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This article examines by means of an easily reproducible experiment
whether Maxwell electrodynamics or the almost forgotten Weber electro-
dynamics of Carl Friedrich Gauss and Wilhelm Weber is correct. For this
purpose, it is shown that when charging a capacitor with two very flat and
horizontally aligned plates a force on a permanent magnet should arise be-
tween the plates which differs in both theories diametrically in its direction.
Subsequently, the measurement setup is described and, based on the mea-
surement results, it is determined that Maxwell electrodynamics contradicts
the experiment. The result of the experiment suggests that all aspects of
modern physics should be subjected to a relentless and critical review.
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1 Introduction

Maxwell’s equations have been very successful in describing electromagnetic waves for
more than one hundred years. Their rise to the sole theory of electromagnetism be-
gins with an article by James Clerk Maxwell in 1865 [Maxwell, 1865]. In this article
he shows that from the complete set of Maxwell’s equations, including the displacement
current, a wave equation can be derived in which electromagnetic disturbances of the
field propagate at the speed of light. His assumption was that light would be an elec-
trical phenomenon. In 1886 Heinrich Hertz succeeded in experimentally generating and
detecting electromagnetic waves for the first time [Hertz, 1887].

Due to the success of Maxwell’s equations, Weber’s electrodynamics, which was
widespread at this time, was increasingly forgotten because it was not compatible with
the invariance of electric charge. Today it is largely unknown, although there have al-
ways been a few scientists who have studied it ([O’Rahilly, 1965], [Assis, 1994], [Anony-
mous, 2018]). The reason for this is to be found in the fact that Weber’s force allows a
fundamentally different view of modern physics. Especially their symmetry and the pos-
sibility to explain Magnetism as an electrorelativistic multi-particle effect is fascinating.
In addition, it seems to be possible to interpret gravity as an electrorelativistic effect of
fourth order ([Assis, 1992], [Kühn, 2019]). Moreover, Weber’s force provides a new way
of interpreting quantum mechanics, since it makes it possible to explain the quantum
mechanical double-slit experiment on the basis of ponderomotoric forces [Kühn, 2019].

The majority of all scientists probably firmly assume that Maxwell’s equations are correct
and without alternative due to their age. But that is actually no reason to take them for
granted without verification. Even old theories should be questioned again and again,
especially when they are illogical. Anyway, the author of this article has been suspecting
for several years that Maxwell electrodynamics cannot be correct because it leads to
strange predictions. For example, in Maxwell electrodynamics – in contrast to Weber
electrodynamics – energy conservation, conservation of momentum and conservation of
angular momentum are only fulfilled if the emitted electromagnetic waves are included.
However, this also applies to the quasi-stationary case, and this leads repeatedly one
or another to try to develop magnetic perpetuum mobiles or reactionless drives. The
existence of such machines can be doubted.

Such and similar plausibility considerations have finally convinced the author of this arti-
cle that it is time to look for a viable, easy to follow and direct way to clarify once and for
all which of the two electrodynamics is correct. The theory behind such an experiment,
as well as the experiment itself, are described in this article. The result clearly shows
that Maxwell electrodynamics provides false predictions even under everyday conditions.
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2 Basics

2.1 The force between two uniformly moving point charges according to
Maxwell and Weber

The following is about the electromagnetic force that a uniformly moving point charge
qs exerts onto another uniformly moving point charge qd. The configuration is shown in
figure 1. An approximation that neglects the magnetic component is the Coulomb law.

2.1.1 Weber force

Figure 1: Configuration

An extension of the Coulomb law, which also
contains the magnetic part, is from Wilhelm
Weber in 1846 [Weber, 1893]:

~FW =

(
1− ṙ2

2 c2
+
r r̈

c2

)
qs qd
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r3
. (1)

In this, ṙ is the radial velocity and r̈ the radial
acceleration.

Because of ~v := ~̇r = ~vd−~vs and ~̈r = ~̇vd−~̇vs = 0,
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the formula

~FW (~r,~v) =
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1 +

v2
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− 3

2
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)2
)

qs qd
4π ε0

~r

r3
(4)

follows. Equation (4) is referred to in the following as Weber force.

