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Abstract 

In this paper we use the oscillator or Zitterbewegung model of an electron to offer an equally elegant 

explanation of the mass of nucleons⎯equally elegant as the explanation we offered for the electron 

mass, that is. It is based on the same ideas: a nucleon charge with zero rest mass in orbital motion. The 

difference is the charge. The nucleon charge is a different charge⎯different from the electric charge. A 

different charge implies a different force. A different force implies a different amplitude of the 

oscillation – and we, therefore, find a different Compton radius for the nucleon. 

Our interpretation of Wheeler’s idea of mass without mass – based on equating the E = m·a2·ω2 = m·c2 

using the tangential velocity formula c = a·ω – remains valid. As an added bonus, we get an equally 

simple and elegant formula for the coupling constant for the strong force. 
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Introduction 
The strong force must be strong: something must hold those positive charges in the nucleus together, 

and it must be stronger than the electrostatic force⎯because that force would push them apart. The 

strong force must also have a short range: otherwise it would be pulling all positive charges in the 

Universe together, and it does not do that. It is a strange force because we also think of this force as 

preventing electrons from sitting right on top of protons.1 

This paper explores the strong force in very classical terms: no quantum field theory, no nuclear force 

quantum, no talk about field degrees of freedom or other hocus-pocus. Because this paper started with 

some classical explanation of the Yukawa potential, this first draft of an article will follow the same logic. 

Let us have a look at it. 

The Yukawa potential 
Most of what happens in nuclear physics – and in quantum mechanics in general – is discussed in terms 

of some potential. To be precise, physicists found the introduction of the so-called Yukawa potential – 

that was back in 1935 – extremely useful. So let us have a look at it. The Yukawa potential has the 

following shape: 

U(𝑟) = −
gN

2

4π

𝑒−𝑟/𝑎

𝑟
 

That looks weird but when you compare this to the potential we used to calculate electron orbitals, it’s 

actually not as weird as it looks first. The potential we used to calculate electron orbitals was just the 

electrostatic potential: 

V(𝑟) = −
qe

2

4πε0

1

𝑟
= −e2

1

𝑟
 

We may now make the following comparisons and remarks: 

1. The gN factor is analogous to the electric charge. The 1/4πε0 factor in the e2 = qe
2/4πε0 expression is a 

physical proportionality factor which also ensures the units come out alright. So we have a 4π factor but 

do we have something like the ε0 factor for the Yukawa potential as well?  

No. Why not? We don’t need such factor because we have some freedom here to define the unit for our 

nuclear charge gN: there is or was nothing around when Yukawa first jotted this down⎯back in 1935, 

                                                           
1 Of course, you probably know that an electron might actually be captured by a proton from time to time, but 
that’s a phenomenon that has nothing to do with the strong force. To be precise, we think of electron capture as a 
decay of a proton. Proton decay – it decays into a neutron, obviously – involves the so-called weak force, which we 
imagine as an even weirder animal than the strong force so we won’t talk about it here. 



that is. In contrast, the coulomb was established in classical physics as the unit of charge before 

physicists thought of the proton as some kind of elementary charge.2 That’s why we have the ε0 in 

Gauss’ Law in electrostatics and, because of E = −V, we have it in Poisson’s equation for electrostatics 

too: 

·E = /ε0  2V = −/ε0  

The ε0 clearly emerges as a physical proportionality factor here: it fixes the units. The ·E is the 

divergence of the electric field E, so that’s the (outward) flux out of some volume around the point we’re 

considering. A small digression to remind ourselves of the physics of the situation might be useful here. 

We’ve written Gauss’ Law in differential form⎯as opposed to its integral form. So we’re really thinking 

of some infinitesimal volume here. At the same time, when calculating flux, we will integrate field 

strength (E) – which is expressed in newton per coulomb (N/C) – over some surface of some volume, so 

we get the (N/C)·m2 dimension. However, when we write everything in differential form, we will want to 

express flux in terms of the unit volume, which is m3. Hence, ·E is expressed in (N/C)·m2/m3 = N/m·C. 

The ε0 constant is expressed in C2/N·m2 units, so ε0··E will, effectively, give us some charge density, so 

that’s a charge per unit volume: [] = (C2/N·m2)·(N/m·C) = C/m3. 

What about the 4π factor? That’s the 4π factor in the formulas for the surface area and the volume of a 

sphere, which is equal to 4π ·r2 and 4π ·r3 respectively.3 We can also re-write Coulomb’s Law in the 

following rather funny way: 

ε0F =
q1q2

4π𝑟2
 

This tells us the electrostatic force – repulsive or attractive – is proportional to (1) the magnitude of the 

charges and (2) the surface area of the volume that’s defined by the distance between the two charges. I 

am just kidding, of course! And then I am not. 😊 

The point is: the electromagnetic force is not linear. It falls off with the square of the distance. In 

contrast, the potential and the distance do have this easy (inverse) proportionality: 

V(r)  1/r 

That is why Yukawa inserted that e−r/a function, which we will discuss now. 

