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ABSTRACT 

This is one other ‘trilinear’ instance featuring a set of three elegant yet elementary, one-line 

demonstrations which point to largely the same solution-patterns as obtained from a variety of 

angles. While this core does lend unequivocal support to the Riemann Hypothesis, the latter may 

have to be qualified with respect to the Euler-Riemann Equivalence (identity) as its sole grounds.  

 

 

 

 

 

 

                                                           
1
 In the name of Jesus Christ. Unto Weierstrass and Schelling, Assange, and whosoever emerging victorious as 

brethren rather than teachers, and for that matter as soul-and-spirit-mates within one’s Inner Southeast. Unto those 
transcending the ridiculous evils and preposterous vanity of the wicked yoke that’s about as long-standing as it is 

wearing out.  
2
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Central Result: A Layered yet Simple Nucleus 

The present paper will shun [ultimate] prior generalizations of the Riemann Hypothesis 

(RH henceforth) per se
3
. That said, it will be shown how RH amounts to but one [core] solution-

branch, with some latent realizations allowing a better glimpse of the solution structure or Re-Im 

linkage. Suffice it to first list the set of [open-form] reductions with the closed-form solutions 

readily implied, followed by an exposition of the underlying rationales demonstrating how 

posterior solution-extensions may enrich as well as qualify RH. 

The entire line of reasoning embarks on the Euler-Riemann Equivalence (ERE) or identity 

depicting the zeta as a sum and a product, to be defined over natural versus prime numbers 

respectively: 

∑𝑛−𝑠 = ∏ 𝑝𝑠𝑝𝑠 − 1 ≡ 𝜗(𝑠)∞
𝑝𝑟𝑖𝑚𝑒

∞
𝑛=1  

With the summation or left-hand side series terms referred to somewhat loosely as [point] ‘zeta 

density,’ the present paper will demonstrate that the [open-form] solutions can be inferred as: 

(1.1)  𝑛−𝑠 = 𝑙𝑜𝑔𝑛𝜑(0)𝑛! , 𝜑(0) = { 0𝜑𝜑 ∗ 0𝜀, |𝜀|𝜖(0. .1) 
(1.2)  𝑛−𝑠 = 𝜑(0)𝑛, 𝜑(0) = {  

  0𝜑𝜑𝑙𝑜𝑔0𝜀, |𝜀|𝜖(0. .1)𝑛!−1𝑛 ∗ 0𝜑  

(2)  1±𝑠 = 𝜑(0), 𝜑(0) = { 0𝜑0−11±𝑇~0±1𝑇∗𝑇 

(3) 𝑠 = {𝑘1 + 𝑘2 ∗ 𝑇𝑖𝑇  

It is straightforward to see that the general solution takes on the following form: 

(𝐴)  𝑠 = −𝑛 ∗ 𝑙𝑜𝑔𝜑(0)𝑙𝑜𝑔𝑛  

                                                           
3
 Subsequent papers will feature the zeta as one special case of the CES or Lame structures subject to a family of 

rho-calculus, which in turn are inherently entwined with the previously exposited formalizations of orduality 

(Shevenyonov, 2016a; 2016b).  All of these, however, can safely be assumed away for now without loss of 

continuity.   
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This obviously pertains to (1.2) as a general structure subsuming, inter alia, (1.1) with the 

phi assuming a logarithmic stretching and (2) with n=1. It also agrees with (3), perhaps seen as 

one other corner case
4
. This could in fact be an early hint at how the s structure may be defined 

across layers (far beyond s=s(n) as if to violate the Re(s)=1/2 conjecture positing invariance of 

sorts) as well as complex-solution branches
5
. On the other hand, the multiple overlaps across the 

solution concepts can be approached by first trying out the third solution, e.g. s=T
6
, directly on 

the ERE. The resultant zeta will be finite, with some of the realizations likely amounting to zero. 

Please observe that (3) can otherwise be discerned as a particular restriction of (2) (or the third 

materialization of the phi), which in turn is a special branch of (1.2) under n=1. At the same time, 

(1.2) has (1.1) as one of its branches. 

One way of showing the prior validity of (1.1) with an eye on a zero-valued zeta would be 

to directly substitute it into ERE, e.g. sum both sides ad infinitum
7
, thus embarking on the 

exponent series.  

