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The Possibility of Physical Waves as the Basis of Wave Mechanics 

D. M. Gilliam1 

 

Abstract:  A new possibility is presented for the development of an alternative picture of wave mechanics, 

based on physical waves.  In this approach, it is postulated that particles emit physical waves that play a role 

in the mediation of interactions with other particles.  Doppler-shifted echoes of these postulated waves are 

shown to give a new explanation for Bragg scattering with the apparent wavelength h/p, the de Broglie 

wavelength.  The issue of conservation of mass-energy is discussed.  Experimental tests of this hypothesis are 

proposed. 
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1 Introduction 

This paper presents a possibility for the development of an alternative picture of wave mechanics, based on 

the emission of physical waves by all particles with rest mass.  These physical waves are presumed to play 

a role in the mediation of interactions with other particles.  These waves will be called m0-waves to 

distinguish them from the purely mathematical waves of the Schrödinger equation.  It is postulated that the 

m0-waves radiate away from every particle in all directions at speed c, with frequency ν0 = m0c
2/2h (for a 

free particle), in the rest frame of the particle;  m0 being the rest mass of the particle, c the speed of light, 

and h the Planck constant.  This postulated internal oscillation frequency of the particle differs by a factor 

of two from the internal oscillation frequency asserted by de Broglie [1]. 

In the rest frame of the particle, the wavelength of the postulated waves is thus     

λ0 =
𝑐

ν0
=

2ℎ

𝑚0𝑐
                             (1) 

which is twice the Compton wavelength of the particle.  This factor of two will permit a new explanation 

of wave-like behavior with the apparent wavelength, h/p, the de Broglie wavelength.  The form of wave-

like behavior considered in this paper is Bragg scattering; and in certain unusual cases of Bragg scattering 

of electrons, experimental tests can be specified that would either support the current proposal or falsify it.   

Although the m0-waves are described as radiating from the particle in all directions at speed c, spherical 

symmetry for the emission of these waves in the particle’s rest frame is not assumed, and no specific form 
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of the waves other than periodicity is assumed.  For example, there could be some sort of spiral symmetry 

associated with spin. 

It is assumed that all interactions mediated by the postulated m0-waves would obey conservation of mass-

energy, linear momentum, and angular momentum, within the limits of the uncertainty principle; then there 

would be no net energy transfer to or from the m0-waves.  It is unknown whether any energy is associated 

with the m0-waves themselves; certainly, no ordinary form of energy could be associated with them, 

because a continuous emission of any conventional form of energy would cause a gradual depletion in the 

particle’s mass-energy, which is known not to occur. 

This paper considers only particles that are essentially free, that is, particles that are free from the influence 

of any potential that is more than a negligible fraction of their rest-mass-energy. 

 

2 Bragg Scattering  

To begin with, the Bragg scattering of the m0-waves emitted by a particle will be considered, and then the 

influence of the Bragg-scattered m0-wave on the motion of the particle itself will be taken up.  The scattered 

m0-waves that return to the emitting particle could have particularly strong influence on the motion of the 

particle, because these reflected waves have frequencies close to the internal oscillation frequency of the 

particle, shifted only by the Doppler effect.   

2.1 Normal Incidence (1-D Case) 

Consider first the scattering of a particle’s own m0-waves from a set of crystal planes.  The m0-waves are 

assumed to scatter according to Huygens’ Principle.  The waves scattered by different points in any single 

plane of the crystal interfere constructively only if the scattering is at equal angles of incidence and 

reflection relative to that plane; and the scatterings from sequential planes interfere constructively only if 

the difference in path lengths from scattering by the different planes happens to be an integer number of 

wavelengths.  Although the particle is pictured as radiating these m0-waves in all directions, only echoes 

that return to the particle could affect its motion.  For a particle moving in a direction normal to a set of 

crystal planes, one then needs to consider only m0-waves that are reflected parallel to the axis of motion, 

i.e. normal to the crystal planes, because only these constructively interfering specular reflections will return 

to the emitting particle.  See Figure 1.  Let λf  denote the wavelength of the Doppler-shifted m0-waves that 

are emitted in the direction parallel to the particle’s forward motion , and λb denote the corresponding 