2. The e−r/a function introduces the non-proportionality (or non-linearity, as I often call it4): it is 1 for r = 

0 and goes to zero as 1/ex (x = r/a) as r goes to infinity. The parameter a functions, therefore, as an 

effective range parameter. This range of the strong force is expressed in femtometer or fermi (1 fm = 1 

                                                           
2 We may note here that the qe is, effectively, the proton charge. The electron charge is −qe and explains why V(r) 
is negative: we think of bringing an electron from some far-away place (free space – zero potential) closer to our 
one-proton nucleus and its potential energy will, therefore, be negative. This is a trivial point but it is useful to 
remind ourselves of the physics of the situation. For the same reasons, we will want to digress here and there on 
the physical dimensions of our equations.  
3 In case you’d want to look at how this works exactly, we recommend Feynman’s shortcut to these results (see: 
Feynman’s Lectures, Vol. II, Chapter 4, section 7 (http://www.feynmanlectures.caltech.edu/II_04.html). 
4 See: https://readingeinstein.blog/the-theory-of-everything/. 

http://www.feynmanlectures.caltech.edu/II_04.html
https://readingeinstein.blog/the-theory-of-everything/


fermi = 110−15 m). We use the same scale when calculating the classical electron radius which we wrote 

as a fraction of the Compton radius of a proton: 

𝑟e = α ∙ 𝑟C ≈
1

137
∙

ℏ

me ∙ 𝑐
≈

386 × 10−15 m

137
≈ 2.8 × 10−15 m 

Now that we’re talking about the radius of an electron, could we associate – just for fun – some 

Compton radius with a proton? Of course, we can. There is no a priori reason why we would find any 

meaningful result – as opposed to the Compton radius for an electron and a photon, which we can 

associate with an effective area of interference based on theoretical grounds5 – but we can try, right? 

Let us see what we get: 

𝑎p =
ℏ

mp ∙ 𝑐
=

ℏ

Ep/𝑐
=

(6.582 × 10−16 eV ∙ 𝑠) ∙ (3 × 108 𝑚/𝑠)

938 × 106 eV
≈ 0.21 × 10−15 m 

That’s the same order of magnitude as the radius of a proton we get out of scattering experiments, 

which is some value between 0.84 and 0.9 fm. The difference is about 1/4. Can we narrow this down? 

Not for the time being. A more precise calculation of the ap = ħ/mc – using all of the significant digits for 

ħ, m and c – yields something like 0.21008452488130184321492656765172, but – in light of the 

imprecision of the measured radius, it looks like this 0.21 fm value is an approximation that’s good 

enough. Indeed, the various experiments – depending on whether one uses normal hydrogen, muonic 

hydrogen or deuterium – yield a radius between 0.842 0.842 ± 0.001 fm and 0.887 ± 0.012 fm.6 Hence, 

the ratio of our theoretical ap = ħ/mc value and the measured value is, effectively, about 0.25. 

Interesting⎯but what could it mean?  

We don’t think this is a coincidence, and so let us explore this. We will first want to remind ourselves of 

the basics of the electron oscillator model, which explains the Compton radius for an electron in a 

classical and, therefore, very physical way. 

The oscillator model for an electron 
In our classical interpretation of what an electron and a photon might actually be7, we equate the 

Compton radius of an electron to the radius of Schrödinger’s Zitterbewegung: the electron is some 

naked charge – something pointlike with zero rest mass8 - moving about some center at the speed of 

light. It can do so because its rest mass is zero. The rest mass of the electron itself is nothing but the 

equivalent mass of the energy in this oscillatory motion: Wheeler’s idea of mass without mass. 

This concept led us to just take Einstein’s mass-energy equivalence relation (E = m·c2) and, interpreting c 

as the tangential velocity of the naked charge, to substitute c for a·ω (a tangential velocity will always 

                                                           
5 See: The Electron as a Harmonic Electromagnetic Oscillator (http://vixra.org/abs/1905.0521) and A Classical 
Quantum Theory of Light (http://vixra.org/abs/1906.0200). 
6 See the Wikipedia article on the proton radius: https://en.wikipedia.org/wiki/Proton_radius_puzzle. For the 
larger value, see Ingo Sick’s January 2018 publication (https://arxiv.org/abs/1801.01746). 
7 See the above-mentioned papers. 
8 Pointlike does not imply it has no dimension whatsoever. We think of the classical electron radius as the radius of 
the zero-mass Zitterbewegung charge. 

http://vixra.org/abs/1905.0521
http://vixra.org/abs/1906.0200
https://en.wikipedia.org/wiki/Proton_radius_puzzle
https://arxiv.org/abs/1801.01746


equal the radius times the angular frequency). We then used the Planck-Einstein relation (ω = E/ħ = 

m·c2/ħ) to find the Compton radius: 

