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The electron as a harmonic 
electromagnetic oscillator 

Introduction 
In previous papers1, we boldly equated the c2 and a2·ω2 factors in the E = m·c2 and E = m·a2·ω2 equations 

to get the Compton scattering radius (a = λC/2π )of an electron. We felt entitled to equate these two 

energy formulas because the Planck-Einstein relation (E = ħ·ω) then allows us to substitute ω for E/ħ, 

and we get a wonderfully elegant derivation of the Compton radius2:  

E = m𝑎2ω2 = m𝑎2
E2

ℏ2
⟺ ℏ2 = m𝑎2E = m𝑎2m𝑐2 = m2𝑎2𝑐2 

⟺ 𝑎 =
ℏ

m𝑐
=

λ𝐶

2π
≈ 0.386 × 10−12 m 

While our critics seem to feel that we are just “casually connecting disparate formulas” here3, the only 

formula that needs to be ‘connected’ or explained here is the E = m·a2·ω2 formula. In our 

Zitterbewegung interpretation – or our realist interpretation – of quantum electrodynamics, this 

formula represents the oscillator model of the electron. Indeed, the energy in an oscillation – think of an 

electric circuit, or a mass on a spring – is proportional to the square of (i) the amplitude of the oscillation 

(which we’ll write as a) and (ii) the frequency of the oscillation. So we will have some proportionality 

coefficient k and we can write the energy as: 

E = k𝑎2ω2 

                                                           
1 See http://vixra.org/author/jean_louis_van_belle. For those who don’t have time to read, I have uploaded two YouTube 
videos that explain the basic approach and, more in particular, the idea of a two-dimensional oscillation 
(https://www.youtube.com/watch?v=tsliySnOviQ and https://www.youtube.com/watch?v=gD79nBZwxjI). 
2 In the literature, one will usually find references to the Compton wavelength. References to the reduced Compton wavelength 
(which we effectively interpret as a radius) are not so common. The Zitterbewegung (zbw) interpretation of the nature of an 
electron – of which our model is a variant – is fully consistent with this concept. In our zbw interpretation, we add the notion of 
an elementary cycle. In other words, we assume that one oscillation – one fundamental cycle – packs an amount of physical 
action that is equal to Planck’s quantum of action: S = h. This explains why we can substitute ω for E/ħ in the oscillator 
equations.    
3 While the Institute of Physics (IOP) and World Science Publishing (WSP) were initially interested in publishing my book on the 
Zitterbewegung interpretation of quantum mechanics (http://vixra.org/abs/1901.0105), an academic reviewer effectively 
claimed that I am just "casually connecting disparate formulas to try to build up credibility." IOP and WSP then decided to not 
publish the book. David Hestenes himself, who revived the zbw interpretation of quantum mechanics in the 1980s and 1990s, 
had some similar negative comments in his very first exchanges with me. The comments are or were everything but objective 
or scientific. They illustrate the rather sorry state of academic physics: references and bibliographies are far more important 
than original content. While David Hestenes would probably not want to be associated with our writings, we continue to refer 
to our realist interpretation of quantum mechanics as a Zitterbewegung interpretation. However, we’d rather refer to Dirac’s 
original writings on it now, if only because the models of Hestenes and others are couched in complicated math. To be precise, 
Hestenes invented a new geometric calculus, which we think makes sense but, at the same time, also over-complicates the 
matter at hand – especially for the audience we are targeting: amateur physicists who are not afraid to study some math, but 
also do not want more math than strictly necessary. 

http://vixra.org/author/jean_louis_van_belle
https://www.youtube.com/watch?v=tsliySnOviQ
https://www.youtube.com/watch?v=gD79nBZwxjI
http://vixra.org/abs/1901.0105
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For example, if we think of a mass on an ideal spring (no friction), then one can show that the 

proportionality constant (k) will be equal to m/2, so the formula becomes: 

E =
1

2
m𝑎2ω2 

It is easy to see that one can get the E = m·a2·ω2 by combining two oscillators, with a 90-degree phase 

difference (we have a sine and a cosine function, in other words), in a 90-degree angle. This is visualized 

below: think of the green dot in Figure 1 as the mass on the springs (plural!): it will now go round and 

round with some constant tangential velocity v = a·ω, and we can add the potential and kinetic energy in 

both oscillators to get the E = m·a2·ω2 = m·v2 equation. 

Figure 1: E = ma2ω2 = mv2 

 

The only question we need to answer now is why we would equate v to c, especially because our 

oscillator model seems to be non-relativistic. Before we address these questions – in a way that will, 

hopefully, satisfy our critics – we would like to quickly review the key results of our model. These results 

– which include a geometric explanation of the spin and orbital angular momentum of an electron – are, 

effectively, at least as significant as our geometric explanation of the Compton scattering radius. After 

this short review, we will get into the nitty-gritty of the model, which – as mentioned – will, hopefully, 

demonstrate convincingly that we are not just “casually connecting disparate formulas”. 

