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Abstract: In this work we re-examine a model of the nucleons that involve the weak 

interaction which was once considered by Heisenberg; that is a neutron may have the 

structure of a dwarf hydrogen-like atom. We formulate a quantum dynamics for the 

associated interaction that involves the beta decay in terms of a mixed Coulomb-Yukawa 

potential and the More General Exponential Screened Coulomb Potential (MGESCP), which 

has been studied and applied to various fields of physics. We show that all the components 

that form the MGESCP potential can be derived from Dirac equation which in turns can be 

derived from a general system of linear first order partial differential equations. There are 

many interesting features that emerge from the MGESP potential, such as the MGESP 

potential can be reduced to the potential that has been proposed to describe the interaction 

between the quarks for strong force in particle physics, and the energy spectrum of the bound 

states of the dwarf hydrogen-like atom is continuous with respect to distance. This result 

leads to an unexpected implication that a proton and an electron may also interact strongly at 

short distances. We also show that the Yukawa potential when restrained can generate and 

determine the mathematical structures of fundamental particles associated with the strong and 

weak fields. 

 

1. Introductory  

Despite the mathematical formulation of quantum mechanics has been highly developed and 

the theory has been successfully applied into all domains of applied sciences with the most 

accuracies that can be achieved by experiments, many fundamental physical processes at the 

quantum level that involve quantum mechanics still remain a mystery. In particular, one of 

the profound epistemological problems that continue to exist is the question of whether 

microscopic phenomena are in fact continuous or progressing in quantum jumps. In an article 

entitled ARE THERE QUANTUM JUMPS? Schrödinger wrote: “...A great many of our 

educated contemporaries, not equipped with the mathematical apparatus to follow our more 

technical deliveries, are yet deeply concerned with many general questions; one of the most 

stirring among them certainly is whether actually natura facit saltus or no...” [1]. It seems 

Schrödinger himself did not believe in abrupt quantum transitions, especially when physical 

phenomena are not considered as real but only associated with the probability view. 

Fundamentally, even quantum physical processes are occurring in a deterministic manner, 

down to the quantum level in the process of creation of elementary particles and radiation of 

mediators of physical fields. In this work we will discuss a physical process that belongs to 

the quantum domain but the physical process can be described deterministically and 



continuously; that is the beta minus decay in which a neutron   is transformed into a proton   

and an electron    and an electron antineutrino    are emitted from the system. In the beta 

minus decay, the electrons are emitted with a continuous spectrum of energy, which can be 

represented symbolically as          . In 1932 Werner Heisenberg proposed a form 

of interaction between the neutrons and protons inside the nucleus, in which neutrons were 

composite particles of protons and electrons. These composite neutrons would emit electrons, 

creating an attractive force with the protons, and then turn into protons themselves [2]. 

Despite there were many issues with his theory, Heisenberg's idea of an exchange interaction 

between particles inside the nucleus inspired Fermi to formulate theory of beta decay by 

proposing the emission and absorption of the neutrino and electron, rather than just the 

electron as in Heisenberg's theory [3]. However, since the force associated with the neutrino 

and electron emission was shown not strong enough to bind the protons and neutrons in the 

nucleus, in his 1935 paper, Hideki Yukawa combined Heisenberg's idea of short-range 

interaction and Fermi's idea of an exchange particle to introduce a potential which includes 

an electromagnetic term and a term that decays exponentially [4]. Yukawa used the new 

potential to predict a massive mediator for the strong interaction. The massive mediator is 

called meson as its mass was in the middle of the proton and electron.  

Since the energy spectrum of the emitted electron in the beta minus decay is continuous 

therefore Heisenberg’s model of the neutron as a dwarf hydrogen-like atom cannot be 

realised if we only apply the Coulomb potential to describe the system. In this work we will 

show that a continuous spectrum of energy can be obtained by applying a mixed Coulomb-

Yukawa potential of the form 

       
    

 
 
 

 
                                                                                                                                

where           are physical parameters that will need to be determined [5] [6]. 

