
Systems of linear Dyson–Schwinger equations

Henry Kißler

April 26, 2019

Abstract

Systems of Dyson–Schwinger equation represent the equations of
motion in quantum field theory. In this paper, we follow the com-
binatorial approach and consider Dyson–Schwinger equations as fixed
point equations that determine the perturbation series by usage of
graph insertion operators. We discuss their properties under the renor-
malization flow, prove that fixed points are scheme independent, and
construct solutions for coupled systems with linearized arguments of
the insertion operators.

1 Introduction

In quantum field theory, the equations of motions are formulated terms of
systems of coupled Dyson–Schwinger equations. Starting from a tree-level
term, Dyson–Schwinger equations recursively determine the full perturba-
tion series and hence yield all quantum corrections to the classical theory.
The coefficients of this series are generally sums of Feynman graphs which
translate into integrals that possibly diverge. This issue is solved by employ-
ing various methods commonly known as renormalization. Consequently, a
perturbation series turns into a formal power series with finite coefficients
which is called a Green’s function. Green’s functions can be thought of
as the building blocks of quantum field theory—they contain the informa-
tion of all observables. However, the process of renormalization requires the
introduction of auxiliary scales which induce some freedom of choice. Ulti-
mately, renormalized Green’s function depend on the choice of a scale which
is referred to as renormalization scheme dependence, whereas observables
extracted from renormalized Green’s functions are expected to be indepen-
dent of any kind of choice, indicating a subtle underlying structure.

Whereas the original formulation of Dyson–Schwinger equations reaches
back to the very early stages of the foundation of quantum field theory and
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the related search for methods of renormalization, a recently proposed com-
binatorial description of Dyson–Schwinger equations provides fresh insights
how the structure of divergences of the perturbation series determines the
renormalization flow. In [1], Kreimer introduced a combinatorial version of
Dyson–Schwinger equations that utilizes operators to insert subdivergences
into skeleton graphs (Feynman graphs without subdivergences). Crucially,
these insertion operators are known to be compatible to the Hopf algebra
structure of Feynman graphs which was introduced in [2, 3] as mathemati-
cally rigorous description of the renormalization process. This allows for a
combinatorial derivation of the Callan–Symanzik equations [4, 5], which can
be understood as a first elucification on the subtle underlying structure.

Generally, a solution of a Dyson–Schwinger equation requires the evalu-
ation of infinite many skeleton graph and hence solutions can only be con-
structed after truncating the set of skeletons. So far, the above combinatorial
methods have been successfully employed to solve particular truncations for
various case of a single Dyson–Schwinger equation. A particularly simple
truncation was constructed by linearizing the argument of a single insertion
operator for a single equation. This linear Dyson–Schwinger equation can be
thought of some kind of rainbox approximation and was shown to be solved
in terms of scaling solutions [6]. Other examples are the chord diagram
expansions with a single skeleton [7] and an arbitrary number of skeleton
graphs [8] which are, however, still restricted to a single equation. In this ar-
ticle, we generalize the single equation version of a linear Dyson–Schwinger
equation to a coupled system of linear Dyson–Schwinger equations.

The article is organized as follows. Section 2 briefly reviews the ter-
minology and essential results of Hopf algebras and combinatorial Dyson–
Schwinger equations. Also, we provide a proof that fixed points are scheme
independent in kinematic renormalization. Section 3 reproduces known re-
sults pertaining to the single equation case and establishes our conventions
that naturally generalize to systems of linear Dyson–Schwinger equations
which are discussed in section 4. We provide solutions and demonstrate
that their properties critically depend on whether a matrix defined in terms
of analytic expressions of the skeleton graphs is diagonalizable or degener-
ates. Finally, we discuss the physical relevance of the different cases.

2 Fixed points & Renormalization flow

This section provides a brief introduction to the combinatorial formulation of
Dyson–Schwinger equations and the essential terminology of Hopf-algebraic
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renormalization. After recalling the combinatorial analysis of the renormal-
ization flow and deriving the celebrated Callan–Symanzik equation, we show
that its fixed points are scheme independent within the class of kinematic
renormalization schemes.

Recall that, in quantum field theory, a Lagrangian specifies a set of fields
and interactions, which mediate forces between these fields. Each field de-
fines a specific edge type and each interaction defines some type of vertex.
The union of all these edge types and vertex types is commonly called the set
of residues. Graphs build from these edges and vertices are called Feynman
graphs and the challenge that is the subject of perturbation theory is to con-
struct all Feynman graphs and evaluate their analytic expressions which are
obtained by applying a set of rules which is derived from the Lagrangian and
commonly called Feynman rules. The analytical structure of the Feynman
rules associates a weight to each graph which yields a characterization of the
divergent graphs. Renormalization provides methods to assign finite result
to the divergent graphs and gives rise to a Hopf algebra (H,m,1,∆, 1̄, S)
[2, 3].

Here, H denotes the Q-vector space generated by all divergent Feynman
graphs those connected components are bridgeless. The product m : H ⊗
H → H is given by the disjoint union and the unit 1 is the empty graph.
The counit is denoted by 1̄ and the coproduct ∆ : H → H⊗H is the algebra
homomorphism defined by

∆(Γ) =
∑
γEΓ

γ ⊗ Γ/γ, (1)

where Γ ∈ H is a Feynman graph, the sum goes over all subgraphs γ E
Γ which connected components are divergent, and Γ/γ denotes the graph
obtained by contracting each connected component of γ in Γ to a point. The
antipode S : H → H is defined by

S(Γ) = −Γ−
∑

S(Γ′)Γ′′, (2)

where we used Sweedler’s notation i.e. ∆(Γ) = Γ⊗ 1 + 1⊗ Γ +
∑

Γ′ ⊗ Γ′′.

