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ABSTRACT
1
 

The present attempt is by far the most parsimonious demonstration of a [controversial] rationale 

behind the RH, with a generalized solution likewise readily implied. It earmarks an analogy that 

may shine in many a forthcoming elaboration as will be proposed. 

Keywords: Focal distributions, generalized Riemann Hypothesis (gRH), non-associativity in 

operational sequencing (or quasi-commutativity of the operators), fuzzy (alternating) set 

cardinality  

 

Accidental Trivialization 

The RH could be seen as ‘trivial’ from the outset. After all, any power series (over a 

natural field) taken to a zero value would somehow imply a complex [exponentiation] domain. 

And if it doesn’t—as is evident in the ‘trivial’ zeros case with negative even values implied from 

the inverse gamma factor of the recursive representation
2—the implied result would appear no 

more intuitive acceptable than does -1/2 as the infinite summation over unity
3
.  

It happens, the non-trivial zeros as postulated by the RH are far more ‘trivial’ than that. 

Please make sure that a one-line demonstration should suffice. Whether or not one goes with, 𝑒2𝑖𝜋𝑘 = 1 ↔ 2𝑖𝜋 = 0 ∀𝑘 ∈ 𝑵 

                                                           
1
 WP201955-512 in memoriam SU1492 jet crash victims. 

2
 The Re(s)=1/2 is likewise hinted at insofar as (1-s) proves a conjugate in this case, with the essential structure of 

the solution being effectively intact, or sign-alternating in the imaginary part only.  
3
 Be it inferred from a geometric progression or the Euler identity equivalent or taken as a convention, one will 

hardly fare fully content until after having grown accustomed to its pragmatic savings as in the string-theoretic 

applications. 
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or considers a qualification of the following sort, 

±𝑇~ 1±2𝑖𝜋𝑘 , 𝑇 → ∞ 

it is straightforward to see that (again, per the exponentiation domain only), (1) 𝑅𝑒(𝑠) ≡ 𝑅𝑒(𝜎 + 𝑖𝑡) ≡ 𝜎 = 𝑅𝑒([𝜎 + 𝑖𝑡] ∗ (±2𝑖𝜋𝑘) ∗ (±𝑇)) = 𝑅𝑒(±𝑖(2𝜎𝜋𝑘𝑇) ∓ 2𝜋𝑘𝑡𝑇)= ∓2𝜋𝑘𝑡𝑇  𝜁(𝑠)≢0⇒    𝑅𝑒(𝑠) = 12 ∗ 𝑠 
The entire proportion may turn an absolute value as per the special, zeta-at-zero case: 

𝑁−𝑠 ≡ 𝑁−𝑇(𝑠𝑇) = 0𝑠𝑇 = 0 ↔  0𝑠 = 0𝑇 = 0 = 01  (1)⇒ 𝑅𝑒(𝑠) = 12 

This kind of absolute (on top of relative) symmetry may prove but a matter of mere 

representation though, as denied under any other zeta value—in which light the RH prediction 

could be somewhat reserved in just how fuzzy the line is between delusion and elusion. On the 

other hand, one would have yet to motivate the actual critical strip of (0..1), which can hardly fare 

on the strength of an addition versus subtraction of similar ½ values, even though this may 

provisionally lend itself to a somewhat generalized and differentiated nature of interrelationship 

between the real versus imaginary parts: 

𝑠 = 2𝜋𝑡𝑇𝑘 ± 2𝜋𝑡𝑇𝑘′ = 𝑅𝑒(𝑠) ∗ (1 ± 𝑘′𝑘 ) = 12 ∗ (1 ± 𝑘′𝑘 ) 

Not only can the above capture the said critical strip as per the [candidate] nontrivial 

zeros, it can likewise account for the trivial domain as when  

(1 ± 𝑘′𝑘 ) = −4𝑚 ∀𝑚 ∈ 𝑵 

For one thing, one can think of alternate ways of capturing the two solution branches on the exact 

same premises (see Appendix). On the other hand, this kind of ‘focal split’ will be reconsidered 

in a more elegant as well as consistent fashion as part of rationalizing an n-dimensional or (n+1)-

ion (hypercomplex generalization) setup
4
.  

