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Abstract

Motives are well connected to graphical techniques in quantum field
theory. In motivic quantum gravity we consider categorical axioms, start-
ing with the ribbon category of the Fibonacci anyon. Quantum logic
dictates that the cardinality of a classical set is replaced by the dimension
of a space. In this note we look at the geometry underlying Fibonacci
numbers and apply it to the algebra of multiple zeta values.

1 The Fibonacci numbers

One often considers a positive integer N ∈ N as a product er11 e
r2
2 · · · e

rk
k of k

prime power factors. It is less well known (Zeckendorff’s theorem) that N is
uniquely a sum of nonconsecutive Fibonacci numbers. With the exception of
F6 = 8 and F12 = 144, every Fn greater than 1 contains a prime factor that is
not in any lower Fm (Carmichael’s theorem). The basic recursion rule is

Fn+2 = Fn+1 + Fn, (1)

recovering the Fibonacci numbers for F1 = F2 = 1. The Lucas numbers have the
same recursion rule, starting with L1 = 1 and L2 = 3. Then Ln−1 = Fn+Fn−2.

Lemma 1: For primes p equal to 1 or 4 mod 5, p divides Fp−1. For 2 or 3 mod
5, p divides Fp+1. Lastly, 5 divides F5.

Proposition 1: For every n ∈ N, the sequence of Fi mod n is a cycle of length
L(n) (see Table 1) such that p + 1 divides L(n) when p is a factor of n = 2, 3
mod 5. Similarly, p− 1 divides L(n) when n = 1, 4 mod 5.

Proof: A cycle requires a string 1, 0, 1 in the sequence Fi mod n. By the lemma,
for any prime p there exists an Fm ≡ 0 mod p, and the same is true for any n.
If n divides Fm then it divides all Fkm for k ≥ 2, since the greatest common
divisor of Fkm and F(k+1)m is Fm, containing n. It remains to find the first
Ft−1 ≡ 1 mod n next to a zero. Cassini’s rule

Ft−1Ft+1 − F 2
t = (−1)t (2)

has a right hand side equal to ±1. In general, write Ft−1 = ln and Ft−2 =
jn+ 1 + x for 0 ≤ x ≤ n− 2. Then the left hand side of (2) mod n is a square
(x + 1)2. We can consider either a small x or a small y = n − x. When the
right hand side equals −1, x cannot equal 0. When the right hand side equals

1



Table 1: Fn cycle lengths
n 2 3 5 6 7 8 9 10 12 13
L(n) 3 8 20 24 16 12 24 60 24 28

1, x = 0 as required. Since the zero places occur at multiples of t− 1, there are
odd values for t, giving x = 0.

Up to mod 12, all cycles fit into one of length 240, increasing to 1680 at mod
13. The Cassini rule comes from the determinant of the modular group matrix
T t.

Our interest in the Fibonacci numbers comes from the importance of the ring
of integers in Q(

√
5) in quantum gravity. Here the half integers in dimension 8

are embedded densely [1] in C under the map Z4/2→ R

(a, b, c, d) 7→ a+ bφ+ cρ+ dφρ, (3)

where φ = (1 +
√

5)/2 is the golden ratio and ρ =
√
φ+ 2 = 51/4

√
φ. In

the necessarily categorical axioms for gravity we cannot begin with R or C,
which are awkward in higher dimensional analogues of a topos [2][3], and do not
correspond to motivic periods. In particular, φ is the limit of ratios Fm+1/Fm.
What is the geometric information behind the Fibonacci numbers?

2 Golden word spaces

The ribbon category of the Fibonacci anyon [4][5] is universal [6] for quantum
computation [7]. It’s SU(2) representation for the braid group B3[8] is defined
in terms of quaternion units J and K. Let

g = exp7πJ/10, f = Jφ+K
√
φ, h = fgf−1. (4)

Then ghg = hgh is the braid relation. This is a rotation (by a 9◦ ν mixing
angle) of the quaternion braid generators

1√
2

(1 + J),
1√
2

(1 +K). (5)

A cyclic set I, J , K of three generators is associated to the C ⊗ O ideal alge-
bra [9][10][11] for Standard model leptons and quarks in the Bilson-Thompson
[12][13] ribbon scheme. Each ribbon strand on a particle diagram carries either
a zero or 1/3 electric charge. Collecting the diagrams for a lepton pair and six
quarks of positive charge, we obtain a parity cube

000, 00+, 0 + 0,+00, 0 + +,+0+,+ + 0,+ + + (6)

of charges on the vertices. The underlying permutation (231) ∈ S3 is associated
to the neutrino.
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In this section we will obtain the parity cube in each dimension using the
Fibonacci anyons. This qubit state space is extended to general qudits by
subdividing the edges of a cube. For example, a square with halved edges
carries three labels along each edge, defining all pure two qutrit states.