2.1.2 Maxwell force

Also from Maxwell’s equations a formula can be derived which gives the electromagnetic
force between two uniformly moving point charges. To get to this, it is necessary to solve
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Maxwell’s equations. For point charges, the special solution is called Liénard-Wiechert
potentials [Lehner, 2004, page 618].

If the point charge qs is at the coordinate origin at the time t = 0 and moves uniformly
away from there with the velocity ~vs the scalar potential is

ϕ =
c qs

4π ε0

√
(c2 t− ~vs ~r)2 + (c2 − v2s) (r2 − c2 t2)

, (5)

while the vector potential ~A is

~A =
~vs
c2
ϕ. (6)

By using the equations [Lehner, 2004, page 451]

~E = −∇ϕ− ∂ ~A

∂t
(7)

and

~B = ∇× ~A. (8)

it is possible to obtain the electric field strength

~E =
c qs

(
c2 − v2s

)
(~r − ~vs t)

4π ε0

√
(r2 − c2 t2) (c2 − v2s) + (c2 t− ~r ~vs)2

3 (9)

and the magnetic flux density

~B =
~vs
c2
× ~E. (10)

Without loss of generality the time can be set to t = 0 in equation (9) and it follows

~E =
c qs

(
c2 − v2s

)
~r

4π ε0

√
r2 (c2 − v2s) + (~r ~vs)

2
3 . (11)

The formula (10) remains unaffected by this.

However, the fields ~E and ~B themselves are not actually measurable, but only their force
effects on test charges. In order to calculate the force ~F onto another point charge qs,
additionally its velocity ~vd and the formula of the Lorentz force ~F = qd ~E + qd ~vd × ~B is
needed. By inserting the equations (11) and (8) follows the relation

~FM (~r,~vs) =
c
(
c2 − v2s

)√
(c2 − v2s) +

(
~r
r ~vs

)23 qs qd
4π ε0 r3

(
~r +

1

c2
~r × ~vs × ~vd

)
(12)

for the force of one uniformly moving ideal point charge qs onto another uniformly moving
ideal point charge qd. The equation (12) is referred to in the following as Maxwell force.

Both formulas – the Weber force (4) and the Maxwell force (12) – differ fundamentally.
At least one of the formulas must be wrong.
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2.2 Forces between current elements

Measuring the electromagnetic force directly between two moving point charges is prac-
tically impossible. Much easier is to measure the force between currents. For this reason,
this section analyzes two oppositely equal charges qs and −qs, which are at the coordinate
origin at the time t = 0 and are moving at the speed ~vs/2 and −~vs/2.

It is obvious that the both oppositely moving charges will no longer be in the same place
after only a short time. However, if one imagines many such current elements arranged
in a line, it becomes clear that there are always two oppositely equally sized charges
at one location at any given time, since the neighbors repeatedly replace the outflowing
charge carriers. Such a line represents a direct current, because electric current is defined
as the number of charge carriers passing through a surface transverse to the direction of
movement per unit of time.

The force ~FWC of such a current element on a charge qd with the velocity ~vd at the
location ~r is, when using the Weber force (4),

~FWC = ~FW (~r,~vd − ~vs/2)− ~FW (~r,~vd + ~vs/2)

=

(
3

(
~r

r
~vs

)(
~r

r
~vd

)
− 2~vs ~vd

)
qs qd

4π ε0 c2
~r

r3
.

(13)

For the Maxwell force (12) follows

~FMC = ~FM (~r,−~vs/2)− ~FM (~r,+~vs/2)

=
c
(
c2 − (vs/2)2

)√
(c2 − (vs/2)2) +

(
~r
r (~vs/2)

)23 qs qd
4π ε0 c2 r3

~r × ~vs × ~vd

=
qs qd

4π ε0 c2 r3
~r × ~vs × ~vd +O(v2s).