Key results of the oscillator model 
The oscillator model for our electron shares some similarities with the idea of a photon. Indeed, we get 

the k = m equation quite naturally when thinking of photons. The de Broglie equation for a photon gives 

us the following formula for the wavelength: 

ℎ = p ∙ λ =
E

𝑐
∙ λ ⟺ λ =

ℎ𝑐

E
 

We can then write: 

E = k𝑎2ω2 = kλ2
E2

ℎ2
= k

ℎ2𝑐2

E2

E2

ℎ2
= k𝑐2 = m𝑐2 ⟺ k = m and E = m𝑐2 

The logic behind our oscillator model for the electron is basically the same. We assume that one 

oscillation – one fundamental cycle – packs an amount of physical action that is equal to Planck’s 

quantum of action, which we write as S = h. Physical action is the product of force, time and distance. 
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The distance here is the distance along the zbw circumference, which is equal to λC = 2π·a = h/mc. The 

cycle time is T = 1/f = h/E. Hence, we can calculate the force from the S = F·λC·T formula: 

F =
𝑆

λ𝐶 ∙ T
=

ℎ

ℎ
m𝑐 ∙

ℎ
E

=
m2 ∙ 𝑐3

ℎ
 

The energy is the force times the distance over the loop, so it’s equal to: 

E = F ∙ λ𝐶 =
m2 ∙ 𝑐3

ℎ
∙

ℎ

m𝑐
= m ∙ 𝑐2 

The mass m is the rest mass of our electron⎯it is, obviously, not the mass of the pointlike charge. Our 

pointlike charge has zero (rest) mass: it’s just an electric charge with no other attributes. The 

Zitterbewegung model is Wheeler’s theory of ‘mass without mass’: the mass of the electron is the 

equivalent mass of the energy in the oscillation of the pointlike charge.  

Let us summarize the key results we get out of these model⎯in case the reader would also think that, 

so far, we have just been “casually connecting disparate formulas”. We can see that the magnitude of 

the force (about 0.034 N) is rather enormous in light of the sub-atomic scale4: 

F =
E

λ𝐶
≈

8.187 × 10−14 J

2.246 × 10−12 m
≈ 3.3743 × 10−2 N 

The associated current is equally humongous. It is a household-level current (about 2 ampere) but, 

again, this is huge at the sub-atomic scale:  

I = qe𝑓 = qe

E

ℎ
≈ (1.6 × 10−19 C)

8.187 × 10−14 J

6.626 × 10−34 Js
≈ 1.98 A (𝑎𝑚𝑝𝑒𝑟𝑒) 

However, these results are consistent with the calculation of the magnetic moment, which is equal to 

the current times the area of the loop and which is, therefore, equal to: 

μ = I ∙ π𝑎2 = qe

m𝑐2

ℎ
∙ π𝑎2 = qe𝑐

π𝑎2

2π𝑎
=

qe𝑐

2

ℏ

m𝑐
=

qe

2m
ℏ 

It is also consistent with the presumed angular momentum of an electron, which is that of a spin-1/2 

particle. As the oscillator model implies the effective mass of the electron will be spread over the 

circular disk5, we should use the 1/2 form factor for the moment of inertia (I). We write: 

L = 𝐼 ∙ ω =
𝑚𝑎2

2

𝑐

𝑎
=

𝑚𝑐

2

ℏ

𝑚𝑐
=

ℏ

2
 

We now get the correct g-factor for the pure spin moment of an electron: 

𝛍 = −g (
qe

2m
) 𝐋 ⇔

qe

2m
ℏ = g

qe

2m

ℏ

2
⇔ g = 2 

                                                           
4 A force of 0.033743 N is equivalent to a force that gives a mass of about 34 gram (1 g = 10-3 kg) an acceleration of 1 m/s per 
second. This is huge at the sub-atomic scale. 
5 This is a very essential point. It is also very deep and philosophical. We say the energy is in the motion, but it’s also in the 
oscillation. It is difficult to capture this in a mathematical formula. In fact, we think this is the key paradox in the model. 
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We have also augmented the Bohr-Rutherford model to calculate all of the values that relate to the 

electron (atomic) orbitals. Table 1 summarizes these results. 

Table 1: Intrinsic spin versus orbital angular momentum 

Spin-only electron (Zitterbewegung) Orbital electron (Bohr orbitals) 