Furthermore, in order to account for possible bound states of a dwarf hydrogen-like atom 

which can be identified with a neutron we will need to use a more general form of Yukawa 

potential, which has been studied and applied to various fields of physics, the More General 

Exponential Screened Coulomb Potential (MGESCP) given as 

      
   

    

 
 
  
 
     

                                                                                                         

where     is the potential depth and the parameter         [7] [8]. Remarkably, we will 

show that the MGESCP potential can be reduced to the potential that has been proposed for 

the interactions between the quarks for strong force in particle physics and this result leads to 

an unexpected implication that a proton and an electron may also interact strongly at short 

distances. There are also prominent features that emerge from using the MGESCP potential 

to describe a neutron as a dwarf hydrogen-like atom, such as the energy spectrum of the 

bound states is continuous with respect to distance, and, as discussed in Section 3, the 

Yukawa potential can be restrained to generate and determine mathematical structures of 

physical objects that may be identified with the quantum mediators associated with the weak 



and strong interactions. With this regard, it is reasonable to suggest that functional potentials 

in physics may have physical mechanisms to generate mediators of associated physical fields, 

and these mechanisms can be formulated in terms of differentiable manifolds and their 

corresponding direct sums of prime manifolds as discussed in our works on the possibility to 

formulate physics in terms of differential geometry and topology [9]. 

 

2. Formulating potentials from Dirac equation 

In the present state of physics there are four confirmed types of interactions between physical 

objects, which are the gravitational interaction, the electromagnetic interaction, the strong 

interaction, and the weak interaction. Except for the gravitational interaction, the other three 

types of interactions can be mathematically formulated so that they can comply with quantum 

mechanics, especially in the so-called standard model of particle physics [10]. In this work 

we will discuss a quantum dynamics of the interaction for the beta minus decay by deriving 

different types of potentials from Dirac relativistic equation which in turns can be derived 

from a general system of linear first order partial differential equations. It should be 

mentioned here that since Dirac relativistic equation is derived from a system of differential 

equations, therefore Dirac wavefunctions can be used to represent different type of physical 

objects rather than an exclusive mathematical method that is used to calculate the probability 

of the outcome of an experimental result as proposed in quantum mechanics. For example, in 

our work on the fluid state of Dirac quantum particles, we showed that Dirac wavefunctions 

can be used to represent the stream function and velocity potential of a static fluid [11]. We 

also showed that Dirac equation for a free particle, Dirac equation for an arbitrary field, and 

their corresponding solutions identified as potentials can be formulated from a general system 

of linear first order partial differential equations [12]. A general system of linear first order 

partial differential equations can be written in the form [13] [14] 

     
    
   

 

   

 

   

       
 

 

   

     
  

 

   

    
                                                                 

The system of equations given in Equation (3) can be rewritten in a matrix form as 

    
 

   

 

   

            

 

   

                                                                                        

where               
 ,                                     with   ,    

and   are matrices representing the quantities    
 ,    

 ,   
 , which are assumed to be constant 

in this work, and    is a matrix that represents the quantity   , where   is a dimensional 

constant. While the quantities  ,   and    represent physical entities related directly to the 

physical properties of the particle under consideration, the quantities    represent the 

potentials of an external field, such as an electromagnetic field or the matter field of a 

quantum particle. In order to formulate a physical theory from the system of equations given 



in Equation (4), it is necessary to determine the unknown quantities   ,    and  , as well as 

the mathematical conditions that they must satisfy, such as commutation relations between 

them. The commutation relations between the matrices can be determined if we apply the 

operator          
    on the left on both sides of Equation (4) as follows 

    
 

   

 

   

     
 

   

 

   

  

     
 

   

 

   

           

 

   

                                                           

Since the quantities   ,   ,  ,   and   are assumed to be constant, Equation (5) becomes 

    
  

 

   
 

 

   

              
  

      

 

   

 

   

  

        
 

   

 

   

        

 

   

               

 

   

         
 

   

 

   

   

    
     

   

 

   

           

 

   

 

   

   

   
  

                     

 

   

 

   

          

 

   

                 

 

   

        

    
     

   

 

   

                                                                                                                                             

In order to describe the dynamics of a particular physical system, undetermined parameters 

given in Equation (4) must be specified accordingly. To obtain Dirac equation for an arbitrary 

field we set         ,     and            . In this case Equation (4) becomes 

    
 

   

 

   

            

 

   

                                                                                           

where the matrices    and    have been identified with Dirac matrices    as follows 

    

    
    
     
     

            

    
    
     
     

            

     
    
    
     

             

    
     
     
    

          



For the case of Dirac equation, the matrices    and   satisfy the following conditions 

  
                                                                                                                                                           

                                                                                                                                          

It is seen from Equation (9) that the quantity    represents an internal source which is 

associated with a dynamical process of a quantum particle. For example, a quantum particle 

is undergoing some form of physical evolution that changes its physical structure, such as an 

accumulation of mass during its formation. In fact we will show that this physical process can 

be formulated using the MGESCP potential in which the energy spectrum depends 

continuously on distance. In terms of the gamma matrices    then Equation (7) can be 

rewritten in a covariant form as Dirac equation for an arbitrary field with an internal source 

   as [15] 

                                                                                                                                    

In this case Equation (6) also reduces to the following equation 

    
 
  

   
 

 

   

  

           

 

   

 

   

 
   

   
 
   
   

           

 

   

     

         

 

   

            
     

   

 

   

                                                             

If the quantities    are the four-potential of an electromagnetic field given by the 

identification                            then Equation (12) can be used to determine 

the dynamics of the components of the wavefunction                
 , where the term    

                are the components of the electric field   and the magnetic field  .  