(14)

2.3 Magnetic forces in a wire gap

The magnetic force of a current element on a moving point charge is given in Maxwell
electrodynamics by the equation (14). In Weber electrodynamics, on the other hand,
the equation (13) applies. Nevertheless, despite these two different formulas, the force
between two closed conductive loops of any shape and at any distance is identical [Assis,
1990]. A decision between Maxwell and Weber electrodynamics is therefore not possible
on basis of force measurement between closed conductor loops. However, the predicted
forces differ if the wires are not closed. This is shown and discussed at this section.

The force of a current element on another current element is the sum of the force of the
current element on a positive point charge qd at the location ~r with the velocity ~vd/2
and the force on an inversely equal point charge at the same location with the opposite
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velocity. In Maxwell’s electrodynamics, the force of a current element on a point charge
is given by the equation (14). The force of one current element onto another current
element is therefore because of qd ~vd/2 + (−qd) (−~vd/2) = qd ~vd and 1/µ0 = c2 ε0,

~FM (~r) =
µ0 qs qd
4π r3

~r × ~vs × ~vd. (15)

In Weber electrodynamics this force is given by the equation (13) and it applies

~FW (~r) =
µ0 qs qd

4π

~r

r3

(
3

(
~r

r
~vs

)(
~r

r
~vd

)
− 2~vs ~vd

)
. (16)

To get the force that an entire wire exerts onto a current element, the line integral along
the wire has to be calculated.

Now two forces shall be calculated, namely

• the force of a wire which is located on the x-axis, begins at −∞ and ends at the
coordinate origin and

• the force of a wire which is located on the x-axis, begins at the coordinate origin
and ends at +∞.

Of course, no permanent current flow is possible in such wire segments, since the current
flow changes the total charge over time. On short time scales, however, the current is
sufficiently uniform so that the configuration can be considered quasi-stationary.

With qs → λs and Is = λs vs ~ex for the Maxwell electrodynamics follows

~F
(±)
IM (~r,~vd) =

∞̂

0

~FM (~r ± s~ex) ds

=
µ0 Is qd ~r × ~ex × ~vd

4π r (r ± x)
.

(17)

For Weber electrodynamics, on the other hand, the result is

~F
(±)
IW (~r,~vd) =

∞̂

0

~FW (~r ± s~ex) ds

= ~F
(±)
IM (~r,~vd)±

µ0 Is qd (~r · ~vd)~r
4π r3

,

(18)

which is the same result as in Maxwell’s electrodynamics plus an additional term. The
plus sign is valid for the wire to the left of the y-z plane and the minus sign for the wire
to the right.

The figure 2 shows the fields of this force onto right hand directed current elements for a
wire stub that is just positively charging. At the top the field is shown which follows from
Maxwell electrodynamics. Below, the corresponding field is shown, which is predicted
by Weber electrodynamics. It can be noticed, that – as was to be expected – currents
which flow in the same direction attract each other.
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Figure 2:

In figure 3 the fields for current elements
with flow direction upwards are shown.
The figures 2 and 3 show that the fields
become more and more similar to each
other on the left. This is also the reason
why it is so difficult to distinguish between
Maxwell and Weber electrodynamics sim-
ply by measuring the forces around direct
currents. Only where the wire ends the
fields differ. It is obvious that exactly this
must be exploited in order to decide ex-
perimentally between the two theories.

It should be noted that for Maxwell’s elec-
trodynamics, the field of a wire stub can-

not only be determined by integration, but also by solving the Maxwell equations di-
rectly. In section 2.4 this calculation is performed and it is shown that it is not absolutely
necessary to use the Liénard-Wiechert potentials.

Figure 3:

But back to the experiment: The formulas
(17) and (18) represent the force which the
wire stub asserts onto current elements.
For experiments, however, it is much more
interesting to know which force and which
torque acts on a small permanent magnet,
since such a magnet is not influenced by
an electric charge. Both will be calculated
in the following. For this purpose it is as-
sumed that at ~r a very small conductor
loop with the magnetic dipole moment ~µ is
located (equivalent to a small permanent
magnet). The figure 4 shows the configu-
ration in form of a sketch.