2.1 Combinatorial Dyson–Schwinger equations

In this article, the main objects of interested are the Green’s functions, which
are defined as formal series in the coupling parameter α with coefficients in
H

Xr(α) = 1±
∑

res(Γ)=r

α|Γ|
Γ

sym(Γ)
, (3)
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where r refers to some residue (edge or vertex type), |Γ| denotes the number
of independent cycles of the graph Γ, which is commonly called loop number
in the physics literature, and sym(Γ) is the symmetry factor of the graph
Γ that is the order of the automorphism group of Γ. By convention, the
plus sign applies if r is a vertex type, but minus applies if r is an edge type.
It is worth remarking that, in this work, we will always restrict to a single
coupling parameter α.

Recently, Kreimer proposed a combinatioral method to describe Green’s
functions by means of graph insertions [1]. As opposed to the traditional ap-
proaches, Kreimer’s description reveals some algebraic properties underlying
Green’s functions and is manifestly compatible with the underlying Hopf-
algebraic structure of Feynman graphs which allows for a detailed analysis of
the renormalization process. Here, we recall the essential results of Kreimer’s
construction.

As a main result of [1], the Green’s function (3) can be understood as
solution of the combinatorial fixed point equation

Xr = 1 +Br
+

(
XrQk

)
(4)

where we have introduced the insertion operators Br
+, and the invariant

charge Q(α). In this sense, Xr(α) is commonly referred to as combinatioral
Green’s function. The insertion operator above abbreviates a sum of linear
operators

Br
+ =

∑
k≥1

αkBk;r
+ (5)

where each Bk;r
+ maps a product of Feynman graphs to a sum of Feynman

graphs obtained by summing over all possibilities to insert the graph from its
argument into a skeleton graph with loop order k and residue r. The domain
of these insertion operators is naturally extended to formal power series by
employing the operator on each coefficient of the series. The invariant charge
Q is a quotient of formal series where the numerator is the product of all
Green’s functions of vertex type and each Green’s function of edge type
contributes some factors in the denominator. If we assume that there is
only a single vertex type for simplicity, then the invariant charge reads

Q =
(Xv)2∏
e∼v

Xe
(6)
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where v denotes the vertex type and each half-edge e that is incident to
v contributes a factor in the product. At this point, the reader should be
aware that in gauge theories, there is a gauge parameter which is renormal-
ized and hence must be understood as second coupling parameter. Under
these circumstances, we expect the presence of another invariant charge. In
general, every renormalized parameter is expected to introduce an invari-
ant charge. Indeed, this has been explicitly verified for the renormalization
quantum electrodynamics and quantum chromodynamics in [9, 10].

Another crucial result of [1] is that the insertion operators Bk;r
+ are

Hochschild one-cocyles that is

∆ ◦Bk;r
+ = Bk;r

+ ⊗ 1 +
(

id⊗Bk;r
+

)
◦∆ (7)

where ∆ denotes the coproduct of the Kreimer’s Hopf algebra of Feynman
graphs. This simple relations allows to commute the coproduct with the
insertion operators and hence provides a technique for inductive derivations
of coproduct formulas of the entire combinatorial Green’s functions as op-
posed to derive the coproduct for each graph individually and sum up the
results. This implies the identities [11, 5]

∆Xr =
∑
k≥0

XrQk ⊗ Xr|k (8)

∆Q =
∑
k≥0

Qk+1 ⊗ Q|k (9)

where Xr|k denotes the k-th coefficient of the series Xr. These identities
encode the combinatorial structure of the subdivergences of the Green’s
functions and form the basis for an analysis of their behavior under change
of the renormalization scale.

2.2 Feynman rules

The Feynman rules Φ map a Feynman graph to an analytic expression in
some target algebra. It turns out that the integrals which are meant to
represent these analytic expressions are commonly plagued by divergences.
A common way to resolve this issue is to introduce an regulator and define
a divergent integral by analytic continuation. Therefore the target algebra
of the Feynman rules is defined to be the space of Laurent series in the
regulator with complex coefficients. In this article, we will employ analytic
regularization [12]. The explicit analytic shape of the set of Feynman rules
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depends on the actual model under consideration. Here, we will restrict
ourselves mainly to the case of a scalar field theory for the sake of simplicity.
Also, we follow the conventions of [13] and denote the external kinematic
data of a Feynman graph into a set of angles {θ} and the scale S. In
this setting, there is a simple construction that assigns a finite expression
to the aforementioned divergent expressions. This is accomplished by the
renormalized Feynman rules

ΦR
(S,S0,Θ,Θ0)(Γ) =

∑
f forest

(−1)|f |Φ(S0,Θ0)(f)Φ(S,Θ)(Γ/f), (10)

where Γ is a Feynman graph, Φ(S,θ)(Γ) denotes the Feynman rules employed
to the graph Γ and evaluating its external momenta at the scale S and angles
{θ}, f is a forest of the graph Γ (that is a set of divergent subgraphs with any
two of them being either nested or disjoint), |f | denotes the number of ele-
ments of the forest f , and Γ/f is the Feynman graph obtained by contracting
each of the elements of the forest f to a point in Γ. It is worth remarking
that the external kinematic data of the forests Φ(S0,θ0)(f) are evaluated at
a reference scale S0 and reference angles {θ0} with is commonly referred to
as renormalization point. This is the essence of a kinematic renormalization
scheme: the subdivergences are evaluated at some renormalization point.
Obviously, a change of the renormalization point will also change results
and we will devote large parts of the next section to this subject.