Now we will discuss how free quantum particles can create their own physical fields in which 

wavefunctions can be identified as potentials. Therefore we set       
 
     . Equations (7) 

and (12) for free particles reduce to  

                                                                                                                                           

  
 
   

   
    

          
     

   
                                                                                                 

In the following we will consider two cases depending on the conditions that are applied to 

the internal source     in which either      or     . For the case     , Equation (13) 

reduces to Dirac equation for a free particle 

                                                                                                                                                  



For massive particles in which    , all components of Dirac wavefunction    satisfy the 

Klein-Gordon equation 

    

   
 
    

   
 
    

   
 
    

   
                                                                                               

And, in particular, if the wavefunctions are time-independent then we obtain 

    

   
 
    

   
 
    

   
                                                                                                                 

In this case the wavefunctions    can be viewed as static Yukawa potential 

        
    

 
                                                                                                                                  

where   and   are undetermined dimensional constants [10]. The identification of the 

wavefunctions    can be viewed either as static Yukawa potential or Coulomb potential is 

similar to the identification that we discussed in our work on the fluid state of Dirac quantum 

particles in which Dirac wavefunctions are identified either with a velocity potential or a 

stream function [11]. According to Yukawa work, the wavefunctions given in Equation (18) 

can be associated with the strong interaction between nuclear particles. 

For massless time-independent particles, the Klein-Gordon equation given in Equation (17) 

reduces to Laplace equation 

    

   
 
    

   
 
    

   
                                                                                                                       

Solutions to Laplace equation can be written in the form 

          
 

 
                                                                                                                                         

In this case the wavefunctions    can be viewed as static Coulomb potential, where   is an 

undetermined dimensional constant, which is associated with the electromagnetic interaction 

between elementary particles. 

As mentioned in the introduction, we will discuss possible bound states of a dwarf hydrogen-

like atom which can be identified with a neutron therefore we will need to use a more general 

form of Yukawa potential, which is the MGESCP potential given as in Equation (2). Since 

the MGESCP potential has an extra term of the form         , therefore we now need to 

show how to derive this form of potential from Dirac equation with an internal source given 

in Equation (13). Now, Dirac wavefunctions    satisfy the following Klein-Gordon equation 

    

   
 
    

   
 
    

   
 
    

   
              

     

   
                                                     



In particular, if the wavefunctions are time-independent then we obtain 

    

   
 
    

   
 
    

   
             

     

   
                                                                        

It can be verified that a solution of the form      
   , where   and   are constants, 

satisfies the following equation 

    

   
 
    

   
 
    

   
      

       

 
                                                                                   

By comparing Equation (23) to Equation (22), we obtain the following equation for the 

internal quantity    

       
     

   
  

       

 
                                                                                                           

A differential equation for the quantity    can be determined by using the matrices    given 

in Equation (8), which is written in an explicit form as 

 

    
    
     
     

  
     

  
  

     
    
    
     

 
     

  
  

    
     
     
    

 
     

  

  

    
    
    
    

       
       

 
                                                                 

From Equation (25) we obtain the following equations for the quantity    

     
       

 
                                                                                                                              

 
     

  
          

     

  
  

     

  
          

     

  
  

     

  
                                                        

The equations given in Equation (27) show that the source    is constant and from Equation 

(29) this also results in the constancy of the Yukawa potential which can be written as 

    

 
  

   

  
                                                                                                                                            

Now we apply the results that have been obtained into the MGESP potential given in 

Equation (2), one of whose components has the form        
    . By comparing this 

potential to          we have       and     . If    and   are real then the 

function        
     represents a real but decreasing function with distance. In this case 

it is implied from Equation (28) that the quantity    must be imaginary, in which the source   

can be identified with a real source and the dimensional constant   is an imaginary number. 



On the other hand, if we require that the quantity    must be real, because it represents a real 

physical entity such as energy density, then the quantity   must be imaginary. In this case if 

we let     , where   is a real number, then we obtain         
          

        
 
 . 