wavelength for the backward-emitted waves, as seen in the frame of the crystal lattice.   Consider the case 

in which the particle speed is such that the Doppler-shifted waves in either the forward and backward 

directions (or both) are resonant with the crystal spacing, d.  That is 

2𝑑 = 𝑛𝑓λ𝑓,                                                             (2) 

and 

 2𝑑 = 𝑛𝑏λ𝑏,                                                                        (3) 
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where nf and nb are integers,.   Equations 2 and 3 are just the 1-D Bragg equations for the Doppler-shifted 

m0-waves.  At these Bragg resonances for the m0-waves, the reflections from a large number  of planes add 

constructively and could be expected to have a much larger effect on the particle than would be the case 

when the particle is not at a speed corresponding to one of these resonances.   

For special values of d, it is possible for the Bragg conditions (Eq.s 2 and 3) to be satisfied for both the 

forward and backward emitted waves.  These special spacing values may come about through thermal 

motion of the lattice, as will be discussed in more detail later.  It seems plausible that a maximal interaction 

of the particle with the lattice would occur under these double resonance conditions. 

The wavelengths of the Doppler-shifted m0-waves in the 1-D geometry are given by 

 

λ𝑓 = λ0𝛾(1 − 𝛽),                                               (4) 

and 

λ𝑏 = λ0𝛾(1 + 𝛽)                 (5) 

where β = v/c,  γ = 1 √1 − β2⁄ , and v is the particle speed in the frame of the crystal lattice [ 2]. 

 

Figure 1.  A particle moves at speed v through a lattice with regular plane spacing d at normal incidence to 

the crystal planes.  The forward direction (f ) and the backward direction (b) are indicated as parallell to the 

particle motion or in the opposite direction.  
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Substituting the expressions in Eq.s 4 and 5 into Eq.s 2 and 3, respectively, and with slight re-arrangement, 

one obtains 

𝑛𝑓 =
2𝑑

λ0𝛾(1−𝛽)
  ,                 (6) 

and 

𝑛𝑏 =
2𝑑

λ0𝛾(1+𝛽)
    .      (7) 

Subtracting Eq. 7 from Eq. 6 and simplifying the resulting expression, one obtains 

2𝑑 =
𝑛λ0

2𝛽𝛾
  ,        (8) 

or 

2𝑑 = 𝑛
ℎ

𝛾𝑚0𝑣
   ,       (9) 

or 

     2𝑑 = 𝑛
ℎ

𝑝
    ,                    (10)   

where n = nf - nb is also an integer, the quantity (γm0v) is the particle momentum (p), and Eq. 10 is the 1-D 

Bragg relationship for the particle with the apparent wavelength, h/p.  So it has been seen that simultaneous 

satisfaction of the two Bragg relationships for the physical m0-waves would lead to the Bragg relationship 

for the particle. 

There generally will not be exact, simultaneous integer solutions of Eq.s 6 and 7 for any arbitrary choices 

of d and β, but for heavy particles like neutrons, simultaneous integer solutions of Eq.s 6 and 7 may be 

found for spacing very close to any value of d, and well within the compressive modes of lattice oscillations 

about d.  For lighter particles such as electrons, the coarser granularity of the solutions of these two 

equations may provide the possibility of experimental tests of the present hypotheses.  More details of the 

simultaneous solutions of these equations and experimental tests will be discussed in later sections. 

2.2 Oblique Incidence (3-D -Case)  

The three dimensional case can be analyzed in just two dimensions if the x and y axes are chosen such that 

motion is entirely in the x-z plane, as shown in Figure 2. 

The simplified three-dimensional case (really just two dimensional) is treated by a coordinate 

transformation [2] as indicated in Figure 2.  In the new laboratory frame, the particle is seen moving with  

speed v at angle θ with respect to the x axis.  One may consider an x’-z’ frame where the particle appears 

to move normal to the crystal planes, as in the one-dimensional case already analyzed.  The origin of the 

x’-z’ frame moves at speed v cos θ in the x direction, parallel to the crystal planes.  Eq.8 becomes 
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2𝑑 =
𝑛λ0

2𝛽′𝛾′
  ,                (11) 

where 

 