𝑎 =
𝑐

ω
=

𝑐 ∙ ℏ

m ∙ 𝑐2
=

ℏ

m ∙ 𝑐
=

λ𝐶

2π
≈ 0.386 × 10−12 m 

The novel idea here is that one rotation – one cycle of the electron in its Zitterbewegung – does not only 

pack the electron’s energy (E = m·c2): it also packs Planck’s quantum of action (S = h). The idea of an 

oscillation packing some amount of physical action may not be very familiar but it is quite simple: 

physical action is the product of (1) a force (the force that keeps our zbw charge in its circular orbit), (2) 

some distance (the circular loop) and (3) some time (the cycle time). For an electron, we got a cycle time 

that was equal to: 

T =
ℎ

E
≈

6.626 × 10−34 J ∙ s

8.187 × 10−14 J
≈ 0.8 × 10−20 s 

This is quite phenomenal, because it gives us a household-level current at the sub-atomic scale:  

I = qe𝑓 = qe

E

ℎ
≈ (1.6 × 10−19 C)

8.187 × 10−14 J

6.626 × 10−34 Js
≈ 1.98 A (𝑎𝑚𝑝𝑒𝑟𝑒) 

However, this model gives us consistent values for (1) the magnetic moment (the current times the area 

of the loop), (2) the angular momentum of an electron (ħ/2)9 and, therefore, (3) the gyromagnetic ratio 

(aka g-factor) for the pure spin moment of an electron: 

μ = I ∙ π𝑎2 = qe

m𝑐2

ℎ
∙ π𝑎2 = qe𝑐

π𝑎2

2π𝑎
=

qe𝑐

2

ℏ

m𝑐
=

qe

2m
ℏ 

L = 𝐼 ∙ ω =
𝑚𝑎2

2

𝑐

𝑎
=

𝑚𝑐

2

ℏ

𝑚𝑐
=

ℏ

2
 

𝛍 = −g (
qe

2m
) 𝐋 ⇔

qe

2m
ℏ = g

qe

2m

ℏ

2
⇔ 𝑔 = 2 

Can we repeat the trick for protons and neutrons? Our first intuitive response should be negative: the 

Zitterbewegung charge can spin around at the speed of light because its rest mass is zero. That is why 

Alexander Burinskii refers to it as the electron photon, or a toroidal photon.10 We don’t have a 

Zitterbewegung charge here, don’t we? 

We don’t. That’s the point. We have some other charge here, and a different kind of force. 

An oscillator model for nucleons 
The gN factor is analogous to the electric charge. What does it mean, exactly? It means we can, perhaps, 

imagine, once again, some object that has no other mechanical properties but its charge and – perhaps 

– some tiny dimension. Its charge must be different than the electric charge, of course – because the 

force is different: we’re talking a nuclear force here⎯the nuclear force, for the time being: the strong 

force. So we have some force holding some charge – with zero rest mass – in some orbit around some 

                                                           
9 We assume the energy and, hence, the equivalent mass, is spread uniformly over the whole disk. 
10 Alexander Burinskii, The Dirac–Kerr–Newman electron, 19 March 2008, https://arxiv.org/abs/hep-th/0507109. 

https://arxiv.org/abs/hep-th/0507109


center, as shown below (Figure 1). It’s a centripetal force – obviously – and its horizontal and vertical 

component can be written as the following functions of (1) the magnitude of that centripetal force (F) 

and (2a) the sine or cosine of the phase θ = ω·t or, alternatively, (2b) the x and y coordinates and the 

radius of the oscillation ap: 

• Fx = F·cos(θ−π) = −F·cos(θ) = −F·x/ap   

• Fy = F·sin(θ−π) = −F·sin(θ) = −F·y/ap 

We thus get the following formula for the force: 

F = Fx + Fy = −F·cos(θ) − i·F·sin(θ)  

Figure 1: An oscillator model for nucleons? 

 

When thinking all of this through in depth, we will get some same mathematical absurdities but – as we 

pointed out when developing our classical electron model – these aren’t any more or less absurd than, 

say, Dirac’s delta function: the function makes sense and then it doesn’t. In fact, I would like to say a few 

words about it because it’s quite relevant here.  

Both mathematicians and physicists have rather heated discussions on what the delta function is and 

what it isn’t. Mathematicians will often say there’s nothing weird about it: they’ll just define the Dirac 

delta function as the limit of a sequence of zero-centered normal distributions. But what does that mean 

in terms of the physics of the situation? If you think about that, you’ll find it’s a weird beast. The 

Wikipedia article on it11 offers a fairly balanced view of what it is and what it isn’t, but I like Feynman’s 

characterization of it – and this characterization should also be sufficient in the context of this paper:  

“Dirac’s δ(x) function has the property that it is 0 everywhere except at x = 0 but the ∫δ(x)dx 

integral is finite: it’s equal to one. We must imagine that the δ(x) function has such a fantastic 

infinity at one point that the total area comes out equal to one.” 