S = h S𝑛 = 𝑛h for 𝑛 = 1, 2, … 

E = m𝑐2 E𝑛 = −
1

2

α2

𝑛2 m𝑐2 = −
1

𝑛2 E𝑅  

𝑟 = 𝑟C =
ℏ

m𝑐
 𝑟𝑛 = 𝑛2𝑟B =

𝑛2𝑟C

α
=

𝑛2

α

ℏ

m𝑐
 

𝑣 = 𝑐 𝑣𝑛 =
1

𝑛
α𝑐 

ω =
𝑣

𝑟
= 𝑐 ∙

m𝑐

ℏ
=

E

ℏ
 ω𝑛 =

𝑣𝑛

𝑟𝑛
=

α2

𝑛3ℏ
m𝑐2 =

1
𝑛2 α2m𝑐2

𝑛ℏ
 

L = 𝐼 ∙ ω =
1

2
∙ m ∙ 𝑎2 ∙ ω =

m

2
∙

ℏ2

m2𝑐2

E

ℏ
=

ℏ

2
 L𝑛 = 𝐼 ∙ ω𝑛 = 𝑛ℏ 

μ = I ∙ π𝑟C
2 =

qe

2m
ℏ μ𝑛 = I ∙ π𝑟𝑛

2 =
qe

2m
𝑛ℏ 

g =
2m

qe

μ

L
= 2 g𝑛 =

2m

qe

μ

L
= 1 

 

Last but not least, we argue6 that the anomalous magnetic moment of an electron might be explained 

by a very classical coupling between the two moments because of the Larmor precession of the electron 

in the Penning trap. 

While these results should impress, our critics seem to want to know whether or not the E = m·a2·ω2 

equation makes sense in a relativistically correct analysis. Before we answer that question, we will first 

reflect some more about the nature of the force that keeps our pointlike charge in orbit. In fact, we will 

see that’s the answer to the question: we will show it’s just the electromagnetic force: the same force 

that causes persistent or perpetual currents in superconducting materials.  

The only difference is that the scale ensure we do not need the superconducting material to actually 

hold the electron(s): it is a persistent current in free space. Because Maxwell’s equations for the 

electromagnetic force are relativistically correct, our analysis should be relativistically correct. Let us 

show why and how. 

The Zitterbewegung force as the electromagnetic force 
We think of the green dot in Figure 1 as a pointlike charge with zero rest mass. As such, it is its circular or 

oscillatory motion – its Zitterbewegung, in other words7 - that gives the electron its mass. Hence, we 

                                                           
6 Jean Louis Van Belle, The Not-So-Anomalous Magnetic Moment, 21 December 2018, http://vixra.org/pdf/1812.0233v3.pdf. 
7 Zitter is German for shaking or trembling. It refers to a presumed local oscillatory motion which Erwin Schrödinger stumbled 
upon when he was exploring solutions to Dirac’s wave equation for free electrons. Schrödinger shared the 1933 Nobel Prize for 
Physics with Paul Dirac for “the discovery of new productive forms of atomic theory”, and it is worth quoting Dirac’s summary 
of Schrödinger’s discovery: “The variables give rise to some rather unexpected phenomena concerning the motion of the 

http://vixra.org/pdf/1812.0233v3.pdf
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have a hybrid description of a charged particle here: it combines the idea of a pointlike charge and 

perpetual motion, and the c2 = a2·ω2 hypothesis defines both the frequency as well as the amplitude of 

what we will refer to as the rest energy oscillation. It is that what gives mass to our electron: its rest 

mass is nothing but the equivalent mass of the energy in the oscillation.  

The geometry of the model (Figure 1) gives us two formulas: v = a·ω and v = p/m. These formulas are 

relativistically correct. Our oscillator model only needs to explain why we can equate v to c. It also needs 

to explain the nature of the force that keeps the pointlike charge in its orbit.8 Figure 2 shows the circular 

motion must be driven by a tangential force F whose Fx and Fy components depend on the position of 

the pointlike charge (the green dot in Figure 2). That (x, y) position is given by the implicit x2 + y2 = a2 

equation, which describes a circle with radius a. The geometry of the situation allows us to describe the 

components of F as the following functions of the magnitude (F) and the x and y coordinates9: 

• Fx = F·y = F·sin(θ) = F·cos(θ − π/2) = F·cos(ωt − π/2)  

• Fy = F·x = F·cos(θ) = −F·sin(θ − π/2) = −F·sin(ωt − π/2) 

Figure 2: The Zitterbewegung model of an electron 

 

We thus get the following formula for the force: 

F = Fx + Fy = F·cos(θ−π/2) − i·F·sin(θ−π/2) = F·e−i(−π/2) 

                                                           
electron. These have been fully worked out by Schrödinger. It is found that an electron which seems to us to be moving slowly, 
must actually have a very high frequency oscillatory motion of small amplitude superposed on the regular motion which 
appears to us. As a result of this oscillatory motion, the velocity of the electron at any time equals the velocity of light. This is a 
prediction which cannot be directly verified by experiment, since the frequency of the oscillatory motion is so high and its 
amplitude is so small. But one must believe in this consequence of the theory, since other consequences of the theory which 
are inseparably bound up with this one, such as the law of scattering of light by an electron, are confirmed by experiment.” 
(Paul A.M. Dirac, Theory of Electrons and Positrons, Nobel Lecture, December 12, 1933) Dirac refers to the phenomenon of 
Compton scattering of light by an electron here and it is, therefore, highly significant that we get the formula for the Compton 
radius of an electron out of our model. 
8 This echoes one of Dr. Burinskii’s very first communications to me. Dr. Alexander Burinskii is an eminent quantum physicist 
who has worked almost all of his life on various electron models. He wrote the following to me when I first contacted him on 
the viability of my model: “I know many people who considered the electron as a toroidal photon  and do it up to now. I also 
started from this model about 1969 and published an article in JETP in 1974 on it: "Microgeons with spin". Editor E. Lifschitz 
prohibited me then to write there about Zitterbewegung [because of ideological reasons ], but there is a remnant on this 
notion. There was also this key problem: what keeps [the pointlike charge] in its circular orbit?” 
9 The sin(θ) = cos(θ−π/2) identity is easy to remember when one draws the graphs. In contrast, the cos(θ) = −sin(θ−π/2) identity 