𝜗(𝑠) = ∑ 𝑙𝑜𝑔𝑛0𝑛!∞
𝑛=1 = 𝑒𝑙𝑜𝑔0 = 0,   𝑄𝐸𝐷 

Incidentally, the validity or feasibility of (1.2) can likewise be tested by tapping into a power-

series summation (as opposed to exponentiation), with phi being a unity stretching (fixed point 

implied): 

𝜗(𝑠) = ∑𝜑𝑛(0) = 𝜑∞(0) − 1𝜑(0) − 1∞
𝑛=1 − 1 = 0,   𝜑(𝑥) = 𝑥, 𝑥 ≡ 0, 𝑄𝐸𝐷 

Subtraction of a unity value is to act on the missing n=0 in the original zeta series and the 

respective [zero] power in the summation domain. 

At this point, two of the aforementioned solution-structures have been tested while 

showing clear-cut resemblance to the rest. These will now be obtained more rigorously from the 

ERE by deploying rather distinct and non-overlapping methodologies. In the meantime, please 

                                                           
4
 Some infinity-reaching solutions may go undetected numerically or experimentally, as they will be shown to be less 

than distinguishable technically from finite ones, RH or Re=1/2 in particular. 
5
 These possibilities could tentatively be rethought along the levels-of-variableness lines as in Shevenyonov (2016c). 

However, this strands applicability could best be appreciated in the forthcoming paper’s setup deploying an 

altogether different formal perspective to be tested on a variety of hypotheses.  
6
 By which number I ofttimes mean a large value potentially tending to infinity 

7
 While complex sets can not be ordered routinely—with the respective series terms seen as implied elements of the 

[open-form] solution set on top of making up point densities,--still it is presumed that solution-branches can 

uniquely be compared as belonging to respective classes. This assumption will be drawn upon as part of arriving at 

(1.2) via Taylor series expansion later in text. More broadly, this appears right up my orduality alley with some, 

otherwise ill-defined, objects being comparable or related in the more general or complete as well as simple sense of 

the term. Again, this latter perspective can be set aside as one not underpinning the exposition for most practical 

purposes. 
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note it remains to be shown later on that, whilst Re(s)=1/2 does capture a dominant solution 

invariably, some of the hidden and possibly missing options may have strong bearing on it. In 

other words, any of these (RH included) could be seen as sufficient candidacy yet far from 

necessary (or exclusively as well as exhaustively nontrivial). Still, one has good reasons to see 

that (1.2), in being representative of the rest, captures the broad branch of solutions (including 

RH) meeting all of the above cut-offs. 

 

Deliberation Cost: A Self-Rewarding Pathway 

Branch (1) will be retrieved as an exponent series, whereas Branch (2) as a solution to a 

functional equation—both building on the right-hand side of the ERE.  

The big idea behind the former possibility pertains to representing the infinite product as an 

infinite sum, which would in turn be juxtaposed against the original left-hand side sum of ERE: 𝛴 = 𝛱 ≡ 𝛴′ 
∃𝑋𝑛: 𝛱 ≡ ∏ (1 − 𝑝−𝑠)−1∞

𝑝𝑟𝑖𝑚𝑒 =∏𝑒𝑋𝑛 = 𝑒∑𝑋𝑛=∑(∑𝑋𝑛)𝑛𝑛!∞
𝑛=1

∞
𝑛=1  

∑𝑋𝑛 = −∑log (1 − 𝑝−𝑠) ≡ 𝑙𝑜𝑔𝛱 

Now, with the latter product being fixed (tantamount to the right-hand side representation of the 

zeta as in the ERE), it follows that, 

𝜗(𝑠) = 𝛱 = 𝑒𝑙𝑜𝑔𝛱 =∑𝑙𝑜𝑔𝑛𝛱𝑛! =∑𝑛−𝑠 ≡ 0 

By again matching the comparable branches (or the respective series terms), (1.1) readily obtains 

while implying, among other things, (𝑛! 𝑛−𝑠)1𝑛 = 𝑙𝑜𝑔0 

The above may either hold as n-invariance or otherwise with respect to particular n values (or 

patterns). The above structure could first be approached qualitatively, by suggesting that  