A line integral will give us some surface area, but here we have the product of zero and infinity. As 

Feynman notes: that infinity is so fantastic that its product with zero gives us some finite value (unity). 

As you will see, we’ll be confronted with the same absurdity here: a product of zero and infinity. Let’s go 

through the development step by step.  

                                                           
11 See: https://en.wikipedia.org/wiki/Dirac_delta_function. 

https://en.wikipedia.org/wiki/Dirac_delta_function


So we have some charge whizzing around at the speed of light. It’s not the electric charge. It’s some 

other charge. We can’t define it for the time being: we can only relate it to the force⎯the strong force, 

or the nuclear force, or whatever other placeholder term you want to use for the time being. Let’s call it 

the nucleon force, so we have some justification for the N in that gN factor in Yukawa’s potential.12 

Let us now think about the momentum vector p in Figure 1. It should be relativistic momentum of 

course, so its magnitude is equal to: 

p = mc = γm0c 

How should we calculate this? The m0 factor is zero: it’s the rest mass of our nuclear charge. The rest 

mass of gN. It has to be zero because we think of it as whizzing around at the speed of light. Now, the 

Lorentz factor goes to infinity as the velocity goes to c, and m0 is equal to zero. So we are multiplying 

zero by infinity. What do we get? An online graphing tool shows the behavior of the p = γm0v function is 

quite weird. We used desmos.com to produce the graph in Figure 2, which shows what happens with 

the p = mvv = γm0v for  m = 0.001 and v/c ranging between 0 and 1. 

Figure 2: p = mvv = γm0v for m  → 0 

 

It is quite enlightening: p is (very close to) zero for v/c going from 0 to 1 but then becomes infinity at v/c 

= 1 itself. What can we say about this? Perhaps we should say that the momentum of an object with 

zero rest mass is a nonsensical concept. Let us avoid this for the time being. Let us just think of the 

momentum vector p as some kind of Dirac function: some weird beast, but we’ll assume we can use it 

without having to worry. Let us now get back to our analysis of the force.  

We will want to distinguish between (1) p as a vector with some magnitude p (and some direction that 

goes round and round, and (2) its horizontal and vertical component px and py, whose directions do not 

change, but whose magnitudes px and py change all of the time. How exactly do they change? They 

change with the horizontal and vertical velocity, obviously: px = mvx = γxm0vx and py = mvy = γxm0vy 

respectively. Huh? What’s γx and γy? If we distinguish directions and velocities, we will also want to 

distinguish the associated Lorentz factors.  

Note that we wrote the force formula as F = Fx + Fy = −F·cos(θ) − i·F·sin(θ). It’s a bit of a special notation: 

we use boldface for cos(θ) and for the imaginary unit i here so as to ensure we think of them as vector 

quantities: they have a magnitude, but they also have a direction and – importantly – some origin. An 

                                                           
12 Of course, the N in gN could also refer to nuclear instead of nucleon, but perhaps we will want to reserve the 
term nuclear to refer to something else later. 



origin? Yes. We need to think about the reference frame. We know that we can represent the position 

vector r using the elementary wavefunction: 

r = a·ei = x + i·y = a·cos(θ) + i·a·sin(θ) = a·cos(ωt) + i·a·sin(ωt) = (x, y) 

Hence, we might be tempted to write the force vector as F = −F·e−i but we shouldn’t be doing this: the 

origin of the force vectors is not the same: the origin moves with the position vector. To be precise, 

origin is a term that is usually reserved to denote the origin of the reference frame. Vectors have an 

initial and a terminal point, and what we are saying here is that the initial point of our velocity, force and 

acceleration vector is not the origin. However, we will want to do that. We will, therefore, assume some 

quantization of space: we will want to think in terms of the force grabbing onto some linear space⎯not 

just one single point. That linear space is given by the radius of the oscillation ap. I know this sounds 

outrageous but it’s got to do with our interpretation of Planck’s quantum as representing an elementary 

cycle⎯the cycle of an electron, a photon, an electron orbital and, in this new development here, the 

cycle of a nucleon. Physicists (and mathematicians) will probably want to see some lengthy philosophical 

argument here but we will spare our reader (and ourselves) from that for the time being.  