requires some more manipulation: cos(θ) = sin(π/2−θ) = − sin(θ−π/2). We also use the cos(θ) = cos(−θ) and sin(θ) = −sin(−θ) 

formulas. We can, therefore, write: cos(θ−π/2) = cos(π/2−θ) = sin(θ).   
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This formula uses the geometry of complex numbers10 and the formula for the complex conjugate: e−i = 

cos(θ) − i·sin(θ) = cos(−θ) + i·sin(−θ). Of course, we can – and should – relate this force formula to the 

elementary wavefunction, which describes the physical position (i.e. the x- and y-coordinates) of our 

pointlike charge (the green dot in Figure 1 and Figure 2) and whose motion is described by: 

r = a·ei = x + i·y = a·cos(θ) + i·a·sin(θ) = a·cos(ωt) + i·a·sin(ωt) = (x, y) 

However, this does not answer the more fundamental question: what is the nature of the force? The 

answer looks remarkably easy. Because the force has only a pointlike charge to grab onto, it must be 

electromagnetic. It must be the Lorentz force F = qe·E + qe·vB. Of course, this is interesting because, 

using complex-number geometry once again, we may write the magnetic field vector as B = −i·E/c and, 

hence, the F = qe·E + qe·vB becomes: 

F = qe·E + qe·vB = qe·E − i·qe·(v/c)E = Fx + Fy = F·e−i(−π/2) 

This is interesting ! The picture that is emerging here makes us think of (i) the horizontal component of 

the electromagnetic force on the zbw charge as an electric force (Fx = qe·E) and (ii) the vertical 

component as the magnetic force (Fy =  qe·vB = −i·qe·(v/c)E). Needless to say, the velocity vector here 

is not the tangential velocity but the velocity of the zbw charge along the x-direction. Let us briefly 

examine the dynamics by looking at what happens at the usual special angles θ = 0, π/2, π and 3π/4:  

• The horizontal velocity v is zero when the position of our charge is equal to (x, y) = (a, 0). 

Hence, θ =  0 or π, at which point F·cos(0−π/2) = F·cos(−π/2) = F·cos(π/2) = F·cos( π−π/2) = 0. 

Hence, qe·E = Fx = 0 and all of F is magnetic – and magnetic only – at these two points. In other 

words, the direction of the force is all vertical and all magnetic, and the electric force is zero: F = 

Fy = −i·F·sin(θ−π/2) 11. To be specific, we get the following: 

(1) At θ = 0, we get F = Fy = − i·F·sin(−π/2) = i·F. 

(3) At θ =  π, we get F = Fy = − i·F·sin(+π/2) = −i·F. 

• In contrast, we assume v equals the speed of light – the highest possible speed (v = c) – when 

the pointlike charge passes the x = 0 point along the x-axis. The position of our charge is then 

equal to (x, y) = (0, a) and, hence, the argument of the wavefunction is equal to θ = π/2 here. 

The magnetic force is equal to −i·F·sin(π/2−π/2) = −i·F·sin(0) = −i·F·sin(−π) = 0. Hence, all of F is 

electric – and electric only – at these two points. In other words, the direction of the force is all 

horizontal and all electric, and the magnetic force is zero. To be specific, we get the following: 

(2) At θ = +π/2, we get F = Fx = F·cos(+π/2−π/2) = F·cos(0) = +1·F. 

(4) At θ = −π/2, we get F = Fx = F·cos(−π/2−π/2) = F·cos(−π) = −1·F. 

                                                           
10 I put the cosine and the imaginary unit in boldface (cos and i) to respect the vector character of the quantities involved. I did 

not do the same for e−i(−π/2): we do equate a complex number with a vector quantity in this analysis, and so we don’t need to 
emphasize that. 
11 Notation becomes somewhat special here. Vector quantities are represented in boldface type (e.g. E or Fx). Here, we write 
the imaginary unit i as a vector quantity (i), which we then multiply by the (constant) magnitude (F) of the force (F). The force 

can, effectively, point in one or the other direction, so that explains the  sign in the F =  i·F formula. It may take the reader a 
while to think this through but we took care to ensure consistent notation.  
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The notation is somewhat unusual here, as we use boldface for the + or − sign, or for 1. We do write 1 as 

a vector quantity here. This is a logical consequence of us writing B = −i·E/c. The minus sign is there 

because we need to combine several conventions here: there is the classical physical right-hand rule  for 

E and B, but we also need to combine the right-hand rule for the coordinate system with the convention 

that multiplication with the imaginary unit amounts to a counterclockwise rotation by 90 degrees. 