The integers Z are infinite dimensional, as follows. Each discrete dimension
is labeled by a prime power path sequence: 1, e, e2 etc. in the positive direction,
so that the points of an infinite dimensional cubic lattice represent exactly Z,
following Pythagoras. Little cubes near the origin are the squarefree numbers.
An auxilliary infinite string of 1s allows for affine words (inhomogeneous mono-
mials) on the diagonal simplices. Now a point in Spec(Z) is the infinite discrete
space split into two by the orthogonal axis hyperplane. The whole infinite space
is a vector space union (span) of all the hyperplanes. Dual to the set union of
all hyperplanes is the infinite parity cube on quadrants.

Along with cube and permutohedra tiles we work with the associahedra.
The fusion map for the anyon category is an associator arrow on the pentagon.
Let F (abcd)yx be a fusion coefficient for an internal edge y on the input tree and
internal edge x in the set of allowed trees, with d labelling the root of a three
leaved tree. Our anyon objects are 1 and τ , such that τ ◦ τ = 1 + τ . Following
[4], the interesting coefficients satisfy the pentagon relation

F (ττcτ)daF (aτττ)cb = F (τττd)c1F (τ1ττ)dbF (τττb)1a (7)

+F (ττττ)cτF (ττττ)dbF (τττb)τa.

When (abcd) contains a 1, the coefficients are 0 or 1. At (abcd) = (τ11τ),
we obtain F (ττττ)11 = (F (ττττ)1τ )2. From (abcd) = (1τ1τ) it follows that
F (ττττ)11 = −F (ττττ)11. Let F (ττττ)11 = −A and F (ττττ)1τ = i

√
A. Then

(abcd) = (ττττ) gives A2 − A − 1 = 0 with solution A = −1/φ. In summary,
the all-τ coefficients are (

F 1
1 F τ1
F 1
τ F ττ

)
=

(
1
φ

i√
φ

i√
φ

−1
φ

)
. (8)

These appear in the B3 representation

σ1 =

(
e−4πi/5 0

0 e3πi/5

)
, σ2 =

(
e4πi/5

φ
e−3πi/5
√
φ

e−3πi/5
√
φ

−1
φ

)
, (9)

with phases from the hexagon rule. The phase in (4) comes from the difference
of these phases.

Consider the number of fusion diagrams on d leaves when all inputs are set
to τ and the bracketing is nested to the left. We write words in 1 and τ by
following the internal edges from a leaf down to the root. Since all words start
with τ , we omit this letter, leaving words of length d − 1. For three leaves the
words are τ1, 1τ and ττ , counted by the Fibonacci number Fd+1, as given in
Table 2. Figure 1 shows how these words are allocated to vertices of a parity
cube in dimension t equal to the number of τ letters. The + parity marks the
placement of a 1.

3



Table 2: internal edges for fusion
n words
2 1, τ
3 1τ , τ1, ττ
4 τ1τ , ττ1, 1ττ , τττ , 1τ1
5 1τ1τ , 1ττ1, 1τττ , τ1τ1, ττττ , τττ1, ττ1τ , τ1ττ

The number Fd+1 is graded across cubes of different dimension,

Fd+1 =

f(d/2)∑
n=0

(
d− n
n

)
, (10)

where f(i) is the integer part. Consider the subset labels for cubic vertices
[14], which appear in the octonion basis. The + + + target in Figure 1 is the
word e31e

3
2e

3
3, where the superscript denotes the dimension. The vertex +00 is

e31 = 1ττ and so on. Denote a source by e0. Then F5 counts the set

e40, e
3
1, e

3
2, e

3
3, e

2
1e

2
2. (11)

Such words are often interpreted as differential forms, but we might think of
them as numbers with prime factors ei. Since the number of tree diagrams on
d leaves is the Catalan number

Cd =
1

d

(
2(d− 1)

d− 1

)
, (12)

the total number of fusion trees is

N(d) = Fd+1Cd ∈ 1, 2, 6, 25, 112, 546, · · · (13)

The number of strands d in a generic braid diagram for anyons is closely
related to the M theory dimension in a higher algebra approach [15]. For ex-
ample, in ten dimensions there is a 3-cube of electric charges and a 7-cube for
magnetic information.