The point is: we should think of the real and imaginary part of our wavefunction varying as the function 

of the position of our pointlike nucleon charge (gN).13 We can now calculate the centripetal acceleration: 

it’s equal to ac = vt
2/a = a·ω2. This formula is relativistically correct. In fact, it is useful to remind 

ourselves how we get this formula⎯again, just to make sure we understand the physicality of what 

we’re writing here. The radius vector a has a horizontal and a vertical component: x = a·cos(ωt) and y = 

a·sin(ωt). We can, therefore, calculate the two components of the (tangential) velocity vector v = dr/dt 

as vx = −a·ω·sin(ωt) and vx y = −a· ω·cos(ωt) and, in the next step, the components of the (centripetal) 

acceleration vector ac: ax = −a·ω2·cos(ωt) and ay = −a·ω2·sin(ωt). The magnitude of this vector is 

calculated as follows: 

ac
2 = ax

2 + ay
2 =  a2·ω4·cos2(ωt) + a2·ω4·sin2(ωt) = a2·ω4  ac = a·ω2 = vt

2/a 

Now, the force law tells us that F is equal to F = m·ac = m·a·ω2 but, again, we have this problem of 

determining what the mass of our pointlike charge actually is. The m0 in our m = γm0 formula is zero! We 

need to find some other way. You’ll say I’ve done a lot of hocus-pocus already, but this is really the last 

and final logical step to find some wonderfully elegant result. Note how the horizontal and vertical force 

component behave like the restoring force in a linear harmonic oscillation. This restoring force depends 

linearly on the (horizontal or vertical) displacement from the center, and the (linear) proportionality 

constant is usually written as k. In case of a mechanical spring, this constant will be the stiffness of the 

spring. We don’t have a spring here so it is tempting to think it models some elasticity of space itself. 

However, we should probably not engage in such philosophical thought. Let us write down what we 

have:  

                                                           
13 At this point, you may wonder why we use a g in gN. N for nucleon, right? But g? Using a small n for the nucleon 
charge – just like we use a small e for the electron charge – would have been more logical, right? Perhaps. The 
answer is: we don’t know. This nucleon charge is always denoted by gN. It’s a convention. Yukawa’s formula is 
associated with quantum field theory and, in his article, he predicted the existence of some nuclear force quantum. 

Think of it as a predecessor of the idea of a gluon⎯if only because then you have some explanation for the g! It’s 
got definitely nothing to do with a gyromagnetic ratio!  



Fx = dpx/dt = –k·x = –k·a·cos(ωt) = −F·cos(ωt) 

Fy = dpy/dt = –k·y = –k·a·sin(ωt) = −F·sin(ωt) 

It’s important to note that, while this doesn’t look like it’s relativistically correct, it actually is 

relativistically correct: we’re doing nothing wrong here!14 Now, it is quite straightforward to show that 

the constant k can always be written as: 

k = m·ω2 

We get that from the solution we find for ω when solving the differential equations Fx = dpx/dt = –k·x 

and Fy = dpy/dt = Fy = dpy/dt = –k·y and assuming there is nothing particular about p and m. In other 

words, we assume there is nothing wrong with the p = m·v = γm0v relation. So, again, we just 

temporarily make abstraction from the weird behavior of that function. In that sense, it’s really just like 

Dirac’s delta function: the function may or may not make sense mathematically but we think it’s OK to 

use it as some limit and, when we do use it like we’d use any other function, our results come out OK. 

Let’s move on and wrap this up.  

So we have the k = m·ω2 equation, but we know m is not the rest mass of our nucleon here. We need to 

find some innovative way of referring to it. Let’s call it the effective mass of gN as it’s whizzing around at 

the speed of light. We need to remember it’s a measure of inertia – and we measure that inertia along 

the horizontal and vertical axis respectively and, hence, we should, perhaps, write something like this: m 

= mγ = mx = my, in line with the distinction we made between p, px and py. Why mγ? The notation is just a 

placeholder: we need to remind ourselves it is a relativistic mass concept and so I used γ (the symbol for 

the Lorentz factor) to remind ourselves of that.15 So let us write this:  

k = mγ·ω2 

From the equations for Fx and Fx, we also know that k·a = F, so k = F/a. Hence, the following equality 

must hold: 

F/a = mγ·ω2   F = mγ·a·ω2  F/a = mγ·a2·ω2 =  F/a·mγ = a2·ω2 

We know the sum of the potential and kinetic energy in a linear oscillator adds up to E = m·a·ω2/2. We 

have two independent linear oscillations here so we can just add their energies and the ½ factor 

vanishes. We also know that the total energy in this oscillation must be equal to E = m·c2. The mass 

factor here is the rest mass of our electron, so it’s not that weird relativistic mγ concept. However, we did 

equate c to a·ω2. Hence, we can now write the following: 

E = m·c2 = m·a2·ω2 = m·F/a·mγ  

The force is, therefore, equal to: 

F = (mγ/m)·(E/a) 

                                                           
14 We invite the reader to tell us what we’d be doing wrong! 
15 The  symbol may also remind you of a photon, and that’s OK too because it’s just like Burinskii’s ‘electron 
photon’, or the ‘toroidal photon’ as he also referred to it in his email communications with me.  