Hence, the minus sign is necessary for the consistency of the description. It ensures that we can 

associate the a·ei and a·e−i functions with left- and right-handed polarization respectively.12 

Now that we have described the nature of the Zitterbewegung force – it is nothing but the 

electromagnetic force on a pointlike charge with zero rest mass – all that is left to do is to analyze how 

this works in terms of a harmonic oscillation. As speeds go from 0 to c, we should use the formulas for a 

relativistic oscillator, right? Perhaps not. Let’s see. 

Introducing relativity 
We know the electric and magnetic field are not to be thought of as independent things: they are 

apparent manifestations, so to speak, of one and the same electromagnetic field. That’s obvious, as 

Richard Feynman points out, from the Fmagnetic = qe·vB force formula. This formula tells us the magnetic 

force on our charge will be proportional to its velocity, but we should immediately wonder: “What 

velocity? With respect to which reference frame?” Both v as well as B will depend on our reference 

frame, which defines what is up or down, front or back, and left and right.  

We choose a reference frame when writing r = a·ei = (x, y). The zero point for θ = ω·t and our geometric 

convention for the imaginary unit (a counterclockwise rotation by 90 degrees) define our three-

dimensional space as well as our t = 0 point and the coordinate time that is associated with this 

reference frame.13 To paraphrase Feynman14: “If we had chosen another coordinate system, we would 

find a different mixture of E and B fields. Electric and magnetic forces are part of one physical 

phenomenon – electromagnetic interaction – but the separation of this interaction into electric and 

magnetic parts depends very much on the reference frame chosen for the description: E and B appear in 

different mixtures if we change our frame of reference. 

                                                           
12 For a more detailed discussion, see: Jean Louis Van Belle, Euler’s wavefunction: the double life of −1 
(http://vixra.org/abs/1810.0339), in which I argue that it is a mistake to not use the plus/minus sign of the imaginary unit in the 

a·e±i function to include spin in the mathematical description of an elementary particle. Indeed, most introductory courses in 

quantum mechanics will show that both a·e−i· = a·e−i·(t−kx) and a·e+i· = a·e+i·(t−kx) are acceptable waveforms for a particle that is 
propagating in a given direction (as opposed to, say, some real-valued sinusoid). If there is a physical interpretation of the 
wavefunction, then we should not have to choose between the two mathematical possibilities: they would represent two 
different physical situations, and the one obvious characteristic that would distinguish the two physical situations is the spin 
direction. Hence, we do not agree with the mainstream view that the choice is a matter of convention. Instead, we dare to 
suggest that the two mathematical possibilities represent identical particles with opposite spin. It ensures the weird 720-degree 
symmetries of fermions and, therefore, invalidates the most important objection to a physical interpretation of the 
wavefunction. 
13 It may be good to remind oneself of the relation between the coordinate time t and the proper time τ (tau). They are related 
through the Lorentz factor γ, which varies with speed: 

γ =
1

√1 − 𝑣2 𝑐2⁄
=

1

√1 − β2
=

dt

dτ
 

As an exercise, the reader may want to think about the concept of proper time here and what it means, exactly. 
14 See: Feynman’s Lectures, The relativity of electric and magnetic fields, Vol. II, Lecture 13, Section 6.   

http://vixra.org/abs/1810.0339
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We shouldn’t worry too much about this right now. Let us first think about the relativistically correct 

equation for the motion of our pointlike charge. It is just Newton’s Law F = dp/dt = d(mv)/dt. The only 

difference with the non-relativistic force law is that we are not assuming that m is some constant. 

Instead, we use the p = mvv = γm0v formula to write the force law like this: 

𝑑

𝑑𝑡
(

m0𝒗

√1 − 𝑣2 𝑐2⁄
) = 𝐅 = q(𝐄 + 𝒗 × 𝐁) 

As mentioned above, we shouldn’t worry too much about the details of the E, v and B vectors. They 

depend on the orientation of our reference frame:⎯on how we choose to define what is up or down, 

front or back, and left and right, in other words. Because of our particular choice, Needless to say, the 

velocity vector v is not the tangential velocity but the velocity of the zbw charge along the x-axis. 

So let us look at the math. We wrote the force as the sum of two component forces⎯one along the x-

axis and one along the y-axis: 

F = Fx + Fy = F·cos(θ−π/2) − i·F·sin(θ−π/2) = F·e−i(−π/2) 

These two components behave like classical mechanical oscillators⎯like a mass on a spring: if the 

magnitude of the oscillation is equal to a, then the motion of the piston (or the mass on a spring) will be 

described by x = a·cos(ω·t + Δ). The Δ is just the phase factor which defines our t = 0 point, and ω is 

the natural or resonant (angular) frequency of our oscillator. We argue that we should think of each of 

these two linear oscillations as carrying half of the total energy of our zbw electron: c2 and a2·ω2. 