𝛽′ =
𝛽𝑠𝑖𝑛𝜃

√1−𝛽2𝑐𝑜𝑠2𝜃
    ,               (12) 

and 

 

𝛾′ =
1

√1−(β’)2
 ,               

(13) 

so that it may be shown that 

𝛽′𝛾′ = 𝛽𝛾𝑠𝑖𝑛𝜃.                                                (14) 

Thus  

              2𝑑 =
𝑛λ0

2𝛽𝛾𝑠𝑖𝑛𝜃
   ,                (15) 

or 

2𝑑𝑠𝑖𝑛𝜃 = 𝑛
ℎ

𝑝
   ;                    (16) 

and the usual three dimensional form of the Bragg relation is seen to be obtained.  This simplified 3-D case 

is just the Lorentz transformation of the 1-D case from a frame moving parallel to the crystal planes of 

interest. 



  

6 
 

 

Figure 2.  The particle moves with speed v at glancing angle θ, with respect to the crystal planes.  In the x’-

z’ frame the motion of the particle is normal to the planes and has speed v’.  The origin of the x’-z’ frame 

moves at speed v cos θ in the x direction.  The plane spacing d is exactly the same in both frames.  

 

3 Granularity and the Solutions of Equations 6 and 7 

3.1 The 1-D Case 

The 1-D Bragg condition (Equation 8) may be written as 

2𝑑 =
𝑛 λ𝐶𝑜𝑚𝑝

𝛽𝛾
    ,                                (17) 

where λComp = λ0/2  is the Compton wavelength of the particle.  

As previously mentioned, simultaneous solutions of Equations 6 and 7 are not possible for arbitrary values 

of d and β.  Equations 6 and 7 can be rewritten as 

         𝑛𝑓 =
𝑑

λ𝐶𝑜𝑚𝑝
√

1+𝛽

1−𝛽
     ,                (18) 

and 
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            𝑛𝑏 =
𝑑

λ𝐶𝑜𝑚𝑝
√

1−𝛽

1+𝛽
        .                (19) 

Simultaneous solution of these two equations in d and β gives 

      𝑑 =  λ𝐶𝑜𝑚𝑝√𝑛𝑓𝑛𝑏   ,                (20) 

and 

    𝛽 =
𝑛𝑓−𝑛𝑏

𝑛𝑓+𝑛𝑏
  .                                        (21) 

For first-order Bragg scattering, these become 

       𝑑𝐼 = λ𝐶𝑜𝑚𝑝√𝑛𝑓(𝑛𝑓 − 1)    ,              (22) 

               𝛽𝐼 =
1

2𝑛𝑓−1
   .                            (23) 

The subscript, Roman numeral I, denotes first-order.   

For a nominal crystal plane spacing d, the nearest spacing value satisfying Eq. 22 can be found by inspecting 

the integers near the solution of Eq. 24: 

   η𝑓,𝐼 =

1+√1+4
𝑑2

λ𝐶𝑜𝑚𝑝
2

2
    ,                             (24) 

 

where ηf,I  is a real number, usually not an integer.  For nominal values of the crystal spacing d in the range 

0.05 nm to 0.5 nm, ηf,I values would range from about 21 to 207 for electrons, and about 37891 to 378906 

for neutrons, based on λComp data from CODATA 2010 [3].  Letting np denote some particular integer near 

ηf,I , then (np  + 1 , np) and (np, np - 1) would be adjacent (nf, nb) pairs for first order Bragg scattering, and 

the spacing between these adjacent dI values of Eq. 22 would become ∆dI as in Eq. 25 below.   

∆𝑑𝐼 = λ𝐶𝑜𝑚𝑝𝑛𝑝 (√1 +
1

𝑛𝑝
− √1 −

1

𝑛𝑝
)  = λ𝐶𝑜𝑚𝑝 (1 + (

1

8
) (

1

𝑛𝑝.
2 ) + ⋯ ) ,         (25)                

                                                                                     

or about one Compton wavelength.  In the case of electrons, this spacing can be several percent of the lattice 

spacing, a rather coarse granularity.   