Let ~ea and ~eb be two mutually perpendic-
ular unit vectors for which the equation

~ea × ~eb = ~µ/µ (19)

applies. For the total force ~FL on a conductor loop with the radius R, as one can see
from the sketch 4, follows the equation

~FL = R

2πˆ

0

~FI

(
~r +R~eφ (φ) ,

Id
λd
~eφ (φ+ π/2)

)
dφ (20)
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Figure 4:

with qd → λd,

~eφ(φ) := ~ea cos(φ) + ~eb sin(φ) (21)

and

µ = Id π R
2. (22)

For the torque ~ML follows quite equivalent according to the sketch the curve integral A1

~ML = R2

2πˆ

0

~eφ (φ)× ~FI

(
~r +R~eφ (φ) ,

Id
λd
~eφ (φ+ π/2)

)
dφ. (23)

In order to solve the complicated integrals for the forces (17) and (18) it is useful to
take advantage of the fact that the radius R of the conductor loop is very small, which
allows a Taylor approximation of first order of ~FI at zero. The resulting approximation
can then be used to obtain the force

~F
(±)
LM (~r) =

µ0 Is
4π r3

(
r2

r ± x
~µ× ~ex +

(2 r ± x)~r ± r2 ~ex
(r ± x)2

(~µ× ~r) · ~ex
)

(24)

for Maxwell electrodynamics by using the equations (19) and (22). Weber electrody-
namics, on the other hand, gives the force

~F
(±)
LW (~r) = ~F

(±)
LM (~r)± µ0 Is ~r × ~µ

4π r3
. (25)

For the torque, Maxwell electrodynamics provides after calculation of the integral (23)
and simplification of the terms the solution

~M
(±)
LM (~r) =

µ0 Is ~r × ~ex × ~µ
4π r (r ± x)

. (26)

For electrodynamics according to Weber follows

~M
(±)
LW (~r) = ~M

(±)
LM (~r)± µ0 Is ~r × ~µ× ~r

4π r3
. (27)
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The figures 5 and 6 show the total field of the two — slightly separated – wires on
a permanent magnet with the north pole aligned into the drawing plane. Both wires
together form a capacitor of low capacitance.

Figure 5: The force effect of a current according to Maxwell onto a permanent magnet
with north pole pointing into the drawing plane.

Figure 6: The force effect of a current according to Weber onto a permanent magnet
with north pole pointing into the drawing plane.

Let d be the width of the air gap. The total force is then given by the equation

~FT (~r) = ~F
(+)
L (~r − d/2~ex) + ~F

(−)
L (~r + d/2~ex). (28)

It is obvious that in the middle of the wire gap forces occur that differ in sign. For
Maxwell electrodynamics, ~µ = µ~ey (north pole points into the drawing plane) applies

~FTM (~0) = −µ0 Is µ
π d2

~ez, (29)
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while Weber electrodynamics predicts force

~FTW (~0) = +
µ0 Is µ

π d2
~ez. (30)

Both theories lead here to opposite statements, which makes a measurement of this
force almost predestined for an experiment.

By the way, there is also something about torque that is worth mentioning. From

equation (26) it is easy to deduce that ~M
(±)
LM (~r) · ~µ = 0 applies, i.e. in Maxwell’s electro-

dynamics is nowhere a torque which is aligned parallel to the magnetic moment ~µ. This
is not the case in Weber electrodynamics! For example, when the magnet is positioned
directly at the end of the wire stub. This is quite remarkable as it goes beyond the frame
given by the magnetic field line concept. On the other hand, such a torque is necessary
to ensure the conservation of the total angular momentum, since the magnet generates
an angular momentum on the wire as well. A similar statement applies to the magnetic
force in the air gap, since only in Weber electrodynamics the conservation of momentum
is fulfilled.

2.4 Solution of Maxwell’s equations for a wire stub

In this section, the field which was calculated in the previous section is determined again
directly based on Maxwell’s equations. This serves above all to show that the statement
of Maxwell’s electrodynamics regarding the previously calculated force effects does not
depend on the solution path.