Let us now recall the connection [16][17] between knots and multiple zeta
values [18]. From our perspective, the appearance of the golden ratio in a fusion
map is reminiscent of the Drinfeld associator, with its infinite series of multiple
zeta values. In the iterated integral form, a zeta argument is a word in two
letters such that one letter only occurs as a singlet, much like the 1 in our fusion
words.

3 Knots and motivic numbers

A multiple zeta value (MZV) is the unsigned case of the signed Euler sum

ζ(n1, n2, n3, · · · , nl;σ1, · · · , σl) =
∑

ki>ki+1>0

σk11 σ
k2
2 · · ·σ

kl
l

kn1
1 kn2

2 · · · k
nl
l

(14)
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Figure 1: Fusion words

of depth l and weight n =
∑
i ni, with σi ∈ ±1. Recall that the Mobius function

µ(n) on N is zero on non square free n and (−1)r for r prime factors. The square
free n ∈ N are the targets of undivided cubes in the infinite dimensional Z. An
MZV is irreducible if not expressed as a Q linear combination of other MZVs of
the same weight. The number En of irreducible signed Euler sums of weight n
is [16][17]

En =
1

n

∑
D|n

µ(n/D)LD =
1

n

∑
D|n

µ(n/D)(FD−1 + FD−3), (15)

where LD is the Lucas number. The number Mn of irreducible MZVs of weight
n is the number of knots with n positive crossings (and no negative crossings).
It’s value replaces LD by PD, the Perrin number, satisfying the recursion

PD = PD−2 + PD−3 (16)

for P1 = 0, P1 = 2 and P3 = 3.
An argument (n1, · · · , nl) of an MZV, such that only nl may equal 1, is

expressed as a word in two letters A and B, such that all words start with
A and end with B, and B only occurs as a singleton. First reduce the argu-
ment to the ordinals (n1 − 1, n2 − 1, · · · , nl − 1). The corresponding word is
An1−1BAn2−1B · · ·Anl−1B. Each copy of A is assigned the form dz/z and each
B the form dz/(1 − z) in the iterated integral expression for the MZV. For
example

ζ(3, 1) =

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

dz

z

dz

z

dz

1− z
dz

1− z
. (17)
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Compare this to our golden words, with the additional τ at the start of every
word, and a 1 occuring only as a singleton. Add a 1 at the end of every allowed
word, to obtain precisely a set of MZV words. This extra 1 adds a bigon piece
to the root edge of the polygon that is being chorded by a dual tree. The length
of the internal word is essentially the weight,∑

ni − 2 = n− 2 = d− 1, (18)

where d is the number of leaves on the fusion tree. Thus the weight d + 1 is
associated to braids in the category on d strands, but fewer than d strands may
be used to draw a knot.

An example of a positive knot with n crossings and n−1 strands is the trefoil
knot σ3

1 in B2. It corresponds to ζ(3), from the internal word τ on two leaves.
The word 1 on two leaves gives ζ(2, 1). Other torus knots of type (2k + 1, 2)
define the zeta values ζ(2k + 1) [16]. At three leaves, the MZVs are ζ(3, 1),
ζ(4) and ζ(2, 2). The total number of MZVs of weight d + 1 is Fd+1, and the
recursion Fd + Fd−1 splits Fd+1 into words ending in either τ or 1 respectively.

Now recall that renormalisation in quantum field theory relies on the sym-
metric Hopf algebra of labeled rooted trees [20][21]. Our internal fusion words
label a generic corolla tree with d leaves, which is a building block for symmetric
trees. By restricting to the Fd words that end in τ , we ensure that the grafting
of little corollas onto other trees is always possible. This suggests the FD−1 term
in (15). FD−3 counts the number of internal words ending in τ1 and starting
with τ . Thus LD only excludes words that begin and end with 1, the so called
vacuum words.