For now, one should be careful to approach the endogenization of the critical strip by 

invoking a phi-relaxation: (1′) 𝑁−𝑠 = 0𝜑 , 𝜑 ≢ 1 

                                                           
4
 𝑠𝑛 = 𝜎 + ∑ 𝑒𝑖 ∗ 𝑡𝑖𝑛𝑖=1  



RH Part II by Arthur Shevenyonov 3 

 

Arguably, the lower versus upper bounds confine the closure of 𝜑 ∈ [0. .2], such that
5
 

𝑠 = {0 = 2 ∗ 𝑅𝑒(𝑠)− = 2 ∗ 02 = 2 ∗ 𝑅𝑒(𝑠)+ = 2 ∗ 1 

Now, the simpler way of motivating the phi closure (alongside the critical strip) would be 

to consider the lower versus upper bounds for zeta as summation over, 

𝜁(𝑠) ≡ 0 ≡ ∑ 𝑁−𝑠 = 𝑇 ∗ 0𝜑 = {0−1 ∗ 01+𝜖~00+𝜖01+1+𝜖~02+𝜖𝑇~∞
𝑁=1  

The former possibility suggests a full-blown summation (with all of the comparably small zero 

terms summed up as zero-representations times the inverse of zero), with s in the power counting 

as lump. In contrast, the latter suggests a weaker condition, with the real and imaginary parts 

treated as separable amidst the summation being irrelevant for zero terms (deem 1 as a 

‘compactly-supported function’ qualifying the setup for the variational lemma as analogy
6
).  

 

Generalizing toward Less Winding a Road 

One may at this rate expect that, whilst in the general case, the lower bound (of the 

critical strip) would still stay put around 0, the upper bound would make n. In fact, this is what 

obtains under generalizations of the ‘arithmetic zeta’ sorts, with the real-part critical lines running 

½ through n-½. While the rather involved apparatus would extend far beyond the intended 

minimalist perspective, a relationship of interest could still be proposed. 

On the one hand, the upper bound could be inferred—along the lines of zero power 

counting—at, 

(2)  𝑛 =∑1𝑛
𝜉=1 ≡ 𝐶𝑆+ 

Among other possibilities, this may pertain to the count of hypercomplex dimensions (e.g. 3 and 

7 per quaternion and octonion setups respectively). On the other hand, the candidate critical-line 

real parts, 

ℜ𝑥(𝑠) = 𝑥 − 12 , 𝑥 = 1, 𝑛̅̅ ̅̅ ̅ 
                                                           
5
 The safer bet would be to maintain 𝜑 ∈ 0 ∗ [0. .2] = [02. .2 ∗ 0] albeit possibly appearing as [0..0] on the face of it 

with the critical line likewise making 1*0=0. It is no wonder at this rate that the solutions seem extremely densely 

packed anywhere outside infinite scaling. 
6
 ∫ [∗]𝜂(𝑥)𝑑𝑥 = 0 = ∑ 𝑁−𝑠 =𝑇1 ∑ [0𝜑] ∗ 1 ∗ ∆𝑁  ↔ [∗] = [0𝜑] = 0𝑇1  𝑏𝑎  
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could tentatively be inferred as, 

(3)  𝑥 − 12 = ∆∑𝜉 =𝑥−1
𝜉=0 ∆ (𝑥 − 1)𝑥2   

While ∆𝑥 = 1 for any integer by definition (and has therefore been omitted in the ultimate 

differential structure), the non-commutativity in (3), capturing the candidate critical-line Re(s) 

solutions, pertains to the fact that: 

ℜ𝑥(𝑠) = ∆∑𝜉𝑥−1
𝜉=0 ≢∑∆𝜉𝑥−1

𝜉=0 =∑1𝑥−1
𝜉=0 = 𝑥 

That said, the gap is constant at exactly ½, and could be assumed as a summation (integration) 

constant bridging the two
7
. Interior structure in (3) appears to be a clear-cut generalization of—

let alone intuitive motivation for—[the upper bound of] the critical strip as in (2): 