A classical mechanical oscillator involves a restoring force, which will linearly depend on the 

position⎯on the displacement from the center or equilibrium position, to be precise. If we think of two 

oscillations – along the x- and y-axis respectively – we write:  

Fx = dpx/dt = –κ·x  

Fy = dpy/dt = –κ·y 

Note that we use a Greek kappa (κ) to distinguish this constant from the proportionality constant k that 

we used in the E = k·a2·ω2 formula in our introduction. Also note that these formulas are relativistically 

correct: the difference between a relativistically correct and a non-relativistic analysis is in how we’d 

write the momentum. In a non-relativistic analysis, we’d just use the p = m·v formula and, importantly, 

we would assume m is constant. In contrast, in a relativistically correct analysis, we’d write p as p = mvv 

= γm0v. Hence, m would depend on the velocity through the Lorentz factor γ. However, the restoring 

force constant would not depend on the velocity and, hence, the mass. It is always the same: κ. That’s 

why it’s a constant. This constant can be written as: 

κ = m·ω2 

We get that from the solution we find for ω when solving the differential equation. What differential 

equation? The one we wrote above: 

F =
𝑑p

𝑑t
=

𝑑(m · 𝑣)

𝑑t
= m ·

𝑑𝑣

𝑑t
= m ∙ 𝑎 = −κ ∙ 𝑎 
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But this differential equation models the non-relativistic oscillator only, right? Yes. We treat m as a 

constant and that’s why we can take that factor out of the time derivative: d(m·v)/dt = m·dv/dt = m·a. 

But… Well… That’s OK. We are looking for a problem for which we have a solution here !  

x = a·cos(ω·t + Δ) 

This solution for the motion of the pointlike charge is a solution to our differential equation. We do not 

need to make things complicated by introducing relativity. We just need to equate ω with some value 

and then we can see what values for m and k make sense by using the formula for the solution for ω, 

which is: 

ω = √
κ

m
 

We know that ω is equal to ω = E/ħ. We also know that Fx and Fy will be equal to F = m2·c3/ħ if the 

displacement is equal to a = ħ/m·c. If we don’t think about the direction of the force, we can write: 

κ ∙ 𝑎 = κ ∙
ℏ

m ∙ 𝑐
= F =

m2 · 𝑐3

ℏ
⇔ κ =

m2 · 𝑐3

ℏ
∙

m ∙ 𝑐

ℏ
=

m3 · 𝑐4

ℏ2
 

We can now calculate the mass concept we need to use here: 

m =
κ

ω2
=

m3 · 𝑐4

ℏ2
∙

ℏ2

E2
=

m3 · 𝑐4

ℏ2
∙

ℏ2

m2 ∙ 𝑐4
= m 

It is all perfectly consistent⎯except our force formula: F = m2·c3/ħ. Didn’t we say it was equal to F = 

m2·c3/h? So why do we use the reduced Planck constant in the formulas above? The explanation here 

might seem to be a bit ad hoc, and we’ll let the reader judge whether it is sensible or not. We calculated 

the force along the loop⎯along the zbw circumference λC = 2π·a. When we’re analyzing the oscillation 

along the x- or y-axis, then we analyze only one component of the force, and we think of it working 

along the axis⎯not along the loop. These force components along the x- or y-axis vary: they are no 

longer some constant. Hence, we may want to think of calculating some effective or equivalent force 

which works over some effective distance, which we write as a fraction α of the radius a. This fraction 

has to be equal to ½ to get the correct value for the effective or equivalent force: 

F =
𝑒𝑛𝑒𝑟𝑔𝑦

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
=

1
2 m ∙ 𝑐2

1
2 𝑎

= m ∙ 𝑐2 ∙
m ∙ 𝑐

ℏ
=

m2𝑐3

ℏ
 

The reasoning above is, obviously, somewhat obscure, so let us explore the geometry of the velocities 

and the two component forces somewhat more in detail. It may or may not answer an obvious question 

that comes to mind here: is spacetime elastic? Can we describe an electromagnetic oscillation in terms 

of some presumed elasticity of spacetime?  

Is spacetime elastic? 
The horizontal and vertical velocity of the pointlike charge along the x- and y-axis varies between 0 (at a 

and −a) and c (as it passes the zero point). In-between these points, it varies as the sine and cosine, as 

evidenced from Figure 1. We write:  
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vx = c·cos(ω·t) and vY = c·sin(ω·t) 

It’s a simple but important point, because the relativistically correct force equation for one relativistic 

oscillator is F = dp/dt = F = –kx with p = mvv = γm0v and, hence, one should wonder how to interpret this 

when m0 (the rest mass of our pointlike charge) is equal to zero. The momentum p = m·v = m·c is a weird 

animal here: because the m0 in the m = γm0v is equal to zero! So what happens to it at various 

velocities? 