Now what can we say about the mγ/m ratio? We know mγ is sort of undefined⎯but it shouldn’t be zero 

and it shouldn’t be infinity. It is also quite sensible to think mγ should be smaller than m. It cannot be 

larger because than the energy of the oscillation would be larger than E = mc2. What could it be? 1/2, 

1/2π? Rather than guessing, we may want to remind ourselves that protons and neutrons – or nucleons 

in general – have angular momentum, and their spin-1/2 particles so their angular momentum is equal 

to L = ħ/2. We calculated it using the L = I·ω formula – using an educated guess for the moment of 

inertia (I = m·a2/2) – in the context of our electron but we also have the L = r  p formula, of course! The 

lever arm is the radius here, so we can write: 

1. L = ħ/2  p = L/a = (ħ/2)/a = (ħ/2)·mc/ħ = mc/2  

2. p = mγc 

 mγc = mc/2  mγ = m/2 

We found the grand result we expected to find: the effective mass of the pointlike nucleon charge – as it 

whizzes around the center of the two-dimensional oscillation that makes up our electron – must be 

equal to half (1/2 times) the rest mass of the nucleon. 

We can now calculate the nucleon force using our F = (mγ/m)·(E/a) = E/2a formula: 

FN =
Ep

2𝑎p
≈

1.5 × 10−10 J

2 · 0.21 × 10−15 m
≈ 358,000 N 

This force is equivalent to a force that gives a mass of 358 metric ton (1 g = 10-3 kg) an acceleration of 1 

m/s per second. Does this make any sense? Probably not, right? But perhaps it does. Let us compare 

with the results we found for the force holding the electron together: 

Fe =
Ee

2𝑎e
≈

8.187 × 10−14 J

2 · 386 × 10−15 m
≈ 0.106 N 

This force is equivalent to a force that gives a mass of about 106 gram (1 g = 10-3 kg) an acceleration of 1 

m/s per second. This was already huge at the sub-atomic scale, but a force that’s equal to about 358,000 

N? Because this is so enormous, we need to think about energy densities and, perhaps, wonder if 

general relativity comes into play. Have we been modeling a black hole? We can do an easy check by 

calculating the Schwarzschild radius for the proton. If we would pack all of the mass of the proton into a 

black hole, then the Schwarzschild formula gives us a radius that is equal to: 

𝑟𝑠 =
2 ∙ G ∙ mp

𝑐2
≈

2 ∙ 6.674 × 10−11 m3

kg ∙ s2 ∙ 1.673 × 10−27 kg

8.988 × 1016 m2

s2

≈ 2.48 × 10−54 m 

What was the Schwarzschild radius of an electron again? 

𝑟𝑠 =
2 ∙ G ∙ me

𝑐2
≈

2 ∙ 6.674 × 10−11 m3

kg ∙ s2 ∙ 9.1 × 10−31 kg

8.988 × 1016 m2

s2

≈ 1.35 × 10−58 m 



This shows we should probably not worry all that much. This exceedingly small number has no relation 

whatsoever with the Compton radius. In fact, its scale has no relation with whatever distance one 

encounters in physics: it is much beyond the Planck scale, which is of the order of 10−35 meter and which, 

for reasons deep down in relativistic quantum mechanics, physicists consider to be the smallest possibly 

sensible distance scale. 

Charges, forces, scales and coupling constants 
It is easy to see that the ratio of our nucleon force and electron force – or whatever you’d want to call it 

– is  

FN

Fe
=

Ep

2𝑎p

Ee
2𝑎e

=
Ep

Ee
∙  

𝑎e

𝑎p
=

mp

me
∙  

ℏ
me ∙ 𝑐

ℏ
mp ∙ 𝑐

= [
mp

me
]2 ≈ 1,8382 ≈

358,000 N

0.106 N
 

Nice. The ratio of the two forces is (1) proportional to the ratio of the two masses and (2) inversely 

proportional to the ratio of their (Compton) radii. We can do an easy check on this formula⎯a check 

which also helps to understand what is that we are trying to model here. So we are calculating a ratio 

between two forces. What does that mean? We can think of it as follows: we have that k-factor in our 

oscillator model: 

k = mγ·ω2 

The mγ was the effective mass of the pointlike charge as it speeds around at its lightning 

speed⎯literally. It was equal to mp/2 for the proton and me/2 for the electron. The 1/2 factor is always 

there in this oscillator model. So we have a k for the electromagnetic force in the Zitterbewegung model 

for an electron, and now we have a k in this oscillator model for a nucleon. Hence, let us take the ratio 

of both: 

kN

ke
=

mp ∙ ωp

2
me ∙ ωe

2

=

mp ∙ Ep

2ℏ
me ∙ Ee

2ℏ

=

mp ∙ mp ∙ 𝑐2

2ℏ
me ∙ me ∙ 𝑐2

2ℏ

= [
mp

me
]2 

We get the same result.16 This is a ratio between forces, or between two elasticity coefficients, perhaps. 