This is the familiar oscillating function in physics that describes a harmonic motion. In our 

present interpretation of the function    we conclude that the potential        
     is an 

oscillating potential which can be applied to a physical system with bound states. In 

particular, with the Yukawa potential that is restrained by the condition given in Equation 

(28) then the MGESP potential given in Equation (2) is reduced to  

      
  
 
                 

  
 
 
  

  
        

  
 
 
  

 
  

  

  
                      

Except for the constant      , the potential given in Equation (29) has the form that is 

similar to the potential that describes an interaction between two fundamental quarks as 

proposed in the theory of quantum chromodynamics, namely,            . This type of 

potential describes interactions between two quarks that can be represented in the following 

picture 

 

                             

            Figure 1:  For small r   V = A/r                                                Figure 2:  For large r    V = Br                      

 

For small values of the distance   the potential manifests as a Coulomb potential      , 

however, for large values of distance the potential acts as a linear potential with respect to the 

distance     . The linear potential shown in Figure 2 is a flux tube of energy in which the 

quantity   has the dimension of a cross-sectional energy therefore by comparison we may 

also interpret the quantity    in Dirac equation given in Equation (7) also as a cross-sectional 

energy. The reduced form of the MGESP potential also indicates that a proton and an electron 

can attract strongly at very short distances so that they can bind and form a dwarf hydrogen-

like atom. 

 

3. Topological structures of elementary particles generated by Yukawa potential 

In this section we discuss further the restraint to the Yukawa potential given in Equation (28) 

which has been shown to reduce the MGESP potential to the potential that is proposed for the 

interaction between the quarks for strong force in particle physics. We now show that in fact 

the restrained Yukawa potential actually generates and determines mathematical structures of 



physical objects that may be identified with quantum mediators of the weak and strong 

interactions. Instead of giving a mathematical analysis of the restrained Yukawa potential 

given in Equation (28), as an illustration, we simply plot possible shapes that can be 

generated and determined by a restrained Yukawa potential from the relation given in 

Equation (28), namely,                , with different values given to the parameters 

  and         . Together, they possess a remarkable difference in their topological 

structures that may underlie physical effects that are associated with elementary quantum 

particles [16]. 

For the case         with                    we have the following possible 

shapes for elementary quantum particles 

                             

       Figure 3:                          Figure 4:                               Figure 5:                             Figure 6:      

 

For the case        with                    we have the following possible 

shapes for elementary quantum particles 

                          

      Figure 7:                            Figure 8:                              Figure 9:                            Figure 10:      

 

For the case       with                     we have the following possible 

shapes for elementary quantum particles 

                                

     Figure 11:                        Figure 12:                            Figure 13:                           Figure 14:        



 

For the case     with                            we have the following possible 

shapes for elementary quantum particles 

                              

 Figure 15:                          Figure 16:                           Figure 17:                             Figure 18:      

 

For the case     with                               we have the following 

possible shapes for elementary quantum particles 

                             

   Figure 19:                         Figure 20:                          Figure 21:                        Figure 22:        

 

For the case      with                                   we have the 

following possible shapes for elementary quantum particles 

                            

  Figure 23:                        Figure 24:                        Figure 25:                       Figure 26:          

 

4. A quantum dynamics of the weak and strong interactions 

In this section we will discuss whether a neutron can be modelled as a dwarf hydrogen-like 

atom with the two different mixed potentials given in Equations (1) and (2) so that it can be 

used to explain the physical processes associated with the beta minus decay. As shown in 



Section 2, these potentials can be formed from the three forms of potentials that have been 

derived from the Dirac equations. First we consider the mixed potential that is formed from 

the Coulomb potential and the Yukawa potential as given in Equation (1). As shown below, 

this form of potential can be used to explain how an electron can be repelled from a dwarf 

hydrogen-like atom composed of a proton and an electron. By differentiating Equation (1), 

we can obtain the following equations 

  

  
       

 

 
 
 

  
  

 

  
                 

   

   
        

  

 
 
  

  
 
 

  
  

  

  
                            

From Equation (30), the corresponding force of interaction             is obtained as  

            
 

 
 
 

  
  

 

  
                                                                                                             

According to classical electrodynamics, the net force acting on the electron must be zero 

when it is circulating in stable orbits. If we assume the net force acting on the electron to 

vanish when it moves in a stationary orbit of finite radius        , i.e.,         , 

then from Equation (31) we obtain the relation 

     
  

 
                                                                                                                                         

Since    , we require       . The mixed potential given in Equation (1) now takes the 

form 

      
  

 

  
 
 

 
 
 

 
                                                                                                                             

And the corresponding force of interaction             is  

      
  

 
  

 
  

 

  
 
 

  
  

 

  
                                                                                                        

In order to investigate further we need to know the nature of the stationary point at    . 