We have no clear-cut answer to this question. We should calculate limits and derivatives to study its 

behavior but it is probably easier to just use an online graphing tool to look at its behavior. We used 

desmos.com to produce the graph in  Figure 3, which shows what happens with the p = mvv = γm0v for  

m = 0.001 and v/c ranging between 0 and 1. 

Figure 3: p = mvv = γm0v for m  → 0 

 

It is quite enlightening: p is zero for v/c going from 0 to 1, but becomes infinity at v/c = 1 itself. We have 

a discontinuity there! What can we do with this? We are a bit in the dark here, so let us think some 

more about the force and its representation using the elementary wavefunction. We had two equations 

for the force: 

(1) F = F·e−i(−π/2) = Fx + Fy = F·cos(θ −π/2) − i·F·sin(θ−π/2) 

(2) F = F·e−i(−π/2) = Fx + Fy = qe·E + qe·vB = qe·E − i·qe·(v/c)E 

Equation (2) comes from us thinking the force along the horizontal direction is electric, while the vertical 

force is magnetic. The velocity vector v is, therefore, not the tangential velocity but the velocity of the 

zbw charge along the x-direction. Its magnitude v is, therefore, equal to vx = c·cos(ω·t). Hence, Fy will be 

equal to: 

Fy = − i·qe·cos(θ)·E = − i·qe·sin(θ−π/2)·E 

To make the equations come out, the force must be equal to qe times the field strength. That must be 

true, of course, because of the definition of a field: it is the force per unit charge, and the unit is the 

pointlike charge here. At this point, we should also remind ourselves that we could represent the force 

and position vectors by the elementary wavefunction. We wrote the following 

r = a·ei and F = F·e−i(−π/2)  



11 
 

We found that F (the magnitude of F) was equal to the charge (qe) times the (maximum) strength of the 

electric field (E).15 We can calculate this (maximum) field strength from the formula we obtained for F: 

𝐸𝑚𝑎𝑥 =
F

q𝑒
=

m2 ∙ 𝑐3

ℎ ∙ q𝑒
 

We may now wonder how the magnitude of r, i.e. the (Compton) radius a = ħ/mc, is related to the 

magnitude of the force. We could calculate a ratio but – reminding ourselves of the geometry – the 

product might be more interesting, because a tangential force (F) times (the length of) the lever arm (r = 

a) gives us a torque  which, in turn, should be equal to the time rate of change of the angular 

momentum:  = dL/dt = r·F.16 Let us see what we get: 

τ = 𝑟 ∙ F = 𝑎 ∙ F =
ℏ

m ∙ 𝑐
∙

m2 ∙ 𝑐3

ℏ
= m ∙ 𝑐2 

Once again, we used the reduced Planck constant in the force formula above without a clear justification 

and, even then, we get a non-sensical result: we calculated the angular momentum as being equal to L = 

ħ/2, in line with the fact that an electron is a spin-1/2 particle. This angular momentum doesn’t vary in 

time and, hence, the torque should be zero instead of E = m·c2. We must be making some mistake here, 

and we are: we are mixing up two very different mass concepts. One is the mass of our zbw electron, 

and the other is the mass of the pointlike charge as it whizzes around. That’s why it is very confusing to 

think to think of the two perpendicular oscillations as mechanical oscillations that are defined by some 

elasticity κ = m·ω2. 

To be precise, in the context of a mechanical spring, we would refer to the κ factor as the stiffness of the 

spring. Hence, it is actually the inverse of its elasticity. However, when we think of the zbw oscillation as 

something mechanical, then it is probably easier to think of it in terms of elastic spacetime. Indeed, it is 

quite appealing to think that, if gravity gives some curvature to spacetime – because of some mass 

bending it – then we may think of the equivalent energy of the mass as some local oscillation of the 

fabric of spacetime. However, as we have shown above, it is tempting but – at the same time – not all 

that easy to think of it in these terms.  

  

                                                           
15 We should write Emax or use some other index to distinguish the maximum field strength from the varying field along the 
horizontal and vertical axis. One should also note that we use the same letter (E) that we used to denote the energy to refer to 
the electric field! The two are, obviously, very different things. I try to distinguish between the two by writing one in italics (E) 
and the other in normal typeface (E). However, I may not always be consistent here, and we also do not want to clog the 
analysis with too many symbols. The context should make clear what is what: meaning depends on context, not only in ordinary 

language but also in math⎯in my humble opinion, that is.  
16 We can think of two formulas here. One is the formula for the torque ( = rF), and the other is the one for the angular 

momentum L = rp). However, because the mass of our pointlike charge is zero, the concept of momentum (p) is not very well 
defined (see our graph of p in Figure 3). 
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Introducing gravity 
We calculated the force, and we found that it was huge. We can also calculate the numerical value of 

the field strength, and we should not be surprised that we get an equally humongous field strength: 