3.2 Experimental Test in the 1-D Case 
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For the postulated mechanism of Bragg scattering to occur, the lattice planes must either be spaced 

fortuitously at one of the simultaneously resonant values (Eq. 20) or they must sweep through the resonant 

spacings because of thermal oscillations.  Since the lattice planes move much more slowly than the m0-

waves, momentary resonances could easily be established within the slower motions of the lattice, provided 

that the special d values were within the range of the thermal motions.  In the case of electron scattering at 

low temperatures, the root-mean-squared (RMS) zero-point thermal motions of the planes [4] of some rigid 

lattices are slightly less than ∆dI (approximately the Compton wavelength). Therefore, for some materials 

(e.g. tungsten and osmium) at liquid nitrogen temperatures and for electron beams with very precisely 

defined values of β, the special resonant spacing may be nearly out of the reach of thermal oscillations, and 

if the proposed explanation for Bragg scattering is true, then the predicted granularity in Bragg scattering 

may be observable.  In general, for odd orders of Bragg scattering, it is easily seen numerically from Eq. 

20 that resonant d values would be approximately half-(odd)integer multiples of λComp ; while for even 

orders, the resonant d values would be approximately integer multiples of λComp.  Since these spacings are 

interspersed, a change in the ratio of first order and second order scattering probabilities might be 

observable as the temperature of a tungsten crystal in reduced to the point that only the small zero-point 

motion occurs and fewer of the resonant spacings are accessible by thermal motion.   

Although tests with osmium may be somewhat more sensitive than with tungsten, it should be noted that 

the high toxicity of oxides of osmium could require prohibitively elaborate safety measures. 

It will be shown below that Equations 20 and 25 for 1-D Bragg scattering hold also in the 3-D case, and 

additional flexibility in observing the predicted granularity will be seen to pertain in the 3-D case. 

3.3 The 3-D Case 

In the 3-D case, Equations 6 and 7 apply to the x’ - z’ frame, and may be written with β’ and γ’ replacing β 

and γ.  Then Equations 12, 13, and 14 may be employed to find expressions for nf and nb in terms of d, β, 

and θ. 

       𝑛𝑓 =
𝑑/λ𝐶𝑜𝑚𝑝

√1+
𝛽2𝑠𝑖𝑛2𝜃

1−𝛽2   −  
𝛽𝑠𝑖𝑛𝜃

√1−𝛽2

   ,              (26) 

and 

       𝑛𝑏 =
𝑑/λ𝐶𝑜𝑚𝑝

√1+
𝛽2𝑠𝑖𝑛2𝜃

1−𝛽2   +  
𝛽𝑠𝑖𝑛𝜃

√1−𝛽2

   .                        (27) 

 

Multiplying equations 26 and 27 together, one gets  
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   𝑛𝑓𝑛𝑏 =
(𝑑/λ𝐶𝑜𝑚𝑝)

2

[1+
𝛽2𝑠𝑖𝑛2𝜃

1−𝛽2 ] −  
𝛽2𝑠𝑖𝑛2𝜃

1−𝛽2

   ,     

or     

                                     𝑑 = λ𝐶𝑜𝑚𝑝√𝑛𝑓𝑛𝑏   ,                 (28) 

once again, as in the 1-D case (Eq. 20).  Then the values of dI and the granularity of the spacings are all 

exactly the same as in the 1-D case above. 

Having d from Eq. 28 and recalling that n = nf –nb, one may solve Eq. 15 for β: 

𝛽 =
𝑛𝑓−𝑛𝑏

√4𝑛𝑓𝑛𝑏𝑠𝑖𝑛2𝜃+(𝑛𝑛−𝑛𝑏)2
    ,                         (29) 

 

which reduces to Eq. 21 for θ = π / 2. 

3.4 Experimental Tests in the 3-D Case 

 

Returning to the possibility of an experimental test, it may be seen that for Bragg scattering of 

monoenergetic electrons from the 110 planes of a tungsten crystal, Eq. 29 would lead to a fine periodicity in 

fixed-energy rocking curves near the nominal Bragg angle, as shown in Table 1. Similarly, for Bragg 

scattering of electrons at a fixed angle, there would be a fine periodicity in scattering as a function of the 

electron’s kinetic energy near the nominal Bragg energy, as shown in Table 2. The fine spacing of these 

Bragg scattering peaks is not predicted by conventional wave mechanics. 

