Cross-Double-Slit Experiment and Delayed-Choice-Cross-Double-Slit Experiment

Hui Peng 35964 Vivian PL, Fremont, CA 94536, USA

davidpeng949@hotmail.com

Abstract

We have performed cross-double-slit experiment and delayed-choice-cross-double-slit experiment, denoted as extended double-slit experiments. The cross-double-slit experiments show that the cross-double-slit apparatus creates not only two interference patterns, but also four cross-interference-patterns, which are created by two double-slit. The delayed-choice-cross-double-slit experiments disclose new phenomena: (1) photons behave as both wave and particle in the same experiment simultaneously, which violate Bohr's complementarity; (2) the cross-interference-pattern is created by one double-slit and one single-slit; (3) photons passing through the same slit behave as both wave and particle, referred it as the Wave-Particle-Paradox, which demands extensive study. We suggest to re-study wave-particle duality.

Key words: wave-particle duality, quantum mechanics, double-slits experiment, interference pattern, delayed-choice experiment

1. Introduction

In Young's double-slit experiments, photons create interference patterns, even emitting one photon at a time [1]. This result is interpreted as that each photon has arrived by both slits at the same time. Feynman stated that this wave-particle dual behavior contains the basic mystery of quantum mechanics [2]. The mechanism behind the law is unknown [3]. Utilizing only double-slit apparatus is not sufficient for understanding fully the wave-particle duality. Variety experiments have been proposed and performed, such as using entanglement photos [4], placing the light source on a satellite and measure on the ground [5]. The double-slit experiment has been performed with varying numbers of slits [6], such as multiple *parallel* slits. To test the interpretation, which-way-double-slit experiments have been proposed and performed [7]. The experimental result is that once which slit a photon passing through is determined, the wave-like interference pattern disappeared and the wave function is collapsed, namely the photon behaviors like a particle. It is interpreted as that two complementary natures, wave and particle, of photons cannot all be observed or measured simultaneously. Bohr called this either wave-like or particle-like behavior "complementarity" and stated that the type of measurement performed on a quantum system determines its behavior [8]. The operational definition of "wave/particle" stands for "ability/inability to create interference" [9].

Wheeler proposed delayed-choice experiments to decide whether a photon "senses" the experimental apparatus in the double-slit experiment and adjusts its behavior to fit [10].

Recently, for studying wave-particle duality further, the cross-double-slit apparatus is proposed [11]. In this article, we report the observations of the cross-double-slit, which-way-cross-double-slit and delayed-choice-cross-double-slit experiments.

- 2. Cross-Double-Slit Experiment
- 2.1. Review of Cross-Double-Slit Apparatus

The cross-double-slit apparatus contains a source (not shown), a slit wall with four slits, and a screen/detector. Where slits A and B are in z-direction, slits C and D are in y-direction. The photons travel in negative x-direction (Fig.1a).

Fig. 1a Cross-Double-Slit Apparatus

Fig. 1b Tilt-Cross-Double-Slit Apparatus

An alternative configuration: slits A and B are at an angle with slits C and D (Fig. 1b).

2.2. Cross-Double-Slit Experiment

Based on the results of regular double-slit experiment, one knew that slits A and B alone cause an interference patter in y-direction on the screen. Similarly, slits C and D alone cause an interference patter in z-direction. What pattern will the Cross-Double-Slit Experiment show?

We have performed the experiment and obtain the interesting and encourage results.

Fig. 2a Interference Patterns of Cross-Double-Slit Experiments The observed patterns (Fig. 2a) are as predicted in [11]:

- (A) The slits A and B cause the horizontal interference pattern, while slits C and D cause the vertical interference pattern. Two interference patterns are perpendicular to each other.
- (B) There are some kinds of "interference patterns" as shown in First, Second, Third, and Fourth coordinate system quadrants respectively. We refer this kind of "interference patterns" as "Cross-Interference-Patterns".
- 2.3. Tilt-Cross-Double-Slit Experiment

The observed pattern of the tilt-cross-double-slit experiment is shown in Fig. 2b.

Fig. 2b Interference Patterns of Tilt-Cross-Double-Slit Experiments

(A) The slits A and B cause the tilted interference pattern, while slits C and D cause the vertical interference pattern. Two interference patterns are at an angle to each other. (B) There is the cross-interference-pattern.

2.4. On "Cross-Interference-Pattern"

Now let's study what creates the cross-interference-pattern. For this aim, let's consider a cross-single-slit, which contains a vertical slit A and a horizontal slit C, as shown in Fig. 3a.

Fig. 3a Cross-Single-Slit

Fig. 3b Pattern of Cross-Single-Slit

This cross-single-slit apparatus creates a pattern as shown in Fig.3b.

Note there is neither interference pattern nor "Cross-Interference-Patterns", which implies that two perpendicular single slits A and C do not create interference-patterns.

Therefore we conclude that the "Cross-Interference-Pattern" is created by Cross-double-slit.