In this section the full set of Maxwell equations in vacuum is used:

∇ · ~E =
ρ

ε0
(31)

∇ · ~B = 0 (32)

∇× ~E = −∂
~B

∂t
(33)

∇× ~B = µ0~j + µ0 ε0
∂ ~E

∂t
. (34)

In the following, the electromagnetic field of a current-carrying wire is calculated, which
lies exactly on the x-axis, begins somewhere far to the left and ends exactly at the
coordinate origin. It is obvious that due to the current flow and the discontinuity, the
wire cannot remain electrically neutral, but must charge or discharge over time. This
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results in a time-varying electric field, which in turn must be taken into account in
Ampère’s circuital law (34).

As model for the current density of the wire stub the ansatz

~j =
Is
2

(
1− erf

(
x√
2 ν

))
g(y, ν) g(z, ν)~ex (35)

is used. Is stands for the current and g for the Gaussian function:

g(u, ν) :=
1√

2π ν
exp

(
− u

2

2 ν

)
. (36)

The variance ν can be very small for a real wire. In principle, an approach using distri-
butions would also have been imaginable. However, the model (35) has the advantage
that there are no singularities, which ensures that the fields are continuously differen-
tiable everywhere. A transition to distributions can later be carried out after finding the
solutions by calculating the limit ν → 0.

Inserting of equation (35) into the continuity equation

∂ρ

∂t
+∇ ·~j = 0 (37)

yields the charge density

ρ = −
ˆ
∇ ·~j dt =

Is t√
2π ν

3 e
− r2

2 ν (38)

with r2 = x2 + y2 + z2, assuming that the wire is electrically neutral at t = 0. The
calculated charge density shows that the wire becomes electrically charged where it
ends, since the current cannot flow on here.

To determine the electric field of this charge, the first Maxwell equation in integral form

ε0

¨
∂V
⊂⊃ ~E · d ~A =

˚
V
ρ dV (39)

is used. The integral on the right corresponds to the charge Q enclosed in the volume.
If a sphere with radius R is selected as volume than

Q =

2πˆ

0

π̂

0

R̂

0

ρ r2 sin(θ) dr dθ dφ, (40)

i.e.

Q = Is t

(
erf

(
R√
2 ν

)
−
√

2

π ν
R e−

R2

2 ν

)
. (41)

11



Because of the spherical symmetry of the charge distribution ρ, it can be concluded
that the electric field ~E is also radially symmetric and that the field lines are always
perpendicular to the surface of the sphere. The integral on the right side of the equation
(39) can therefore be solved immediately and the result is

ε0

¨
∂V
⊂⊃ ~E · d ~A = ε0E 4π R2. (42)

From the results (41) and (42) and the symmetry follows then

~E =
Is t ~r

4π ε0 r3

(
erf

(
r√
2 ν

)
−
√

2

π ν
r e−

r2

2 ν

)
. (43)

Next, the magnetic flux density ~B can be determined by using the fourth of Maxwell’s
equations (34). For this purpose the current density (35) and the electric field (43) are
used. Afterwards, Poincarés-Lemma can be applied and one gets to

~B =
Is µ0

4π (r2 − x2)

(
1− x

r
erf

(
r√
2 ν

)
−

e−
r2−x2

2 ν

(
1− erf

(
x√
2 ν

)))
~ex × ~r.

(44)

Inserting the equations (35), (43) and (44) in the four Maxwell equations (31) to (34)
shows that all conditions are fulfilled. The equations (43) and (44) therefore describe
the fields which, according to Maxwell’s electrodynamics, result from the slow charging
process of the wire stub.

Finally, the results can be simplified by calculating the limit ν → 0. For the current
density follows

~j = Is (1−Θ (x)) δ(y) δ(z)~ex. (45)

The electric field strength becomes

~E =
Is t ~r

4π ε0 r3
, (46)

and the magnetic flux density

~B =
Is µ0

4π (r2 − x2)

(
1− x

r

)
~ex × ~r =

Is µ0 ~ex × ~r
4π r (r + x)

. (47)

Because of

lim
x→−∞

r(r + x) =
1

2
(y2 + z2) (48)
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and

lim
x→−∞

~ex × ~r = ~ex × ~r (49)

this magnetic field to the left of the y-z plane changes into the usual field of a line current.
On the right, however, the strength of the field decreases with the square of the distance
to the y-z plane, but otherwise retains its shape and orientation unchanged, just as if
the current were still flowing slightly beyond the y-z plane.