 

The values in Table 1 and Table 2 apply to scattering within the crystal. Refractive corrections may have to 

be applied when an electron enters or leaves the crystal at a vacuum boundary. These corrections would be 

less significant at higher electron energies. 

 

 

3.5 Existing Experimental Data 

 

So far, no reports of low-temperature data for electron scattering on tungsten have been found, but some 

room-temperature data have been reported. Stern and Gervais [5] have reported the Bethe “inner potential” 

for tungsten 110 to be 20 ± 1 eV. This finding should be useful to other experimenters in identifying the 

Bragg peaks. In a second paper Stern and Friedman [6] report examination of rocking curves and ”pseudo-

rocking curves” for tungsten 110. The observed laboratory voltages for the Bragg peaks in the pseudo-

rocking curves in [Fig. 3, Ref. 6] are consistent with the 20 volt displacement from [ 5]; these are 7th, 8th, and 

9th order Bragg peaks. Stern and Friedman report unexpected dips in these Bragg peaks that are somewhat 

suggestive of the fine spacing from Eq.29 as discussed above. They say that dynamical scattering theory has 
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provided "no really complete explanation of these effects." However, the quantitative agreement of the spacing 

of the dips is not very good. Pairs of (nf, nb) values such as (97, 88) and (96, 87) for the 9th order case 

would give a fine spacing of 14.3 eV (at 15◦ from the normal), while the width of the dip in [Fig. 3, Ref. 6] 

is about 22 eV. The dips observed for 7th and 8th order peaks are similarly wider than Equation 29 would 

predict. Nevertheless, the dips observed by Stern and Friedman may have given a glimpse of the 

granularity predicted in this paper. Data from scattering at  lower temperatures would provide a much 

more definitive test. 

Table 1 Fine Angular Spacing for Electrons Scattering from Tungsten 110 Planes. 

Fixed Kinetic Energy θ  Δθ (average) nf , nb 

(Electron Volts) (degrees) (degrees) 
 

    

253 9.89 
 

93, 92 

253 10 0.11 92, 91 

253 10.11 
 

91, 90 
    

54.4 21.75 
 

93, 92 

54.4 22 0.25 92, 91 

54.4 22.26 
 

91, 90 
    

15.3 44.38 
 

93, 92 

15.3 45 0.63 92, 91 

15.3 45.64 
 

91, 90 
    

9.29 63.70 
 

93, 92 

9.29 65 1.35 92, 91 

9.29 66.39 
 

91, 90 
    

7.87 76.95 
 

93, 92 

7.87 80 3.87 92, 91 

7.87 84.68 
 

91, 90 
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Table 2  Fine Kinetic Energy Spacing for Electrons Scattering from Tungsten 110 Planes. 

 
Fixed Scattering 

Angle, θ 
Kinetic Energy  ΔK.E. 

(average) 
nf , nb 

(degrees) (electron volts) (electron 
volts) 

 

    

10 247.5 
 

93, 92 

10 253.0 5.53 92, 91 

10 258.6 
 

91, 90 
    

22 53.2 
 

93, 92 

22 54.4 1.19 92, 91 

22 55.6 
 

91, 90 
    

45 14.9 
 

93, 92 

45 15.3 0.33 92, 91 

45 15.6 
 

91, 90 
    

65 9.1 
 

93, 92 

65 9.3 0.20 92, 91 

65 9.5 
 

91, 90 
    

80 7.7 
 

93, 92 

80 7.9 0.17 92, 91 

80 8.0 
 

91, 90 

 

4 Discussion 

 
Some beginning steps have been proposed in the direction of a new theory of wave mechanics based on 
physical waves. In making a complete theory beyond the present small steps, very many additional factors 
would have to be understood, including the detailed structure of the m0-waves and the mechanisms by which 
the various interactions are mediated, as well as the phenomena of particle creation and annihilation. If the 
proposed experimental tests verify the predicted departure from current quantum theory, then it would be 
reasonable to pursue a fuller theory of m0-waves. 

 

 

5 Conclusions 

 
Beginning steps toward a possible new theory of wave mechanics have been proposed. General suggestions 
for experimental tests have been given, based on the prediction of a granularity in electron diffraction that is 
not predicted by current quantum theory. 
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