Finally, we remark that the combinatorial structure of the renormalized
Feynman rules in (10) allows for a concise expression using Hopf-algebraic
terminology. More precisely, it holds [13]

ΦR
(S,S0,θ,θ0) = (Φ(S0,θ0) ◦ S) ?Φ(S,θ) := m ◦

(
(Φ(S0,θ0) ◦ S)⊗Φ(S,θ)

)
◦∆

(11)

where S is the antipode and ∆ is the coproduct of the Hopf algebra of Feyn-
man graph whereas m is the product in the target algebra of the Feynman
rules. More generally, the right-hand side defines the convolution product
? : Hom(A,C) × Hom(A,C) → Hom(A,C) for some algebra A and some
coalgebra C.

2.3 Callan–Symanzik equation and fixed points

It is well-known that scale dependence of a superficially divergent graph
is a polynomial in the logarithm of the quotient of the scale S and the
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renormalization point S0 [13], hence we can define L = ln S
S0

and expand

ΦR (Xr) = 1 +
∑
k≥1

γrk(α)Lk, (12)

ΦR (Q) = 1 +
∑
k≥1

βrk(α)Lk, (13)

where coefficient functions γrk and βrk possibly depend on the angles {θ}
and {θ0}. In the equation above and the following, we suppress this angle
dependence for the sake of a concise notation.

Due to the underlying Hopf-algebraic structure [14, 15], a combinatorial
analysis [4, 5] reveals that these coefficient functions are highly restricted
and satisfy the following set of equations

kγrk(α) = [γr1(α) + βr1(α)α∂α] γrk−1(α), (14)

kβrk(α) = βr1(α) [1 + α∂α]βrk−1(α) ∀k ≥ 2. (15)

With this set of differential equations, the dynamics of the Green’s function
Gr is completely determined by the functions γr1 and β1. Note that the
derived equations imply the celebrated Callan–Symanzik equation

(∂L + βα∂α + γr)Gr = 0 (16)

where we identified the first coefficient function in our expansion with the
anomalous dimension γr = −γr1 and the beta function β = −β1 with ap-
propriate signs. The Callan–Symanzik equation might be read as follows: a
change in the reference scale (that is in L) can be compensated by a change
of the coupling parameter α and the amplitude of Gr as described by the
anomalous dimension γr.

Another consequence of the differential equations (14) and (15) pertains
to the scheme independence of so-called fixed points. Following the usual
terminology, a fixed point α∗ is defined to be a point of the zero locus of the
beta function that is β(α∗) = 0. As an immediate consequence of (15), α∗
being a fixed point is equivalent to the condition

evα∗ ΦR
(S,S0,θ,θ0) (Q) = 1. (17)

Here, evα∗ denotes the evaluation of the coupling parameter α at α∗. Fur-
ther, it is worth emphasizing that a priori this identity is only satisfied for a
particular choice of the renormalization point (S0, {θ0}), that is a particular
renormalization scheme. Whereas the beta function generally does depend
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on the choice of a renormalization scheme, there is a broad agreement that
the fixed points are scheme independent in the physics literature. Here,
we provide a proof of this statement for a special class of renormalization
schemes.

Proposition 2.1. Within the class of kinematic renormalization schemes,
as defined by (10), the fixed points do not depend on the choice of the renor-
malization point.

In other words, if the fixed point α∗ obeys (17) at some renormalization
point (S0, {θ0}), then α∗ satisfies equation (17) at any renormalization point.

Proof. We assume α∗ to satisfy (17) and show that α∗ also evaluates to
unity when the renormalization point is changed to (S1, {θ1}).

First, we notice that in a kinematic scheme the renormalized Feynman
rules (10) at the renormalization point (S1, {θ1}) are related to the renor-
malization point (S0, {θ0}) by

ΦR
(S,S1,θ,θ1) =

(
ΦR

(S1,S0,θ1,θ0)

)−1
?ΦR

(S,S0,θ,θ0),

which can be easily derived from the convolution formula (11). Next recall
that the target algebra is commutative; this implies that the convolution
inverse is given by concatenation with the antipode (see e.g. proposition
II.4.1 in [16]) (

ΦR
(S1,S0,θ1,θ0)

)−1
= ΦR

(S1,S0,θ1,θ0) ◦ S. (18)

Now, we use the coproduct formula of the invariant charge (9) to evaluate
the convolution

ΦR
(S,S1,θ,θ1)(Q) =

∑
k≥0

(
ΦR

(S1,S0,θ1,θ0)

)−1
(Qk+1) ΦR

(S,S0,θ,θ0)(Q|k). (19)

As the renormalized Feynman rules satisfy the character property, i.e. ΦR(Γ1Γ2) =
ΦR(Γ1)ΦR(Γ2), it is sufficient to show that evα∗(ΦR

(S1,S0,θ1,θ0))
−1(Q) = 1.
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This can be shown by the following derivation.

evα∗ ◦
(
ΦR
S1,S0,θ1,θ0

)−1
(Q) = evα∗ ◦ΦR

(S1,S0,θ1,θ0) ◦ S(Q)

= evα∗ ◦ΦR
(S1,S0,θ1,θ0)

∑
k≥0

1 · S(Q|k)


= evα∗ ◦ΦR

(S1,S0,θ1,θ0)

∑
k≥0

Qk+1S(Q|k)