(4)  {𝐶𝑆+ = ℜ𝑛(𝑠) + 12 } ≡ {(∑1)𝑛
𝜉=1 − 12 = lim𝑥→𝑛 ∆∑𝜉𝑥−1

𝜉=0 = lim (𝑥→𝑛∑∆𝜉) − 12𝑥−1
𝜉=0 } 

 

Aftermath & Inter-Match 

It is straightforward to see how n=1 of gRH yields the regular RH case. Whilst the former 

could be seen as a focal distribution (n-hyperelliptic as a representation of what I have referred to 

as ᴪ in ordual terms from day one) in contrast to the latter having its foci converge around the 

singular center, both these setups showcase the candidate RH Re(s) solutions as probably having 

to do with condensed solution distributions. Whereas gRH points to a core of Re(s) candidate 

foci, RH features a double-dense singularity. By contrast, although the critical strip bounds may 

have tended to be treated as empty sets, they could in actuality pertain to rarefied ones (or indeed 

posit sparse matrices) with expected or ex-ante frequency (or solution density) decaying 

anywhere around the bounds or farther off the [non-trivial] core. Alternatively, rather than treated 

as rare-to-find (much less as nonexistent), these could be conjectured to elude regular 

representation—e.g. if only insofar as corner cases may fail to distinguish between [pure] real 

versus [pure] imaginary equivalents. Not least, while the cardinalities of the ℜ𝑥(𝑠) versus CS sets 

are comparable to n versus that of the continuum, the former may not capture the effective 

solution set as their overlap (as if to hint at fuzzy or alternating solution-set cardinality).  

                                                           
7
 Nonassociative operation-sequencing appearing as quasi-commutativity in the inter-operator relation, with ½ being 

the effective commutator:  (∑,∆) − (∆,∑ ) = 12 
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APPENDIX 

For every
8
 N, 

(𝐴) 𝑁−𝑠 = 𝑁−𝜎 ∗ 𝑁−𝑖𝑡 = 1−𝜎∗𝑙𝑜𝑔𝑁𝑙𝑜𝑔1 ∗ 1−𝑖𝑡∗𝑙𝑜𝑔𝑁𝑙𝑜𝑔1 = 𝑒−(𝜎∗𝑙𝑜𝑔𝑁0 +𝑖𝑡∗𝑙𝑜𝑔𝑁0 )2𝑖𝜋𝑘 = 𝑁∓𝑇∗2𝑘𝜋(𝜎𝑖−𝑡) 
𝑐𝑎𝑠𝑒 𝜎 ≡ 12: 𝑁−𝑠 = 0±𝑘𝜋∗(𝑖−2𝑡) 

Alternatively
9
,  (𝐵)  𝑁−𝑠 = 𝑒∓2𝜎𝑖𝜋𝑘𝑇∗𝑙𝑜𝑔𝑁 ∗ 𝑒±2𝑡𝜋𝑘𝑇∗𝑙𝑜𝑔𝑁 = (−1)∓2𝜎𝑇∗𝑙𝑜𝑔𝑁 ∗ 𝑁±𝑇∗2𝑡𝜋𝑘= (−1)∓2𝜎𝑇∗ 𝑙𝑜𝑔𝑁log (−1)∗log (−1) ∗ 𝑁±𝑇∗2𝑡𝜋𝑘 = 𝑁∓𝜎𝑇∗𝑙𝑜𝑔(−1)2±𝑇∗2𝑡𝜋𝑘= { 𝑁∓𝜎𝑇∗1𝑇±𝑇∗2𝑡𝜋𝑘 = 𝑁∓𝜎±𝑇∗2𝑡𝜋𝑘 (𝐵. 1)𝑁∓2𝜎𝑇∗𝑖𝜋𝑘±𝑇∗2𝑡𝜋𝑘 = 𝑁−𝑇𝜋𝑘∗(2𝜎𝑖∓2𝑡) (𝐵. 2) 

Obviously, the latter denotes the exact same result as in (A), notably under the Re(s)=1/2 setup. 