2.5. Interpretation

Now we face a difficult task that is to try to interpretation the experimental result.

For regular double-slit experiment, if we cover one slit at a time and measure the probability at the screen/detector, P_A is the probability of the wave from slit A (which is measured when slit B is blocked off) and P_B is the probability from slit B (when slit A is blocked). The wave functions ψ_A and ψ_B satisfy different boundary conditions. So, in a double slit experiment, the probability P_{AB} observed when both slits are open is certainly not the sum of P_A and P_B [12]. The discrepancy between P_{AB} and $P_A + P_B$ is due to a contribution from non-classical paths, and creates the "interference" of the two waves. The probability, ignoring the effects of non-classical paths, is

$$P_{AB} = (\psi_A + \psi_B)^2 = \psi_A^2 + \psi_B^2 + (\psi_A^* \psi_B + \psi_A \psi_B^*),$$
(1)

The last term in Eq. 1, $(\psi_A^*\psi_B + \psi_A\psi_B^*)$, is the "interference term" [3].

In this article, we ignore the effect of non-classical paths. Following the same argument, when cross-double-slits A, B, C, and D are open, the probability amplitude for the photons landed on the screen/detector is the sum of the probability amplitudes for photons passing through each slit separately,

$$\psi = \psi_A + \psi_B + \psi_C + \psi_D$$

then the probability is

$$P = |\psi|^{2} = \psi_{A}^{2} + \psi_{B}^{2} + \psi_{C}^{2} + \psi_{D}^{2} + (\psi_{A}^{*}\psi_{B} + \psi_{A}\psi_{B}^{*}) + (\psi_{C}^{*}\psi_{D} + \psi_{C}\psi_{D}^{*}) + (\psi_{A}^{*}\psi_{C} + \psi_{A}\psi_{C}^{*}) + (\psi_{A}^{*}\psi_{D} + \psi_{A}\psi_{D}^{*}) + (\psi_{B}^{*}\psi_{C} + \psi_{B}\psi_{C}^{*}) + (\psi_{B}^{*}\psi_{D} + \psi_{B}\psi_{D}^{*}).$$
(3)

(2)

where

 $(\psi_A^*\psi_B + \psi_A\psi_B^*)$ represents the interference term created by the slits A and B;

 $(\psi_C^*\psi_D + \psi_C\psi_D^*)$ represents the interference term created by the slits C and D;

 $(\psi_A^*\psi_C + \psi_A\psi_C^*)$ represents the cross-interference term created by the slits A and C;

 $(\psi_A^*\psi_D + \psi_A\psi_D^*)$ represents the cross-interference term created by the slits A and D;

 $(\psi_B^*\psi_C + \psi_B\psi_C^*)$ represents the cross-interference term created by the slits B and C;

 $(\psi_B^*\psi_D + \psi_B\psi_D^*)$ represents the cross-interference term created by the slits B and D.

Following the regular interpretation of regular double-slit experiments, we interpret that a photon passes through 4 slits simultaneously, and create the interference patterns.

Note this interpretation is not applicable to the which-way-cross-double-slit and delayed-choice-cross-double-slit experiments as shown below.

3. Which-Way-Cross-Double-Slit and Delayed-Choice-Cross-Double-Slit Experiment

3.1. Experiment and Observation

It is known that an observation of which slit the photon passed through causes the interference pattern disappeared, namely the observation converts the wave-like behavior to particle-like behavior. If the observer is placed before the slit wall, it is referred as which-way-cross-double-slit experiment, while the observer is placed behind the slit wall and is on and off, then it is referred as delayed-choice-cross-double-slit experiment.

Now let's perform delayed-choice-cross-double-slit experiment by putting an observer behind one of slits, say slit A, which is represented by dotted line A in Fig. 4, to observe photons passing through slit A.

Fig. 4 Delayed-Choice-Cross-Double-Slit Experiment

Without the observation, one obtains interference patterns as show in Fig. 2a and 2b.

After a photon leave the source, before landing on the screen/detector, turn on the observation, we obtain the pattern as shown in Fig. 5.

Fig. 5 Interference pattern of Delayed-Choice-Cross-Double-Slit Experiment

Fig. 5 shows the following:

- The horizontal interference pattern due to the slits B and A *disappeared*, since photons passing through slit A are observed, which implies that photons passing through slits A and B behave as particles.
- (2) There is still vertical interference pattern due to slits C and D, which implies that photons passing through slits C and D behave as wave.
- (3) There are still "Cross-interference-pattern" in all of four coordinate system quadrants, caused by slits B and C and by slits B and D, which implies that photons pass through slit B, slit C, and slit D as wave.