= evα∗ ◦ΦR

(S1,S0,θ1,θ0) ◦ (id ?S)(Q)

= 1

The first equality is due to (18). In the second equality, we expanded the
invariant charge and multiplied a factor 1, which is replaced in the third
equality due to 1 = evα∗ ΦR

S,S0,θ,θ0
(Qn+1), which holds for all scales and

angles (S, {θ}), and the character property of the renormalized Feynman
rules. The forth equality uses

(id ?S)(Q) =
∑
k≥0

Qk+1S(Q|k) (20)

which follows from the coproduct formula for the invariant charge (9). Fi-
nally, make use of the fact that the antipode is the convolution inverse of
the identity, hence id ?S the identity with respect to the convolution prod-
uct which is well-known to vanish except for the subspace spanned by 1 on
which it acts as identity (see e.g. proposition II.3.1 in [16]). Therefore, we
have (id ?S)(Q) = 1.

Finally, applying the last derivation shows that (19) evaluates to unity
when the coupling is evaluated at the fixed point α∗; this finishes the proof.

Thanks to the proposition 2.1, at a fixed point, the invariant change
evaluates to unity in any kinematic renormalization scheme. Further, coeffi-
cients of the invariant charge generate a Hopf subalgebra, which can be seen
from the coproduct formula for the invariant charge (9) and an expansion
of (20). Therefore, the fixed point condition can algebraically implemented
by considering the quotient Hopf algebra H/ 〈Q− 1〉 where the quotient
〈Q− 1〉 denotes the algebra generated by the coefficients of the invariant
charge Q except for Q|0 = 1.
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We conclude that at the fixed point, the coproduct of the Green’s func-
tion Xr(α) becomes grouplike

∆Xr = Xr ⊗Xr (21)

and, following the preceding discussion of the renormalization flow, the
Callan–Symanzik equation simplifies to

(∂L + γr)Gr = 0. (22)

This simple partial differential equation is solved by so-called scaling solu-
tions

Gr(L,α) = exp (−Lγr(α)) = (S/S0)
−γr(α) (23)

which we expect to describe the physical phenomena at a fixed point.

3 Linear Dyson–Schwinger equations

This paragraph gives a short account on how to solve a single linear Dyson–
Schwinger equation. This discussion is useful to establish our conventions
and to gain a first insight about the solution theory. Here, we basically
recall the result of Kreimer [6]. This will be generalized to systems of linear
Dyson–Schwinger equations in the next paragraph.

Let (Γ, e) be the ordered pair of a skeleton graph Γ and a distinguished
internal edge of this skeleton e ∈ IΓ that matches the residue of Γ, i.e.
e = res(Γ). The distinguished edge is meant to serve as an insertion place
for graphs that have a matching residue. As the skeleton Γ itself satisfies
this requirement, it can be inserted into itself. Further, such a chain of
skeletons can again be inserted into the skeleton graph and so on. This
iterative procedure of chaining the skeleton is formalized by defining the
shift operator

B+ : H → H (24)

which takes a graph from the Hopf algebra H as argument and inserts it into
the distinguished edge of the skeleton Γ provided that the argument has the
residue res(Γ), otherwise the shift operator is defined to map the argument
to zero. Now, a set of coefficients in the Hopf algebra of graphs H is defined
by setting c0 = 1 and using the shift operator cn = B+ ◦ · · · ◦ B+(c0) with
n times B+. In other words, cn is the chain that is built from n skeletons
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Γ. It was noticed (see [6] and references therein) that the shifting operator
acts on the set of these coefficients as a Hochschild one-cocycle

∆ ◦B+ = (B+ ⊗ 1) + (id +B+) ◦∆. (25)

This easily implies a closed coproduct formula for the coefficients

∆ci =
i∑

j=0

cj ⊗ ci−j (26)

and proves that the coefficients are spanning a Sub-Hopf algebra of the
connected Hopf algebra H. From the physical perspective, this condition
ensures that the set of graphs given by means of the coefficients cn is renor-
malizable (in terms of Z-factors) – therefore, the formal series generated
by these coefficients is a renormalizable truncation of the full perturbation
series and hence a reasonable object to study. So let us define

X(α) =
∑
i≥0

ciα
i (27)

where α denotes the coupling parameter. Note that the coproduct formula
(26) from above resurrects in the form

∆X = X ⊗X. (28)

Following the physical interpretation as discussed in [10], this formula allows
us to anticipate the outcome of our succeeding discussion: the truncated
perturbation series X does not require a renormalization of the coupling
α; only its scaling dimension is required to be adjusted. Consequently, the
seriesX is expected to yield scaling solutions after employing Feynman rules.
At the end of this paragraph, we will explicitly derive the perturbation series
for one specific example and confirm the anticipated result. For now, let us
continue the discussion and note that the perturbation series satisfies the
following equation

X = 1 + αB+(X). (29)

This type of equation is the central object of our discussion; it is a combina-
torial Dyson–Schwinger equation that can be considered to iteratively define
the perturbation series X. However, in contrast to the Dyson–Schwinger
equation that describes the full perturbation series, the argument of the
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B+ operator is a linear expression in the series X, therefore, it is called a
linear Dyson–Schwinger equation.