Insofar as such terms prove N-invariant, zeta as summation running ad infinitum could be treated 

in terms of, (𝐵′) 𝜁 ≡ 𝑇 ∗ 0±𝑘𝜋∗(2𝜎𝑖−2𝑡) = 0±𝑘𝜋∗(2𝜎𝑖−2𝑡)−1 ≡ 0 = 01 

Again, by loosely venturing to maintain 0𝑇~0~01, the relative ½ proportions likewise ‘prove’ 
absolute, as is seen from the powers comparison. Otherwise, s may well turn out to be an infinity 

(taking on either sign) rather than unity. On second thought, implicit symmetry or indiscriminate 

treatment of the Re(s) equivalents need not imply the imaginary part will equal the real one. On 

the contrary, it will remain generalized: 

(𝐶)  𝑠 = 𝜎 − 2𝜋𝑘𝑡𝑇 = 𝜎 − 2𝜋𝑘𝑡2𝑖𝜋𝑘 = 𝜎 + 𝑖𝑡 = 𝜎 ∗ (1 − 1𝜎 ∗ 𝑡𝑖) = 𝜎 − 2𝑡 𝜋𝑘2𝑖𝜋𝑘= 𝜎 − 2 ∗ 12 ∗ 𝑡𝑖 = { 12 + 𝑖𝑡−𝑚 + (−𝑚) + 𝜖, 𝜖~ ± 1/𝑘𝜋 

The solution for sigma at ½ is readily invoked as a sufficient Diophantine, even as it 

neither necessarily collapses the overall s to explicit symmetry (applicable to -m) nor 

                                                           
8
 This paper being self-sustained, cross-references will become invaluable later on. In passing, as pointed out in the 

latest one, I oft-times deploy T in place of [potential] infinity which–as will become apparent in the forthcoming 

expositions—allows for finer distinction and utter precision otherwise overlooked or denied. 

9
 It is straightforward to appreciate that, in general, 𝑋 = 𝑎𝑙𝑜𝑔𝑋𝑙𝑜𝑔𝑎  for any (a, X) with 𝑎 = ±1 being just one case in point 

of particular convenience ad hoc.  
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compromises the trivial zeros domain
10

. In fact, it can be shown how both are consistent with (or 

are inferred from) the ubiquitous structure: (𝐷) 𝑁−𝑠~𝜑 ∗ 0𝑖𝜋 

Assuming away the exposition in (C), it can—informally so yet invariably consistent with the 

Euler identity—be argued that, as long as
11

 𝜑 = 𝑁−𝑖𝑡 = 𝑁−2𝑖𝜋∗(𝑡/2𝜋)~0𝑡/2𝜋, 

0𝑖𝜋~𝑁−𝑇∗𝑖𝜋~𝑁− 𝑖𝜋2𝑖𝜋 = 𝑁−12 = 𝑁−𝜎 

Now, to arrive at 𝑠 = −2𝑚 or 𝑠 ≡ 0𝑚𝑜𝑑(−2) based on a similar distribution, suppose 

𝜁 = 𝑇 ∗ 𝑁−𝑠 = 0 = 𝑇−1   ↔   𝑁−𝑠 = 𝑇−2 = 𝑁−2𝑇𝜑 ↔   𝑠 = 2𝜑2𝑖𝜋𝑘 ≡ −2𝑚  ↔  𝜑 = −2𝑖𝜋𝑘𝑚 𝑁−𝑠/2 = 𝑁−𝑇𝜑 = 0𝜑 = 0𝑖𝜋∗(−2𝑘𝑚) 
This appears consistent with (1’), (A), (B), and (D).  

Finally, one could think of natural ways for straddling as well as endogenizing the critical 

strip and its candidate Re(s) core.  𝑁−𝑠 ≡ 𝑁−𝜎 ∗ 𝑁−𝑖𝑡 
𝑁−𝜎 = 1−𝜎∗𝑙𝑜𝑔1𝑁 = 𝑒−2𝜎∗𝑖𝜋𝑘𝑇∗𝑙𝑜𝑔𝑁 = { 𝑁−𝑇∗2𝜎∗𝑖𝜋𝑘 = {02𝜎∗𝑖𝜋𝑘0𝜎(−1)𝑇∗ 𝑙𝑜𝑔𝑁log(−1)∗2𝜎𝑘∗log (−1) = 𝑁𝑇2𝑇 ∗𝑖𝜋𝑘∗2𝜎 = 𝑁𝑇2∗4𝜎𝜋2∗𝑘3 