What’s the relation with coupling constants? Think of the formula for the electromagnetic coupling 

constant – the fine-structure constant, that is – which, after some manipulation, we could write as the 

ratio of (1) the product of the energies and the radii of the Bohr orbitals and (2) the product of the 

energy and the radius of the photon17: 

α =
EB · 𝑟B

Eγ ∙ 𝑟γ
=

1

𝑛2 α2m𝑐2 ∙
𝑛2

α
ℏ

m𝑐

Eγ ∙
ℏ ∙ 𝑐
Eγ

= α 

                                                           
16 The ke factor should not be interpreted as Coulomb’s constant here. It’s a related but different concept. We 
leave it to the reader to relate the two as an exercise. 
17 See: A Classical Quantum Theory of Light (http://vixra.org/abs/1906.0200). 

http://vixra.org/abs/1906.0200


What do we get if we write some similar number here? Let’s call it a mass coupling constant. Why? 

Because this force is what seems to give our electron and our proton their rest mass (or rest energy). 

We will write it as N for the time being (we can also swap to some other symbol later):  

αN =
Ep

Ee
∙  

𝑎p

𝑎N
=

mp

me
∙  

ℏ
mp ∙ 𝑐

ℏ
me ∙ 𝑐

= 1 

A trivial result? I don’t think so. It’s the coupling constant of the strong force:  

N = S = 1 

We get the value we hoped we would find, and we get it from a surprisingly simple construction: an 

oscillator model, Einstein’s mass-energy equivalence and the Planck-Einstein relation.  

The coupling constant and the anomalous magnetic moment 
The discussion above triggers an interesting question. In our classical analysis of the anomalous 

magnetic moment18, we thought of the fine-structure constant as the radius of the charge. To be 

precise, we thought of it as the ratio between the radius of the charge and the Compton radius, as 

illustrated below (Figure 3).   

Figure 3: The radius of the charge as a fraction of the Compton radius 

 

We also noted that the non-zero radius of our charge implied more of the charge was actually going 

faster than light and that we, therefore, should probably introduce some concept of an effective 

Compton radius (r), as opposed to its theoretical value (a). In our paper19, we could show this small 

anomaly was likely to explain the anomalous magnetic moment. Indeed, we calculated a first-order 

correction that was equal to /8, which differs from Schwinger’s /8 by a factor that’s equal 4/π 1.27 

only, which we should be able to explain doing away with the simplifications and – importantly – noting 

we’ll have precessional motion because of the magnetic field in a Penning trap. 

                                                           
18 See: The Anomalous Magnetic Moment: Classical Calculations (http://vixra.org/abs/1906.0007). 
19 Reference above. 

http://vixra.org/abs/1906.0007


Figure 4: Theoretical versus effective Compton radius 

 

 

Again, we have to refer to our paper for the detail but it may be useful to show that the same logic 

should apply. We have some charge here⎯be warned: a nucleon charge. It’s not the electric charge, so 

we write it as gN instead of e. However, if we have a charge, then the idea of some current should also 

apply. So let us go through the same logic and see where we get. We can calculate this nucleon current 

as20: 

IN = gN·ωN 

Note that the current does not depend on the velocity or the radius: gN is just the (naked) charge, and ω 

is the angular frequency ωN = EN/ħ = v/r. We may, in fact, assume that v and r vary but their ratio 

remains the same.21 So far, so good. However, the next analogy is not so easy. In fact, it’s a logical step 

we can’t take for the moment. The point is this: we defined the charges – e and gN – as analogous but 

now we need to calculate… Well… The magnetic moment. We know what the magnetic moment of a 

circular electric current is, but what analogy should we use here? We said the nucleon charge gN was 

something like an electric charge but – when everything is said and done – it is not the same as an 

electric charge. So the analogy breaks down here, and so we should stop writing here.  

We will. We will want to think about this and come back to it in our next paper. Nevertheless, before we 

leave you, we would just like to take through an analogous model that might or might not pave the 

wave for some subsequent development. Let us assume we can also define some kind of moment – let 

us not call it magnetic – for the nucleon, and that its formula is the same: the current times the area of 

the loop. We will denote this moment by μN even if this is very confusing because – again – we do not 

want to suggest this moment is actually magnetic. It’s something else. We just don’t know what right 

now. However, assuming the nucleon and the electromagnetic force are structurally the same, we write:  

μN = IN ∙ π𝑟2 = gN

m𝑐2

ℎ
∙ π𝑟2 = gN𝑐

π𝑟2

2π𝑎
= gN𝑐

𝑟2

2𝑎
 

                                                           
20 We will no longer use the subscript p (for proton) but generalize to include both protons and neutrons here. So 
we write ωN, EN, mN etcetera instead of ωp, Ep, mp etcetera. 
21 We explore this in the mentioned paper: the idea here is that the rest mass of the pointlike charge would not 
exactly zero, but very close to zero. 