In the following, the Feynman rules of the skeleton is abbreviated by the
integral

Φ(Γ) =

∫
ΩΓ (30)

over the differential form ΩΓ associated to the Feynman graph Γ. In this
way, we find a simple law for the commutation of the Feynman rules and
the shift operator Φ◦B+(·) =

∫
(ΩΓΦ(·)), where the output of the Feynman

rules is also integrated over in the right-hand side of the equation. Now, the
Green’s function associated to the truncated perturbation series is defined
by G(α) = Φ(X(α)). Applying the above commutation law, the linear
Dyson–Schwinger equation is turned into the linear integral equation

G(α) = Φ(X(α)) = 1 + α

∫
ΩΓG(α) (31)

with the Green’s function G(α) as the unknown. This is the equation we are
interested in solving. Of course, an exact solution to this type of problem
requires us to determine the truncation in use und hence we need to provide
a concrete description of the skeleton and its Feynman rules.

As an example, we consider a one-loop Euclidean one-scale scalar Feyn-
man graph at four dimensional spacetime – in other words the considered
graph consists of two vertices that are connected by two edges. As the
associated integral is logarithmically divergent, a regularization schemes is
required. Recall that in this paper, we will use analytic regularization at
the distinguished edge which turns out to be well compatible with the con-
sequent integration in the equation. These conventions for the skeleton Γ
result in the following expression

Φq2(Γ) =

∫
d4k

π2

1

(k2)1+ρ(k + q)2
=

1

ρ(1− ρ)
(q2)−ρ, (32)

where ρ denotes the analytic regulator. The physical limit is given by ρ→ 0
and the pole in the final expression exhibits the logarithmic divergence of the
integral. For the following discussion, it is useful to separate the kinematic
scaling factor (q2)−ρ and define the Laurent series

f(ρ) =
1

ρ(1− ρ)
= (q2)ρΦq2(Γ), (33)
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which determines the analytic expression of the skeleton up to its trivial
kinematic behaviour.

Now, we can start to construct solutions of the linear integral equation
(31). However, as the considered skeleton gives rise to an unrenormalized
expression, a solution of this integral equation also is an unrenormalized
Green’s function. To construct a renormalized Green’s function, we need
to treat the divergence that arises from the skeleton integrand. A fairly
easy approach to this issue is to improve the convergence behaviour by
subtracting a suitable term from the integrand. Here, such as subtrahend
is constructed by evaluating the external kinematic data of the integrand at
the renormalization point µ. In this way, the renormalized integral vanishes
when the external momentum is evaluated at the renormalization point q2 =
µ2 – hence a physical boundary condition is implemented by performing
kinematic renormalization. This results in the following integral equation

G(α, q, µ) = 1 + α

{∫
d4k

π2

G(α, k, µ)

(k2)1+ρ(k + q)2

}q2
q2=µ2

. (34)

To proceed with the construction of a solution of this renormalized linear
integral equation, scaling solutions of the type

G(α; q, µ) = (q2/µ2)−γ(α) (35)

are considered; firstly because this type of ansatz satisfies the boundary
condition G(α, µ, µ) = 1 and secondly as scaling solutions have been antici-
pated from our considerations concerning the subdivergence structure as in
equation (28). Note that identifications of the scale S = q2 and the renor-
malization point S0 = µ2, reproduces the scaling solutions as predicted by
(23). The unknown γ(α) is usually called anomalous (scaling) dimension
and needs to be determined. Insertion of the ansatz into the integral equa-
tion yields that the ansatz is a solution iff the anomalous dimension satisfies
the condition

1 = αf(γ(α)). (36)

In our concrete example for the skeleton Γ, this derives to a quadratic equa-
tion in the anomalous dimensional, which is easily solved by the following
expression

γ(α) =
1

2

(
1−
√

1− 4α
)

(37)
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where the negative root has to be chosen due to the condition G(0, q, µ) =
1. Finally, the anomalous dimension γ(α) in combination with the scaling
ansatz (35) is a solution of the renormalized linear integral equation and
hence the sought truncated Green’s function.

The fact that we have been able to derive this closed expression for
the anomalous dimension crucially depends on the specific shape of the
Laurent series (33). However, the scaling ansatz is general enough to solve
the renormalized integral equation in a much more general setting.

Proposition 3.1. Let f : C→ C be a meromorphic function with a pole of
first order at ρ = 0, denote its Laurent series as

f(ρ) =
∑
j≥−1

fjρ
j (38)

and define an anomalous dimension as the formal power series with complex
coefficients

γ(α) =
∑
j≥1

γjα
j (39)

which obeys γ(0) = 0 and αf(γ(α)) = 1. Then, the first coefficient of the
anomalous dimension is determined by the residuum of the meromorphic
function, that is γ1 = f−1, and the consecutive coefficients are recursively
determined by

γn+1 =
∑

1≤j≤n
fj−1

∑
n1+···+nj=n

γn1 · · · γnj for n ≥ 1. (40)

Proof. This is a ready consequence of Faà di Bruno’s formula and proposi-
tion 4 of [6].

To conclude, we have argued that the renormalized Dyson–Schwinger
equation is solved by scaling solutions, which are characterized by their
anomalous dimension γ(α). This anomalous dimension is completely de-
termined by equation (36) once the Laurent series f(z) of the analytically
regularized skeleton is known.

4 Systems of linear Dyson–Schwinger equations

This section generalizes the above discussion of a single linear Dyson–Schwinger
equation to systems.
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As we have seen in the preceding paragraph, a linear Dyson–Schwinger
equation is solved by a scaling solution. The respective anomalous (scaling)
dimension is determined by the Laurent series of the analytically regularized
skeleton graph, which is used to define the truncated perturbation series.