The square free divisors D of d + 1 pick out a parity cube at the origin in
dimension k inside Z, where k is the number of prime factors in d+1. This cube
has 2k vertices, each marked with a Lucas number LD in (15), for D a word in
the ei and a target word e1e2 · · · ek. The signs of µ alternate on parity for the
differential forms in ei.

Values of Mn correspond to full words with even clusters of τ letters, corre-
sponding to odd arguments for MZVs, as proved in [19]. This theorem requires
an auxiliary five crossings to obtain the correct weight. For example, M13 = 3
[16] comes from fusion words on 7 strands, where the irreducibles are ζ(3, 5),
ζ(5, 3) and ζ(7, 1).

Consider the shuffle algebra for MZVs. The shuffle unit is the empty letter.
The recursion law on A and B words is

l1l2 · · · lu ∪ k1k2 · · · kv = l1(l2 · · · lu ∪ k1 · · · kv) (19)

+k1(l1 · · · lu ∪ k2 · · · kv).

The minimum zeta shuffle is

ζ(2) ∪ ζ(2) = AB ∪AB = 2ABAB + 4AABB = 2ζ(2, 2) + 4ζ(3, 1). (20)

For our fusion letter 1 we have 1∪ 1 = 2 · 1 and 1∪n = 2n · 1. The fusion vertex
τ ◦ τ corresponds to AAB +ABB = 2ζ(3). Since 2ζ(3) is also τ ∪ τ , we have

τ ◦ τ = τ ∪ τ. (21)
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Elsewhere MZVs have been computed using the associahedra.

4 Comment

As category theorists, we are looking here at a functor from the category of finite
sets (parity cubes) to a Fibonacci category. The intersection of two ordinals
gives their greatest common divisor, which translates to the functorality of gcd
on Fn. Primes ei are in Sets (albeit not in the usual way) while the additive
decomposition is in F.

In quantum gravity, universal cohomology does not begin with a consider-
ation of classical geometries, which emerge from quantum computation. Com-
pactified Minkowski space SU(2)×U(1) emerges from B3 ribbons [6]. Observe
the interplay here of different primes: the prime power axis labels (paths) or the
truncation of a cubic lattice using qudits (vertex rule). The recovery of l-adic
and other cohomologies is now studied by mathematicians using deformation
parameters. Golden ring deformations are a basis for generic real and complex
numbers. From this perspective, focusing on higher dimensional categorical ax-
ioms, we don’t worry too much about the preponderence of infinite dimensional
diagrams. Limits are easy to define and it all comes down to good choices for
finite diagrams.

References

[1] F. Battaglia and E. Prato, Commun. Math. Phys. 299, 577, 2010

[2] M. D. Sheppeard, PhD thesis, University of Canterbury, 2007

[3] S. Mac Lane and I. Moerdijk, Sheaves and geometry in logic, Springer, 2000

[4] B. Field and T. Simula, arXiv:1802.06176, 2018

[5] A. Sagodi, BSc thesis, University of Amsterdam, 2017

[6] M. Freedman, M. Larsen and Z. Wang, Commun. Math. Phys. 227, 605-622,
2002

[7] L. H. Kauffman and S. L. Lomonaco Jr, arXiv:0804.4304, 2008

[8] L. H. Kauffman, arXiv:1710.04650, 2017

[9] C. Furey, Phys. Lett. B742, 195-199, 2015

[10] C. Furey, Phys. Rev. D86, 025024, 2012

[11] N. G. Gresnigt, Phys. Lett. B 783, 212, 2018

[12] S. O. Bilson-Thompson, arXiv:hep-ph/0503213, 2005

[13] M. D. Sheppeard, viXra:1304.0003, 2013

7



[14] M. D. Sheppeard, J. Phys.: Conf. Ser. 1194, 012097, 2019

[15] P. Truini, M. Rios and A. Marrani, arXiv:1711.07881, 2017

[16] D. J. Broadhurst and D. Kreimer, arXiv:hep-ph/9504352

[17] D. J. Broadhurst and D. Kreimer, arXiv:hep-th/9609128

[18] F. Brown, arXiv:1512.06410

[19] C. Glanois, PhD thesis, University of Pierre et Marie Curie, 2017

[20] J. C. Butcher, Math. Comput. 26, 117, 79-106, 1972

[21] A. Connes and D. Kreimer, Commun. Math. Phys. 210, 249-273, 2000

8