(𝑛!)1𝑛 < 𝑛 = (𝑛𝑛)1𝑛 < 𝑇, 𝑛𝑠~(− 1𝑇)𝑛~0𝑛 

The latter resembles (1.2) and (2) alike. Interestingly enough, the nth root of the n-factorial would 

prove finite even under n being arbitrarily large (tending to T, or infinity), which is why it has no 
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countervailing impact on the magnitude of the solution. Technically, this factor can be assessed 

at
8
, (𝑇!)1𝑇 < 𝑇 = (𝑇𝑇)1𝑇 

∃𝑋: 𝑋−𝑛 ≡ 1𝑛!   ↔   ∑(1𝑋)𝑛∞
𝑛=1 =∑ 1𝑛!∞

𝑛=1   ↔  𝑋−∞ − 1𝑋−1 − 1 − 1 = 𝑒 ↔  𝑋 ≡ (𝑛!)1𝑛 = 𝑒𝑒 − 1 

One may decide at leisure whether this finite value is n-invariant or [quasi] asymptotic, 

even as it has nothing to do with implicit-functional (open-form) solutions or conventional 

asymptotic approximations per se. Somehow it could be upheld tentatively that, whatever the 

nature of the [finite] X factor, 

(𝑛! 𝑛−𝑠)1𝑛~ { 𝜑−1(0)𝑙𝑜𝑔𝜑(0) 
The two alternate materializations would seem to converge around phi being unitary (i.e. fixed 

point implied around zero) while agreeing with (1.1) and (1.2) alike.  

Now, in order to fully capture the closed-form solution, consider a Stirling equivalence 

holding for n=N large: 

𝑁!~√2𝜋𝑁 ∗ (𝑁𝑒)𝑁 , 𝑁 → 𝑇 

𝑙𝑜𝑔𝜗(𝑠) = (𝑁!𝑁−𝑠)1𝑁~(2𝜋𝑁) 12𝑁 ∗ 𝑁𝑒 ∗ 𝑁−𝑠𝑁 ≡ 𝑙𝑜𝑔0 

Now consider the following plausible assumptions as per N large and m odd: (2𝜋) 12𝑁~1, −1 = 𝑒𝑖𝜋𝑚,   𝑁~𝑇~𝑙𝑜𝑔0 

It then follows that, 

𝑁12−𝑠𝑁  ~𝑒1+𝑖𝜋𝑚  ↔   𝑠~ log [√N ∗ e−(1+iπm)]logN = 12 − N(1 + iπm) 
It should therefore come as no surprise that the Re=1/2 core may have an infinite term 

added on. On second thought, one way around the issue could be to make use of the [quasi] 

asymptotic facility by referring to the exponent term in the Stirling denominator as not much 

different from unity: 

                                                           
8
 The careful reader may, independently, long have come to appreciate that, while some of the techniques being 

deployed would appear to be [quasi] asymptotic, the zeta’s nature is far from it—the same going for its s zeros which 

are maintained throughout as well as computed in precise and explicit terms. 
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 𝑒 = (1 + 1𝑁)𝑁  ↔ 𝑁𝑒 ~( 𝑁𝑁(1 + 1𝑇)𝑁2)1/𝑁~ 𝑁(1 + 0)𝑁~𝑁 

At this rate, the effective solution can be put as, 

𝑠~12 + 𝑖𝑡, 𝑡 ≡ −𝜋𝑚𝑇~ −∞ 

While this sheds some extra light on the substantive structure of the Im(s) in suggesting it is 

[infinitely] odd about half of the time, this might imply that RH features but a rather special 

(albeit highly concentrated) subset of the broader effective feasibility domain. Moreover, the 

critical band may prove relevant with s taking on values as diverse as 0 or 1 in addition to trivial 

zeros, by embarking on the following trick
9
: 

2𝑖𝜋𝑘~0~ 1𝑇  ↔ 𝑠 = 12 − 𝑖(𝜋𝑚𝑇) = 12 ∗ [1 − 1𝑇 ∗ 𝑚 ∗ 𝑇] = {12 − 0 ∗ ∞ ∗ 𝑚212 −𝑚2  

Incidentally, the residual will likely prove finite (all the time under m sub infinity), yet will 

hardly ever make ½ sharp because of m [absolute value] being odd and hence non-zero.  