The motivation to study systems of linear Dyson–Schwinger equation
is to lose the restriction to a single skeleton, a single insertion place, and
a single residue. So let Γ1, . . . ,ΓN be skeleton graphs of different residues
and use the convention res(Γi) = i. Further, each skeleton Γi is paired with
a list of internal edges (e1, . . . , eN ) where ej ∈ IΓi and res(ei) = i. As in
the case of a single skeleton, the internal edges are considered as insertion
places. Hence given a skeleton (Γi, (e1, . . . , eN )), another skeleton Γj can
be inserted into Γi at the edge ej ; this operation defines a set of shifting
operators

Bij : H → H (41)

which, again, vanishes whenever its argument has a residue that is not com-
patible (i.e. of type j) in straight analogy to the single skeleton case.

For the rest of this article, the following system of linear Dyson–Schwinger
equations is examined

Xj(α) = 1 + α
∑

1≤k≤N
Bjk(Xk(α)) for j = 1, . . . N. (42)

where we restrict ourselves to a single perturbative order parameter α. As
in the single skeleton case, such a system recursively defines an unique set
of formal power series X1(α), . . . , XN (α), which we call the solution of the
system and consider it as a truncation of the physical perturbation series.

The consecutive steps are again: first apply the Feynman rules Φ to the
system in order to convert it into a set of linear integral equations, second
renormalize by subtracting each integrand of the skeletons at a common
renormalization point µ, third solving this set of renormalized linear integral
equations

Gj(α, q, µ) = 1 + α
∑

1≤k≤N

[∫
ΩΓjGk(α, pk, µ)

]
. (43)

Here, Gj is the renormalized Green’s function, pj is the momentum assigned
to the edge ek ∈ IΓj , and the brackets denote the kinematic subtraction at
q2 = µ2, for some µ ∈ R which is called renormalization point. As in the case
of a single equation, we expect the solution to be determined by analytic
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expressions of skeletons. Therefore, we define the following set of Laurent
series

Φq2 ◦Bij(1) = (q2)−ρfij(ρ), (44)

where the index j expresses that the edge ej has been chosen to be an-
alytically regularized and to introduce the ρ dependence in the analytic
expression. This data gives rise to a N ×N Matrix (fjk(ρ)) which we will
refer to as the skeleton matrix. More generally, matrices will be represented
by capitalized characters in following. In this convention, the entries of the
skeleton matrix read Fjk = fjk. Now, in the construction of solutions, two
cases have to be distinguished: first the canonical case, that is the skele-
ton matrix is diagonalizable, and second the degenerated case, that is the
skeleton matrix is defective.

4.1 The canonical case

Firstly let us assume that the N ×N matrix of the analytic expressions of
the analytically regularized skeletons is diagonalizable

F (ρ) = A(ρ)

λ1(ρ)
. . .

λN (ρ)

A−1(ρ) (45)

with eigenvalues λi(ρ), i = 1, . . . , N and an invertible matrix A(ρ). By
assumption, every entry of F (ρ) is a Laurent series with a pole of at most
order one at ρ = 0. As implicit functions of the characteristic polynomial
with analytic coefficients, the eigenvalues λi are analytic functions at some
disk around ρ = 0. At ρ = 0, their have a pole of first order at most which
can be seen as follows. First notice that the modulus of the eigenvalue

|λ(ρ)| = ‖λ(ρ) v(ρ)‖
‖v(ρ)‖

=
‖F (ρ) v(ρ)‖
‖v(ρ)‖

≤ ‖F (ρ)‖ (46)

is bounded by the sum of the modulus of each entry of the matrix F . There-
fore,

ρ2|λ(ρ)| ≤ ‖ρ2F (ρ)‖ → 0 for ρ→ 0. (47)

In other words, the eigenvalues do not have poles of order two or higher.
Consequently, a diagonalization of the system (45) does not alter the

pole order of the Laurent series and, after diagonalization, the system can
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be considered as N independent linear Dyson–Schwinger equations, which
are solved by scaling solutions as demonstrated above. The consecutive task
is now to construct an appropriate superposition of scaling solutions.

Proposition 4.1. For i = 1, . . . , N , define the anomalous dimension γi
to satisfy αλi(γi(α)) = 1 and γi(0) = 0, then the integral equation (43) is
solved by the following set of scaling solutions

Gj(α, q, µ) =
N∑
k=1

Ãjk

(
q2

µ2

)−γk(α)

(48)

where the coefficients are determined by means of the transformation ma-
trix (45) and the anomalous dimensions: Ãjk =

∑N
l=1Ajk(γk(α))A−1

kl (γk(α)).

Before providing the proof of this proposition, we would like to remark
that the existence of the anomalous dimensions γi, as mentioned in the
assumption, can be deduced from the case of a single linear Dyson–Schwinger
equation. In proposition 3.1, Equation (40) gives a recursive definition where
the coefficients of the Laurent series of the skeleton graph is simply replaced
by the Laurent series of an eigenvalue λi from the matrix (45) of the linear
system.

Proof. First, note that the coefficients are normalized in the following sense∑
1≤k≤N

Ãjk =
∑

1≤k,l≤N
AjkA

−1
kl =

∑
1≤l≤N

δjl = 1. (49)

Further, recall that the anomalous dimensions satisfy γ(0) = 0 by definition.
Therefore, the ansatz obeys the normalization

Gj(0, q, µ) = 1. (50)

That is the ansatz (48) fulfills the linear integral equation (43) at the order
α0. In order to show that that the integral equation is satisfied to all orders,
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we first prove the following useful equality.