With the help of the Lorentz force

~F = qd ~E + qd ~vd × ~B, (50)

and by inserting the equations (46) and (47) one gets finally the force

~F =
qd Is t ~r

4π ε0 r3
+
qd Is µ0 ~r × ~ex × ~vd

4π r (r + x)
, (51)

which the wire stub exerts on a point charge qd with the velocity ~vd according to
Maxwell’s equations. A comparison shows that the magnetic part of the force corre-
sponds exactly to formula (17).

3 Experiment

3.1 Experimental setup

In section 2.3 a way was identified to experimentally determine whether magnetostatics
is correctly described by Maxwell’s electrodynamics or by Webers approach. It was found
that the simplest way is to measure the magnetic force on a permanent magnet within
a wire gap. Both theories predict the same magnitude for the force, but the prediction
differs diametrically in terms of direction. This predestines this effect for an experiment,
since the direction of a force can be determined much more easily than its magnitude.

In figure 7 the basic experimental setup is shown. It consists of an upside-down U-
shaped capacitor with an air gap. Exactly inside the gap is a rod-shaped permanent
magnet hanging from a shielded piezoelectric cantilever force sensor (sensor: EKULIT
EPZ-27MS44W, measuring method: [Virtanen u. a., 2018]). By closing a relay, the
capacitor can be charged from 0 to 7kV via a series resistor. During this, a charging
current flows for a short time in the plates and a displacement current within the wire
gap. The permanent magnet, which is aligned with the north pole towards the observer,
experiences during this charging event a magnetic force, which z-component can be
measured as a voltage change of the piezoelectric sensor. The permanent magnet itself
consists of 28 neodymium magnets with a diameter of 8mm and a total length of 86mm.
To avoid dielectric breakdowns, the magnet was coated with an insulating coating.
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Figure 7: Experimental setup: measuring capacitor and permanent magnet with north
pole directed towards the observer

As it becomes clear, the experiment is simple and direct. The only challenge is to reliably
detect the small force that only acts for a short time. Furthermore, an electromagnetic
pulse is generated during the charging event, which influences the measurement. There-
fore, great importance must be attached to shielding. For this reason, the cantilever force
sensor, on which the permanent magnet is suspended, was wrapped with electrically in-
sulating foil and then with aluminium foil. The aluminium foil was then connected to the
shield of a stereo audio cable in order to completely protect the two differential lines of
the piezo up to the likewise shielded instrument amplifier. Figure 8 shows the remaining
experimental setup consisting of charging circuit, trigger and measuring amplifier.

The schematic of the charging circuit is shown in figure 9. Here CM is the measuring
capacitor shown in figure 7. A measurement gave a capacity of about 8pF, of which
only about one percent is due to the air gap. Since the high voltage source has a very
large internal resistance Ri, there is a charging capacitor CS parallel to the measuring
capacitor, which ensures that the voltage of 7kV does not collapse when the relay S1 is
closed and that there is enough charge available to charge the measuring capacitor.

As can be seen from the circuit, the measuring capacitor needs about 2.4µs to be charged
to 95 percent after closing the relay S1, because the time constant τ hase the value
RC CM = 0.8µs. This time constant specifies the pattern that can be expected from the
piezo. The relay S2 and the resistor RD are used to discharge the measuring capacitor
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Figure 8: Experimental setup: charging circuit and measuring amplifier

and to establish a defined initial state.

Figure 10 shows the schematic of the amplifier. The INA111 is an integrated instrumen-
tation amplifier, i.e. a differential amplifier with very high common mode rejection. Like
the measuring cable to the sensor, the amplifier was completely shielded by installation
in a metal housing.

3.2 Measurement results and evaluation

The forces generated at the piezoelectric cantilever force sensor are comparatively small.
The magnetic moment µ of the used neodymium magnet can be roughly estimated to
the value 3.8Am2 with the help of the formula µ ≈ volume · 875000A/m. With a gap
width of 12mm and an initial charge current of 70mA, the formula (29) respectively (30)
gives a force of at most ±738µN, which corresponds to the weight force acting on an
object with a mass of 75mg. In reality, this force will be much smaller, since only a
fraction of the current flowing into the measuring capacitor is effective as displacement
current in the air gap.