Now, keeping a similar stance in mind, attempt a case of (1.1.1) or (1.2.2), 𝜑(0) = 0𝜑  ↔ 𝑙𝑜𝑔𝜑(0) = 𝜑𝑙𝑜𝑔0 

𝑠 = 𝑙𝑜𝑔 𝑛!𝜑𝑛 − 𝑛𝑙𝑜𝑔𝑙𝑜𝑔0𝑙𝑜𝑔𝑛  

∀𝑘 ∈ 𝑅: 𝑙𝑜𝑔0 = log(2𝑖𝜋𝑘) = log(2𝜋𝑘) + 𝑙𝑜𝑔𝑖, 𝑙𝑜𝑔𝑖 = 𝑙𝑜𝑔𝑒𝑖(𝜋2±2𝜋𝑘) = 𝑖(𝜋2 ± 2𝜋𝑘) 
𝑙𝑜𝑔0 = log(2𝜋𝑘) ∗ 𝑒𝑖𝐴𝑇𝐴𝑁 = log(2𝜋𝑘) ∗ [1 + 𝑖𝑇𝐴𝑁], 𝑇𝐴𝑁 ≡ (𝜋2 ± 2𝜋𝑘)log(2𝜋𝑘)  

𝑙𝑜𝑔𝑙𝑜𝑔0 = 𝑙𝑜𝑔𝑙𝑜𝑔(2𝜋𝑘) + 𝑖𝐴𝑇𝐴𝑁 

By embarking on Stirling’s asymptotic one more time, one obtains that, for N large: 

𝑅𝑒(𝑠) = 𝑙𝑜𝑔𝑁!𝑙𝑜𝑔𝑁 − 𝑁𝑙𝑜𝑔𝑁 ∗ 𝑙𝑜𝑔𝜑 − 𝑙𝑜𝑔𝑙𝑜𝑔(2𝜋𝑘)𝑙𝑜𝑔𝑁 ~12 ∗ log(2𝜋𝑁) + 𝑁 ∗ (𝑙𝑜𝑔𝑁 − 1)𝑙𝑜𝑔𝑁 − ∆ 

                                                           
9
 This may not hold outside exponentiation, though, where s does belong. The forthcoming paper dwells on a 

broader, indeed generalized perspective for distinguishing as well as reconciling across such ‘levels of variableness’ 
setups.  
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 ∆≡ 𝑁𝑙𝑜𝑔𝑁 ∗ 𝑙𝑜𝑔𝜑 + 𝑙𝑜𝑔𝑙𝑜𝑔(2𝜋𝑘)𝑙𝑜𝑔𝑁  

 

Under phi distributed as or comparable to N, the Re(s) part collapses to: 

𝑅𝑒(𝑠)~12 ∗ (1 + 𝑙𝑜𝑔2𝜋𝑙𝑜𝑔𝑁 ) + 𝑁 − 𝑁 − 𝑙𝑜𝑔𝑙𝑜𝑔(2𝜋𝑘)𝑙𝑜𝑔𝑁 = 12 , 𝑄𝐸𝐷 

The imaginary part could be gauged at anywhere near, 

𝐼𝑚(𝑠) ≡ 𝑡 = − 𝑁𝑙𝑜𝑔𝑁 ∗ 𝐴𝑇𝐴𝑁(𝜋2 ± 2𝜋𝑘𝑙𝑜𝑔2𝜋𝑘 ) 
For instance, with k hitting zero, the t imaginary part could be structured as follows: 

𝑡 = 𝑡𝑘=0,   𝑁=𝑇 − 𝑇𝑙𝑜𝑔𝑇 ∗ 𝜋𝑙 ∀𝑙 ∈ 𝑵 

Not only does it follow the prime-number distribution frequency (as one natural outcome of the 

ERE design), it does so as per each particular (large enough) value of n. And, for k very large, the 

PND pattern appears twice: 𝑡 = 𝑡𝑘=𝑇 − 𝜋(𝑇) ∗ 𝐴𝑇𝐴𝑁(𝜋(𝑇)) 
Put simply, so much as just a small subset of potential solutions for s (which is what RH 

apparently amounts to) still features rich structural implications and linkages.  