α
N∑
k=1

Fjk(γl)Ãkl = α
N∑

k,m=1

Fjk(γl)Akl(γl)A
−1
lm(γl)

= α
N∑

k,m,n=1

Ajn(γl)λn(γl)Ank(γl)Akl(γl)A
−1
lm(γl)

=

N∑
m=1

Ajl(γl)αλl(γl)︸ ︷︷ ︸
=1

A−1
lm(γl) = Ãjl

(51)

In the last line, we made use of the defining property of the anomalous
dimensions αλl(γl(α)) = 1 (see proposition 3.1). Now, using this identity,
the rest of the proof consists of verifying that the ansatz (48) satisfies the
integral equation (43).

α
N∑
k=1

{∫
ΩγjGk(α, pk, µ)

}
= α

N∑
k,l=1

Ãkl

{∫
Ωγj

(
p2
k

µ2

)−γl(α)
}

= α

N∑
k,l=1

ÃklFjk(γl(α))

[(
q2

µ2

)−γl(α)

− 1

]

=
N∑
l=1

Ãjl

[(
q2

µ2

)−γl(α)

− 1

]
= Gj(α, q, µ)− 1

Here, the pk is again the momentum assigned to the edge ek ∈ Iγj and the
braces in the first line are meant to indicate the subtraction of the integrand
at the renormalization point q2 = µ2. For the last step, we have used the
identity (51). We conclude that the scaling ansatz (48) solves the linear
integral equation.

4.2 The degenerated case

Now it remains to discuss systems with a skeleton matrix which is not di-
agonalizable. A general degenerated system decouples in separate systems
of Jordan blocks. Here, we provide a solution for the Jordan block of size
M and afterwards discuss how the general degenerated case relates to these
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solutions. Now assume the skeleton matrix to be the M ×M Jordan block

F (z) =


λ(z)

1 λ(z)
1 λ(z)

. . .
. . .

1 λ(z)

 . (52)

In this set up the first integral equation decouples and we immediately rec-
ognize a solution of the first equation from the previous discussion

G1(α, q, µ) = (s/µ)−γ(α) (53)

where the anomalous dimension γ(α) obeys αλ(γ(α)) = 1 and is hence
determined by proposition 3.1.

Prior to solving the other equations of the degenerated system, we prove
a brief lemma that will be useful for the construction of solutions. First, let
us define some convenient notation. Given a Laurent series F ∈ C((α)), the
commutator of the k-times derivative with respect to α and the F is defined
by its natural action on some Laurent series[

∂kα, F
]
G = ∂kα (FG)− F

(
∂kαG

)
∀G ∈ C((α)). (54)

For the sake of a concise notation, the Laurent series G will be suppressed
in the following.

Lemma 4.2. Let (pj)j≥1 be the sequence of polynomials

pj(X) =

j∑
k=0

cjkX
k where cjk ∈ C[α], (55)

that obey the following properties

1. deg(pj) = j − 1 ∀j ≥ 1

2. pj(0) = 1 ∀j ≥ 1

3.
[
pj+1(∂α), 1

α

]
= −pj(∂α)

then, the coefficients cjj = 0 and cj0 = 1 for all j ≥ 1 and the remaining
coefficients are determined by the recursion

cj+1k = α
(
cjk +

α

k
cjk−1

)
∀j ≥ 1, k ≥ 1. (56)
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As this sequence is utilized in the construction of solutions, we like to
list the first three polynomials of the sequence for the convenience of the
reader.

p1(X) = 1 (57)

p2(X) = 1 + α2X (58)

p3(X) = 1 + α2(1 + α)X +
α4

2
X2 (59)

Also note that the identity cjj = 0 and the recursion (56) determines the
highest order coefficients by induction to be

cj+1j =
α2j

j!
. (60)

It follows the proof of the lemma.

Proof. First, the commutator of k times the derivative with respect to α
and 1/α reads [

∂kα,
1

α

]
=

k−1∑
l=0

(
k

l

)(
∂k−lα

1

α

)
∂lα =

k−1∑
l=0

akl∂
l
α, (61)

where we have introduced coefficients akl := k!αl

l!α1+k . Next, the commutator
from the left-hand side of property (3) is derived[

pj+1(∂α),
1

α

]
=

j∑
k=1

cj+1k

[
∂kα,

1

α

]
=
∑

1≤k≤j

∑
0≤l≤k−1

cj+1kakl∂
l
α. (62)

Comparison with the right-hand side of property (3), that is with the coef-
ficients of −pj(∂α) yields the following restriction for the coefficients

−cjl =
∑

l+1≤k≤j
cj+1kakl∂

l
α. (63)

Now, changing the set of variables by defining c̃jk := cjkl!/(−α)l, this equation
reads

−αc̃jl =

j∑
k=l+1

c̃j+1k ∀j ∀l = 0, . . . , j − 1. (64)
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It is useful to visualize the equation in a matrix notation.

−α


c̃jj−1

c̃jj−2
...

c̃j0

 =


1
1 1
...

. . .

1 1 · · · 1



c̃j+1j

c̃j+1j−1
...

c̃j+11

 (65)

Now, by inverting the matrix on the right-hand side, a recursive description
of the coefficients is readily derived.

c̃j+1j

c̃j+1j−1
...

c̃j+11

 = −α


1
−1 1

. . .
. . .

−1 1



c̃jj−1

c̃jj−2
...

c̃j0

 . (66)

Finally, it is easy to see that this matrix equation is equivalent to the recur-
sion (56).

