations A and B related to our frame

of reference.

4.2.2 Expression of â, b̂, and n̂A according to our coordinate system

From Fig. 19, we can deduce that

â = cosλA cos `Ae1 + cosλA sin `Ae2 + sinλAe3

b̂ = cosλA cos `Be1 + cosλA sin `Be2 + sinλBe3

n̂A = ê3.

(4.6)

4.2.3 Distance between A and B

Substituting our expressions for â and b̂ (Eq. (4.6)) in Eq., we find that

Distance = R arccos [sinλB sinλA + cosλB cosλA cos (`B − `A)] . (4.7)

4.2.4 The initial bearing

We noted in Section 4.1.2 that we will need to identify both cos δ and sin δ.

Per Eqs. (4.4) and 4.5,

cos δ = −〈 〈âĉ〉2〈âb̂〉2
‖〈âĉ〉2‖‖〈âb̂〉2

〉0

and

sin δ = I3â〈
〈âĉ〉2〈âb̂〉2
‖〈âĉ〉2‖‖〈âb̂〉2

〉2.
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Note that for any bivector M of

the form

M = m12e1e2 +m13e1e3 +m23e2e3 ,

‖M‖ =
√
m2

12 +m2
13 +m2

23 .

Regarding Eq. 4.9,

‖〈âĉ〉2‖ = ‖ cosλA‖, which is

cosλA because λA is between

−π/2 and π/2.

Now, we need to express 〈âĉ〉2, 〈âb̂〉2, and their respective norms in terms of

latitudes and longitudes. Using the expansions for â, b̂, and ĉ from Eq. (4.6),

〈âĉ〉2 = cosλA cos `Ae1e3 + cosλA sin `Ae2e3. (4.8)

‖〈âĉ〉2‖ = cosλA. (4.9)

〈âb̂〉2 = cosλB cosλA sin (`B − `A) e1e2

+ (sinλB cosλA cos `A − cosλB sinλA cos `B) e1e3

+ (sinλB cosλA sin `A − cosλB sinλA sin `B) e2e3.

(4.10)

‖〈âb̂〉2‖ =
{

cos2 λB cos2 λA sin2 (`B − `A) + sin2 (λB − λA)

+ sin 2λB sin 2λA sin2

(
`B − `A

2

)}1/2

.
(4.11)

Using Eqs. 4.8 and 4.10, then simplifying, we find that

〈〈âĉ〉2〈âb̂〉2〉0 = cosλA [cosλB sinλA cos (`B − `A)− sinλB cosλA] . (4.12)

〈〈âĉ〉2〈âb̂〉2〉2 = cosλB sinλA cosλA sin (`B − `A) e1e2

− cosλB cos2 λA sin `A sin (`B − `A) e1e3

+ cosλB cos2 λA cos `A sin (`B − `A) e2e3.

(4.13)

Now, from Eqs. (4.4), (4.9), and (4.12),

cos δ =
sinλB cosλA − cosλB sinλA cos (`B − `A)

‖〈âb̂〉2‖
, (4.14)

where ‖〈âb̂〉2‖ is as given in Eq. (4.11). Next, we find sin δ from Eqs. (4.5),

(4.9), and (4.13). The trivector I3 is e1e2e3 for our reference frame, so the final

result for sin δ is

sin δ = −cosλB sin (`B − `A)

‖〈âb̂〉2‖
, (4.15)

with ‖〈âb̂〉2‖ as given in Eq. (4.11).

5 Validation of the Formulas

The pairs of cities used in the validation (Fig. 20) were chosen in ways that

would test whether our formulas give sign errors when the locations A and B are

in different hemispheres. Our calculated distances and bearings agreed well with

more-accurate ones from Ref. [4], which correct for the Earth’s slight deviation

from perfect sphericity .
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Figure 20: Screenshot of the ExcelTM worksheet used to validate our formulas.

The Earth’s radius was taken as 6371 km (Ref. [3]). Latitudes and longi-

tudes are decimal equivalents of the following coordinates, which are from the

cities’ respective Wikipedia pages: Johannesburg 26◦12′16′′S 28◦2′44′′E ; Mecca

21◦25′N 39◦49′E; Port Moresby 9◦28′44′′S 147◦08′58′′E; San Cristóbal de Las

Casas 16◦44′12′′N 92◦38′18′′W.

6 Extension of the Problem

How would you calculate the final bearing (Section 2.1.2)?
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