3.2. Mathematical Interpretation

Mathematically, when slits C and D are "open", slit B is "open" and "close", and slit A is "closed", the probability amplitude for the photons landed on the screen/detector is the sum of the probability amplitudes for photons passing through each slit separately,

$$\Psi = \Psi_{\rm B} + \Psi_{\rm C} + \Psi_{\rm D},\tag{4}$$

$$\psi_{\rm A} = 0. \tag{5}$$

Then the probability is

$$P = \psi_B^2 + \psi_C^2 + \psi_D^2 + (\psi_C^*\psi_D + \psi_C\psi_D^*) + (\psi_B^*\psi_C + \psi_B\psi_C^*) + (\psi_B^*\psi_D + \psi_B\psi_D^*).$$
(6)
Where

 $(\psi_C^*\psi_D + \psi_C\psi_D^*)$ represents the interference term created by the slits C and D;

 $(\psi_B^*\psi_C + \psi_B\psi_C^*)$ represents the cross-interference term created by the slits B and C;

 $(\psi_B^*\psi_D + \psi_B\psi_D^*)$ represents the cross-interference term created by the slits B and D.

4. Wave-Particle-Paradox

Now we face a tremendous difficult task that is to try to interpret the experimental result, since much more complicated situations:

- (1) a photon is emitted, if there is no observer, it can pass through each of slits A, B, C, D to create two interference patterns and four cross-interference-patterns. But the photon has to "remember" that it passes through slits A and B to create the horizontal interference pattern; it passes through slits C and D to create the vertical interference pattern; it passes through slits A and C, slits A and D, slit B and C, and Slits B and D to create the cross-interference-patterns;
- (2) then turn on the observation, before the photon reaching the screen/detector, it faces several options:
 - (A) when the photon passes through slit A, it has to behave as a *particle*;
 - (B) when the photon passes through slit B, it has trouble: first it needs to behave as a *particle* so that the interference pattern created by slits A and B disappeared; at the same time, it needs to behave as a *wave* so that the cross-interference-patterns created by slits B and C and by slits B and D exist;
 - (C) when the photon passes through slits C and D, it needs to behave as *wave*, so that the interference pattern retains.

The severe question is: how can a photon adjust its behaviors simultaneously when pass through different slits accordingly?

The wave-like and particle-like behaviors of photons coexist in the same experiment with the same experimental apparatus, which suggest us to re-study the wave-particle duality and complementarity.

Photons, as wave, pass through slits B, C and D to create the Cross-interference-pattern, and pass through slits C and D to create the interference-pattern; while photons pass through slits A and B as particles. We denote it as "*Wave-Particle-Paradox*", which challenges us: (1) how can photons passing through the same slit B behave as both wave and particle? (2) how can photons passing through the slits A and B behave as wave when it is not observed, photons passing through the slits A and B behave as particle when it is observed; while photons passing through the slits C and D behave always as wave regardless with or without observation at slit A?

5. Further Experiment.

For further study, the same experiments should be done with photons emitted one at a time to determine whether a photon is passing through 4 slits simultaneously; and whether there are same

interference patterns and cross-interference-patterns. Furthermore, do the same experiments with electrons.

6. Conclusion

We have performed two experiments, cross-double-slits and delayed-choice-cross-double-slit experiments. The observations: (1) show that cross-double-slit causes not only two interference patterns, but also four cross-interference-pattern; (2) the cross-interference-pattern is generated either between two double-slit or between one double-slit and one single slit; (3) disclose a new feature of photons, called as the Wave-Particle-Paradox, which demands extensive study; and (3) suggest to re-study wave-particle duality.

Reference

- (1) W. Rueckner and J. Peidle, Am. J. of Phy. 81, 951 (2013).
- (2) R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics (Addison-Wesley, Reading, 1966), Vol. 3.
- (3) M. Gottlied and R. Pfeiffer, www.feynmanlectures.caltech.edu.
- (4) Y. H. Kim, et al., arXiv:quant-ph/9903047 (1999).
 F. Kaiser, et al., Science 02 Nov (2012).
- (5) F. Vedovato, et al., Science advances 25 Oct (2017).
- (6) S. Eibenberger, et al., Physical Chemistry 15 (35) (2013).
- (7) J. Q. Quach, Phys. Rev. A 95, 042129 (2017).
 S. Frabboni, G. Gazzadi, and G. Pozzi, Appl. Phys. L. 97, 263101 (2010).
- (8) N. Bohr, in Quantum Theory and Measurement, J.A. Wheeler and W.H. Zurek, Eds. (Princeton Univ. Press, Princeton, NJ, 1984), pp. 9–49.
- (9) G. Greenstein and A.G. Zajonc, The Quantum Challenge: Modern Research on the Foundations of Quantum Mechanics (Jones and Bartlett, Boston, 1997).
 J. Baggott, "The Quantum Story: A History in". Oxford University Press (2011).
 R. Ionicioiu and D.R. Terno, Phys. Rev. Lett. 107, 230406 (2011).
- (10) A. R. Marlow, Editor, "Mathematical Foundations of Quantum Theory", (Academic Press, 1978).
- (11) Hui Peng, www.open-science-repository.com/physics-45011872.html (2019).
- (12) R. Sawant, et al., Physical Review Letters, 113(12), (2014).