Fortunately, in this experiment it is not necessary to measure the magnitude of the force,
since only its direction is of interest. For this reason, it is sufficient to clearly identify the
force effect and to distinguish it from existing interference influences. Figure 11 shows in
(A) the measured voltages of six different individual measurements on the piezoelectric
cantilever force sensor immediately after switching on the relay S1, exactly for the case
shown in Figure 7. The current flows here from left to right and the north pole points in
the direction of the beholder. (B) shows the voltages measured when the current flows
from right to left.
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Figure 9: charging circuit

Figure 10: measuring amplifier

What is noticeable at first when looking at the figure 11 are the seemingly random peaks,
where the first peak always occurs at about t = 14µs. The reason for this delay is that
the relay needs some time between triggering and closing. The peak itself is an effect of
the electromagnetic pulse in the oscilloscope itself and can be measured even when the
magnet is disconnected from the force sensor or the amplifier is turned off. The peaks
can therefore be regarded as disturbances. The voltage curves following a peak, however,
are important for the experiment.

As can be seen, the voltage in figure 11 (A) approaches the x-axis after the first peak
coming from below, while the opposite is true for (B). The shape of the voltage curve is
thereby exponential, where the time constant is about 2µs. This is in good agreement
with the time constant previously derived from the circuit in Figure 9. It is therefore
possible to conclude that the voltage curves observed are each due to the magnetic force,
which is proportional to the charging current in the capacitor.

The randomly distributed peaks following the first peak show the significant pattern as
well. The randomness of the occurrence can be explained by the bouncing of the relay,
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Figure 11: Measurement results: In (A) is Plus (Ground) on the left and Minus on the
right. For (B) the capacitor is rotated, but the north pole is still pointing
towards the beholder.

which opens and closes several times for a short time after triggering.

The bottom line is that if the current flows from left to right, the cantilever force sensor
outputs a voltage change downwards, while if the current flows from right to left, the
voltage rises. By tapping the force sensor very lightly, it could be determined that a
voltage drop corresponds to a downward pulling force. A voltage rise, on the other
hand, corresponds to a force that pushes from bottom to top.

This finally makes it evident that a charging current flowing from right to left results in
a downward force, provided that the north pole of the magnet points in the direction of
the beholder. However, a current flowing from right to left pushes the magnet upwards.
This corresponds to the predictions of Weber electrodynamics, as can be seen
in the figures 5 and 6, and shows at the same time that Maxwell electrodynamics is in
contradiction with the experiment.

4 Summary and conclusion

This article showed that Weber and Maxwell electrodynamics can be experimentally
distinguished by measuring the magnetic force directions within capacitors that are being
charged or discharged. Subsequently, such an experiment was carried out and it was
determined on the basis of the measurement results that the measured force direction
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does not correspond to the predictions of Maxwell electrodynamics and that nature seems
to follow Weber’s law of force.

The consequences of this statement are extremely far-reaching and there are no words
with which this can be sufficiently emphasized. If Maxwell’s equations should be really
wrong – and everything points to it – this would be the end of modern physics in its
present form. The main problem is that virtually everything that was added to physics
in the twentieth century is based on Maxwell’s equations and is thus indirectly affected.
Especially the Lorentz transformation has to be questioned, because it was created by
Hendrik Antoon Lorentz only for the reason to explain the Maxwell equations. The
magnetism of Weber’s electrodynamics, on the other hand, is Galilean-invariant. For
this reason, it can be assumed that particle physics, as well as astrophysics, are massively
affected by subsequent errors, since both areas are based on relativistic dynamics.

Finally, the author feels compelled to make an urgent appeal to the entire scientific
community and to demand that everything is questioned, regardless of the origin of
a theory. Moreover, it has to be clarified how it was possible that such a fatal flaw
remained undiscovered for so long.

References

[Anonymous 2018] Anonymous: Advances in Weber and Maxwell Electrodynamics.
Amazon Fulfillment, 2018
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