𝐸 =
𝐹

qe
≈

3.3743 × 10−2 N

1.6022 × 10−19 C
≈ 0.21 × 1018 N/C 

Just as a yardstick to compare, we may note that the most powerful man-made accelerators reach field 

strengths of the order of 109 N/C (1 GV/m) only. This is a billion times more. Hence, we may wonder if 

this value makes any sense at all. To answer that question, we can, perhaps, try to calculate some 

energy density. Using the classical formula, we get: 

𝑢 = 𝜖0𝐸2 ≈ 8.854 × 10−12 ∙ (0.21 × 1018)2
J

m3
= 0.36 × 1024  

J

m3
= 0.63 × 1024  

J

m3
  

This amounts to about 7 kg per mm3 (cubic millimeter). Is this a sensible value? Maybe. Maybe not. The 

rest mass of the electron is tiny, but then the zbw radius of an electron is also exceedingly small. It is 

very interesting to think about what might happen to the curvature of spacetime with such mass 

densities: perhaps our pointlike charge just goes round and round on a geodesic in its own (curved) 

space. We are not well-versed in general relativity and we can, therefore, only offer some general 

remarks here: 

1. If we would pack all of the mass of an electron into a black hole, then the Schwarzschild formula gives 

us a radius that is equal to: 

𝑟𝑠 =
2Gm

𝑐2
≈ 1.35 × 10−57m (𝑚𝑒𝑡𝑒𝑟) 

This exceedingly small number has no relation whatsoever with the Compton radius. In fact, its scale has 

no relation with whatever distance one encounters in physics: it is much beyond the Planck scale, which 

is of the order of 10−35 meter and which, for reasons deep down in relativistic quantum mechanics, 

physicists consider to be the smallest possibly sensible distance scale. 

2. We are intrigued, however, by suggestions that the Schwarzschild formula should not be used as it 

because an electron has angular momentum, a magnetic moment and other properties, perhaps, that 

do not apply when calculating, say, the Schwarzschild radius of the mass of a baseball. To be precise, we 

are particularly intrigued by models that suggest that, when incorporating the above-mentioned 

properties of an electron, the Compton radius might actually be the radius of an electron-sized black 

hole (Burinskii, 2008, 2016).17  

                                                           
17 See: Alexander Burinskii, The Dirac–Kerr–Newman electron, 19 March 2008, https://arxiv.org/abs/hep-th/0507109. A more 
recent article of Mr. Burinskii (New Path to Unification of Gravity with Particle Physics, 2016, https://arxiv.org/abs/1701.01025, 
relates the model to more recent theories – most notably the “supersymmetric Higgs field” and the “Nielsen-Olesen model of 
dual string based on the Landau-Ginzburg (LG) field model.”.  

https://arxiv.org/abs/hep-th/0507109
https://arxiv.org/abs/1701.01025
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The integration of gravity into this oscillator model will be our prime focus of research over the coming 

years. We totally concur with Burinskii’s instinct here: the integration of gravity into the model may well 

provide “the true path to unification of gravity with particle physics.”18  

Conclusions 
We hope we have provided our critics with a convincing answer to their cursory and casual comments. 

Our zbw interpretation of an electron is solid and precise, and its key results are fully consistent with our 

current understanding of particle physics.  

The most intriguing and interesting aspect of the model is that it yields a realist common-sense 

interpretation of quantum physics. All pieces fall into place: we can understand the real and the 

imaginary part of the wavefunction as an oscillating electric and magnetic field. It is, likewise, possible to 

also analyze Schrödinger’s wave equation as a diffusion equation for electromagnetic energy.19  

The model is simple and nice and should, therefore, be seen as scoring much better on Occam’s Razor 

criterion than the current mainstream interpretation of quantum physics. We hope this model will be 

evaluated somewhat more positively by mainstream academics in the future, especially when 

complemented by more advanced mathematical techniques (such as Hestenes’ geometric calculus) and 

when integrated with gravity (Burinskii’s Kerr-Newman models of an electron, that is).  

The basic results are there: this is a pretty complete realist interpretation of QM. Our manuscript, for 

example, also explains what photons actually are, and how they interact with electrons. It also provides 

an alternative explanation of electron orbitals or, to be precise, a common-sense physical explanation of 

the wave equation and other so-called mysterious quantum-mechanical phenomena (anomalous 

magnetic moment, Mach-Zehnder interference, etcetera): there is no mystery. It’s all plain physics. The 

Emperor has no clothes. 

  

                                                           
18 See: Alexander Burinskii, The weakness of gravity as an illusion hiding the true path to unification of gravity with particle 
physics, Essay written for the Gravity Research Foundation, March 30, 2017 
19 See: Jean Louis Van Belle, A Geometric Interpretation of Schrödinger’s Wave Equation, 12 December 2018 
(http://vixra.org/abs/1812.0202) and Jean Louis Van Belle, The Wavefunction as an Energy Propagation Mechanism, 8 June 
2018 (http://vixra.org/abs/1806.0106). While we still adhere to the basic intuition and results in these two papers, we would 
need to update them in light of our more recent updates and corrections to our interpretation. 

http://vixra.org/abs/1812.0202
http://vixra.org/abs/1806.0106
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