From Equation (30), the second derivative of       at     is found as 

   

   
  

 

   
                                                                                                                                            

Since we are considering the case for which the mixed potential given in Equation (35) is 

applied to the bound system of two charges of opposite signs, namely a proton and an 

electron, therefore the quantity   can be written as         , where     is a coupling 

constant. If    is the charge of the proton,     , and    is the charge of the electron, 

     , then we have        . Then from Equation (35) we obtain the condition 

         , therefore V(r) has a local maximum at    . Since            , the 

force is attractive for     and repulsive for    . This situation is seen similar to the case 

of weak interaction of beta minus decay in which a neutron turns into a proton and emits an 



electron and an anti-neutrino. First the neutron turns into a dwarf hydrogen-like atom, whose 

bound states will be described below using the MGESCP potential, then the electron moves 

in an orbit of zero force and then it is repelled from the dwarf hydrogen atom by a repulsive 

force. The force given in Equation (34) is rewritten as follows 

      
    

 
  

 
  

 

  
 
 

  
  

   

  
                                                                                                

The force given in Equation (36) is assumed to be a weak force. Since   is the radius of the 

stationary orbit therefore we can assume that the electron is ejected from the stationary orbit 

because the equilibrium of this system at     is unstable.  

It can be seen that the whole process of beta decay is a complicated physical process that is 

actually undergoes through many different physical configurations of the system, therefore it 

can only be described approximately by many different dynamics, only if we can formulate 

the whole physical process under a mathematical formulation that can give rise to each 

physical configuration by some form of limit associated with mathematical parameters that is 

used to describe the whole system. With this in mind in the following we will discuss in 

terms of Schrödinger wave mechanics a more complete structure of a neutron as a dwarf 

hydrogen-like atom using a more complete MGESCP potential given in Equation (2). 

Consider the time-independent Schrödinger equation 

 
 
 

  
                                                                                                                          

in which      is the More General Exponential Screened Coulomb Potential (MGESCP) 

given in Equation (2). Since the MGESCP potential is spherically symmetric, Equation (37) 

can be written in the spherical polar coordinates as  

 
 
 

  
 
 

  
 

  
   

 

  
  

  

 
   

        
  
 
                                       

where the orbital angular momentum operator    is given by 

       
 

    

 

  
     

 

  
  

 

     

  

   
                                                                                    

Solutions of Equation (38) can be found using the separable form 

                                                                                                                                           

where     is a radial function and     is the spherical harmonic. Applying Equation (40), 

Equation (38) is reduced to the system of equations 

                  
                                                                                                              



  
 
 

  
 
  

   
 
 

 

 

  
  

        

    
 
  
 
                                              

It has been shown that the radial solution        to Equation (42) can be obtained as  

           
                 

      
            

                                                                    

and the corresponding energy spectrum     is given by 

         
     

 

   
 
       

     

     
 

 

                                                                                   

where              
      

                    
 

 [8]. Although this energy 

spectrum is discrete with respect to the quantum numbers   and  , it depends continuously on 

the radial distance  . In order to interpret the energy spectrum given in Equation (44) as some 

of energy spectrum associated with the beta minus decay we need to apply the restraint 

condition applied to the Yukawa given in Equation (28) so that the MGESCP potential is 

reduced to the potential that is used to describe strong interaction at very short distances so 

that a proton and an electron can form a dwarf hydrogen-like atom. Then we obtain 

    
   

 
  

 

   
 
              

     
 

 

                                                                                            

Now we may interpret this continuous spectrum of energy with respect to distance as the 

energy spectrum of massive mediators associated with strong force described by the potential 

given in Equation (29). When a physical particle is created it is being created continuously 

until it reaches the size that is required for the system. This process happens in a very short 

time therefore it seems like an instantaneous creation. In particle physics, the parameter   of 

the exponential term is expressed in terms of the mass   of a force carrier as        . 

Therefore when the mass of the force carrier is being continuously created the parameter   is 

being getting larger, at the same time the radius   is also getting bigger, therefore the term 

        and also the term         . The mass that is accumulated by the force carrier 

must be supplied by the neutron. When the force carrier with required mass hits the electron, 

the latter will move further from the proton. On the other hand the MGESCP potential is 

reduced to the mixed Coulomb-Yukawa potential when the process of creation of the force 

carrier is complete. This form of potential provides a repulsive force to move the electron 

away. 
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