Proposition 4.3. A solution for the Dyson–Schwinger system (43) associ-
ated to the Jordan block (52) is solved by

Gj(α, q, µ) = pj(∂α)

(
q2

µ2

)−γ(α)

j = 1, · · · ,M (67)

where pj(X) is the jth polynomial of the sequence defined in lemma 4.2 and
the anomalous dimension γ is determined by αλ(γ(α)) = 1 and γ(0) = 0
(see proposition 3.1).

Proof. The proof consists of a simple evaluation of all the integrals of the
Dyson–Schwinger system. Note that there is no summation over repeated
indices indented if not explicitly denoted otherwise.

α

{∫
ΩΓjGj(α, pj , µ)

}
= αpj(∂α)Fjj(Γ(α))︸ ︷︷ ︸

=1/α

[(
q2

µ2

)−γ(α)

− 1

]

= pj(∂α)

[(
q2

µ2

)−γ(α)

− 1

]
+ α

[
pj(∂α),

1

α

]
︸ ︷︷ ︸
=−pj−1(∂α)

[(
q2

µ2

)−γ(α)

− 1

]

= Gj(α, q, µ)− 1− α [Gj−1(α, q, µ)− 1]
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Here, we used the defining property of the anomalous dimension in the first
line and exploited the third property of the polynomial sequence from lemma
4.2. The next non-trivial integral evaluates as follows

α

{∫
ΩΓjGj−1(α, pj , µ)

}
= αpj−1(∂α)Fjj−1(γ(α))︸ ︷︷ ︸

=1

[(
q2

µ2

)−γ(α)

− 1

]
= α [Gj−1(α, q, µ)− 1] .

The remaining integrals vanish thanks to the fact that the Jordan block (52)
is a sparse matrix

α

{∫
ΩΓjGk(α, pk, µ)

}
= 0 for k 6= j, j − 1.

Adding these expression together, we conclude that the ansatz (67) solves
the Dyson–Schwinger integral system

N∑
k=1

α

{∫
ΩΓjGk(α, pk, µ)

}
= Gj(α, q, µ)− 1.

Remark. Now, if we consider a skeleton matrix that is similar to a Jordan
block

F (z) = SF̃ (z)S−1 (68)

where F̃ is a Jordan block of the form (52), then a solution of the system
(43) is given by

G(α, q, µ) = SG̃(α, q, µ). (69)

Here, G̃j = p̃j(∂α)(q2/µ2)−γ(α) and (p̃j)j≥0 is a sequence of polynomials con-
structed with the recursion (56) following lemma 4.2 except for a replacement
of the second condition by p̃j(0) =

∑M
k=1 S

−1
jk .

Remark. The solutions of the Jordan block of size two read

G1(L,α) = exp (−Lγ(α)) , G2(L,α) =
(
1− α2γ′(α)L

)
G1(L,α). (70)

The additional factor in G2 is due to the polynomial p2 which has been
worked out in (58). However, an examination of these Green’s functions

22



shows that G2 does not satisfies the Callan–Symanzik equation on or off the
fixed point

(∂L + γ(α))G1(L,α) = 0, (71)

(∂L + γ(α))G2(L,α) = −α2γ′(α)G1(L,α) 6= 0. (72)

From this we deduce that a degenerated skeleton matrix does not describe
the physical behavior of the renormalization flow and will be excluded in
discussion of physical scenarios in the conclusion.

5 Conclusion

The interplay of the Hopf algebra structure of Feynman graphs and combi-
natorial Dyson–Schwinger equations allows for remarkable insights into the
behavior of Green’s functions under the renormalization flow. In proposi-
tion 2.1, we showed that fixed points are scheme independent in kinematic
renormalization schemes.

Further, we constructed solutions for systems of linear Dyson–Schwinger
equations. As seen in previous work [6], a single linear Dyson–Schwinger
equation is solved by a scaling solution (35). A superposition of these
scaling solution solves a system only if the associated skeleton matrix is
diagonalizable—see proposition 4.1. Solutions for a degenerated case have
been constructed in proposition 4.3. Whereas a superposition of scaling
solutions satisfies the Callan–Symanzik equation with a vanishing betafunc-
tion, the degenerated solutions does not allow for an universal beta function
is hence not compatible with the Callan–Symanzik equations. Therefore,
degenerated systems are exclude for further investigations of physical theo-
ries.

Conclusively, we expect system of linear Dyson–Schwinger equation with
a non-degenerate skeleton matrix to describe physical theories that feature
scale invariance which is not broken by the renormalization process. Promi-
nent examples of field theories that fit the concept of scale invariance and
feature a vanishing beta function are supersymmetric models such as N = 4
super Yang–Mills theory or the quenched approximation of quantum elec-
trodynamics.

However, in our discussion of the scheme invariance of fixed points in
section 2, it transpired that, at a fixed point α∗, the invariant charge trivial-
izes Q(α∗) = 1. Therefore, the ideal generated by the non-trivial coefficients
of the invariant charge can be divided out which implements the fixed point
condition combinatorial in the Hopf algebra of Feynman graphs. In this
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quotient space, Green’s function are evaluated at the fixed point and obey
the scale invariant version of the Callan–Symanzik equation (22). Hence, we
expect systems of linear Dyson–Schwinger equations also apply in physical
scenarios without scale invariance when considered at a fixed point. This
observation might be of central interest due to the recent results for critical
exponents at the Wilson–Fisher fixed point [17, 18, 19, 20] where it was ob-
served that universality establishes relations between various towers of field
theories at different dimensions. Here, we expect the Hopf ideals of these
various theories together with linearized Dyson–Schwinger systems to shed
light on the universality of the critical exponents.
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