What’s that assumption? Let me repeat: the assumption is that the electromagnetic and the strong 

force are structurally the same. You’ll cry wolf: we started off by saying they are very different, right? 

Yes and no. First, we don’t talk the strong force here⎯not yet. We’re talking some force that we 

baptized as the nucleon force because it’s the force that holds nucleons – protons and neutrons – 

together. So we can say that, in our simplified model, the kN = mN·ωN
2 and ke = me·ωe

2 proportionality 

factors are very different but they both measure the strength of a structurally similar force. 

Let us continue the development. We want to calculate some gyromagnetic ratio – or the equivalent of 

that for the strong force, I should say – so we need the angular momentum. Angular momentum is 

calculated using (angular) mass and (angular) frequency, so we shouldn’t hesitate to use the same 

formula: 

LN = 𝐼N ∙ ωN =
mN ∙ 𝑟2

2
·

𝑣

𝑟
=

mN · 𝑟 · 𝑣

2
= m · 𝑟 · 𝑣 

The mN is the rest mass of the nucleon, which is twice that of the pointlike nucleon charge (m), so we 

write nothing new here. You should note, however, that we substituted c for v and a for r: the idea here 

is that the angular frequency ω remains the same (ω = E/ħ = v/r) because the rest mass (or rest energy) 

of the nucleon is what it is and, therefore, the radius r and v may be different from a and c but they are 

still related through the tangential velocity formula: v = r·ω = r·E/ħ = r·m·c2/ħ.  

We can now calculate this equivalent moment – some nucleon moment or whatever you want to call it. 

In fact, what we are going to calculate is a gyromagnetic ratio.22 Dropping the subscript N because we 

now need to use the subscript for r (the effective Compton radius), we write:  

𝑔𝑟 =
μ𝑟

L𝑟
=

I ∙ π𝑟2

mγ · 𝑟 · 𝑣
=

I ∙ π ∙ r

mγ · 𝑣
 

What can we do with this? Nothing much. However, note that we introduced a subscript (gr) to 

distinguish the actual value for g from its theoretical value, which we get from equating r to a and v to c. 

The symbols get quite confusing now because we have g for the gyromagnetic ratio and gN for the 

nucleon charge, but you should be able to understand the formula below: 

𝑔 =
μ

L
=

I ∙ π𝑎2

mγ · 𝑎 · 𝑐
=

gN ∙ 𝑐 ∙
𝑎2

2𝑎
m · 𝑎 · 𝑐/2

=
gN

m
 

You will say this doesn’t look like the g-factor for a pure spin moment, and you are right. The convention 

is to write the g-factor as a multiple of qe/2m, so it is a pure number. In this case, we should write it as a 

multiple of gN/2m, so we get this: 

𝛍 = −g (
gN

2m
) 𝐋 ⇔

gN

2m
ℏ = g

gN

2m

ℏ

2
⇔ g = 2 

                                                           
22 In electromagnetics, and in quantum mechanics as well, we define the gyromagnetic ratio as the ratio of the 
magnetic moment and the angular momentum. That is why the anomalous magnetic moment is actually a 
misnomer. First, it is not a magnetic moment: it is the g-ratio. Second, as we try to show here, it may actually not 
be anomalous at all! 



Looks good, you’ll say. Yes, but we actually are not so happy with this convention because we think it 

obscures the matter hugely23, so we’ll just stick with our ratio – which is a real gyromagnetic ratio 

instead of some pure number – and let’s see what happens. The anomaly is usually defined as the 

difference between real gyromagnetic ratio and the theoretical value (gr – g). However, we think it’s 

more useful to also write it as a ratio: 

𝑔𝑟

𝑔
=

gN𝑐
𝑟2

2𝑎
m · 𝑟 · 𝑣/2

gN𝑐
𝑎2

2𝑎
m · 𝑎 · 𝑐/2

=
𝑟2

𝑎2

𝑎

𝑟
=

𝑟

𝑎
 

This is a wonderful result: the anomaly is just the ratio between the effective and theoretical Compton 

radius of a nucleon. We can write it very simply: 

gr = (r/a)·g 

Looks great, doesn’t it?  

Not really. All we did was to establish an analogy. However, that analogy doesn’t give us any answer to 

the obvious question: what is that nucleon charge? And what is that g-ratio that we associate with it? 

We’ll need to relate both the electromagnetic charge, somehow. We’ll think about that in the coming 

days and weeks and, hopefully, arrive at some meaningful conclusions. 

Jean Louis Van Belle, 15 June 2019 

                                                           
23 See: Jean Louis Van Belle, The Not-So-Anomalous Magnetic Moment, 21 December 2018 
(http://vixra.org/abs/1812.0233). 

http://vixra.org/abs/1812.0233