The above suggests how a representation, otherwise fully consistent with the prior phi-power 

distributions, might still reveal (or conceal) a fairly rich structure. The latter applies to the 

imaginary part as follows: 𝑁−𝑖𝑡 = { 02𝑖𝑡∗𝑖𝜋𝑘 = 0−2𝜋𝑘𝑡𝑁𝑇∗𝑖𝜋𝑘∗2𝑖𝑡 = 𝑁−𝑇∗2𝜋𝑘𝑡 
The two latter alternatives are trivially convergent (save for the alternating sign), in which light, 

by invoking the zero resultant of zeta again, it obtains that 

                                                           

10
 𝑠 = 𝜎 (1 − 1𝜎 ∗ 𝑡𝑖) = 2𝜎 = −2𝑚 with 

𝑡𝑖 = 𝜎 implied in (B’) under |k| large 
11

 One alternate way of representing this, without necessarily holding t to be 0𝑚𝑜𝑑2𝜋, could be as follows: 𝜑 =𝑁−𝑖𝑡 = 0−𝑖𝑡∗𝑙𝑜𝑔𝑁𝑙𝑜𝑔0 = 02𝑡𝜋𝑘∗𝑙𝑜𝑔𝑁. It can further be shown that, 0𝑙𝑜𝑔𝑁 = 0 ∀𝑁 ∈ 𝑹: 0 = 𝑁 log 0𝑙𝑜𝑔𝑁 = 𝑁−𝑇/𝑙𝑜𝑔𝑁 → 0𝑙𝑜𝑔𝑁 =0, QED. To simplify things, 02𝑡𝜋𝑘∗𝑙𝑜𝑔𝑁 = 0𝑙𝑜𝑔𝑁2𝑡𝜋𝑘 ≡ 0𝑙𝑜𝑔𝑁′ = 0. This is at the very least to illustrate just how 

hastily the fine intricacies of candidate solutions can be subsumed under generic aggregates or seen as densely 

packed and hence allegedly nondistinct.  
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 (𝐸) 𝑇 ∗ 𝑁−𝑠 ≡ 0  ↔  𝑁−𝑠 = 02 = { 0𝜎−2𝜋𝑘𝑡0−𝑇∗4𝜎𝜋2∗𝑘3+2𝜋𝑘𝑡 
The first assessment can be inferred at 𝜎 = 2 + 2𝜋𝑘𝑡 = 2 − 𝑖𝑡 ∗ 0 even though, by relaxing the 

infinite summation under the variational principle, one obtains  (𝐹) 𝜎+ = { 1, 𝑡 𝑓𝑖𝑛𝑖𝑡𝑒1 − 𝑖𝜑, 𝑡 → 𝑇, 𝜑 𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑙𝑦 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑒𝑑 

Otherwise, the real part can be distributed as, 

(𝐺) 𝜎−~𝜋𝑘𝑡 − 12𝜋2𝑘3𝑇~ 𝑡/𝑇2𝜋𝑘2~{0, 𝑡 𝑓𝑖𝑛𝑖𝑡𝑒𝑖𝑡𝑘 ≡ 𝑖𝑡′  

(𝐻) 𝜎𝑎𝑣𝑒𝑟𝑎𝑔𝑒(1) = 12 ∗ (1 + 0) = 12~12 ∗ (1 − 𝑖𝜑 + 𝑖𝑡′) = 𝜎𝑎𝑣𝑒𝑟𝑎𝑔𝑒(2) 
Interestingly enough, not only does Re(s) return ½ on average in either of the representations, it 

likewise shows how the (0..1) critical strip can have been motivated, even as these bounds 

conceal in-depth structure as posited by the above. Needless to say, though, averaged values are 

no closer to the ultimate solution-distributive patterns than are the elusive or focal-dominant 

representations. This questions the ultimate nature of RH predictions time and again, even though 

all of the above seems to lend formal support to its plausibly unaided statements.  

 

 

 

 