We now are in a position to turn to Branch 2 for some extra insights along the lines of 

discerning the s patterns. The righthand side of the ERE can be rethought as a functional or 

operator equation as follows: 

𝜗(𝑠) = ∏𝑝𝑠∏𝑝𝑠 − 1 ≡ 𝜑(𝑡)𝜑(𝑡 − 1)   ↔   𝜑(𝑡) = 𝜗(𝑠)𝜑(𝑡 − 1) 
Assuming fixed point at unity, one readily infers: 

𝜑(1) = 1 = 𝑝1, 𝜑(𝑡) = 𝜗𝑡(𝑠) ∗ 𝜑(1) = 𝜗(𝑠)𝑝∞𝑠 −1 ≡ ∏ 𝑝𝑠∞
𝑝𝑟𝑖𝑚𝑒  

If one now ventures an [interim] generalization of the zeta as aimed at capturing partial products 

for series running through M, it may follow that: 
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𝜗𝑀(𝑠) ≡ ∏ (1 − 𝑝−𝑠)−1𝑀<∞
𝑝𝑟𝑖𝑚𝑒 , 𝜑𝑀(𝑡) ≡ ∏ 𝑝𝑠 = 𝜗𝑀𝑝𝑀𝑠 −1𝑀<∞

𝑝𝑟𝑖𝑚𝑒  

In particular, for M=1, a structure is cleared appearing as, 

1𝑠 = (1−𝑠)1𝑠−1   ↔   1𝑠 = { 0𝜑±∞~± 𝑇 = { 𝑇𝑙𝑜𝑔0 

The above solution closely follows (2) as well as (1.1) and (1.2) at n=1. Alternatively, an explicit 

or closed-form solution would suggest: 

𝑠 = 𝜑 log (2𝑖𝜋)2𝑖𝜋 ~𝜑 ∗ 𝑙𝑜𝑔00  

While this may resemble a PND counterpart for complex numbers (or possibly around zero), this 

moreover appears to follow the general (A) solution structure. For n large, (A) could be rewritten 

as, 

𝑠~ 𝑙𝑜𝑔0𝜑1𝑁 ∗ log (1𝑁) ~𝜑 ∗ 𝑙𝑜𝑔00  

In any event, the above structure (based on a partial or indeed singular primes product), can 

further be reduced to, 

𝑠 = 𝑙𝑜𝑔2𝜋 + 𝑖(𝜋2 ± 2𝜋𝑘)2𝑖𝜋 = 𝜑 ∗ [(14 ± 𝑘) − 𝑖 𝑙𝑜𝑔2𝜋2𝜋 ] 
While phi=2 does yield the RH result around k=0, this only really features a partial solution, with 

the Im=t structure still remaining of interest in just how it follows the PND pattern as previously 

spotted
10

.  

 

Rehashing on the RH Solution Tapestry 

To draw a tentative bottomline, one should be able to appreciate a rich and well-structured 

variety of RH solutions which all—much to one’s surprise!—point to largely the same patterns, 

with the Re=1/2 suggesting but a special yet dominant case. Incidentally, the overlap takes far 

wider swathes than that, all of the solutions featuring remarkable simplicity at a high level of 

completion
11

. In other words, not only do solution-branches prove comparable across themselves 

as shown throughout, they reveal recurring patterns within them as well. To illustrate this, 

                                                           
10

 Needless to say, the levels of variableness are: k and phi (in-branch alone). 
11

 Which would seem a characteristically ordual outcome in its own right. 
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consider a bottom-up comparison [decision-procedure], starting with (3). Can the two solutions 

possibly be reconciled beyond assuming k2=i and k1=0? Suppose, in contrast, k2=0 for 

simplicity’s sake. Now embark on the log0 trick to see how the line may prove fuzzy between an 

all-imaginary versus an all-real solution: 

𝑠 = 𝑘1 = 12~ 𝑖𝜋𝑘2𝑖𝜋𝑘 = 𝑖𝜋𝑘 ∗ 10 = 𝑖𝜋𝑘𝑇~ {𝑖𝜋1𝑇 ∗ 𝑇 = 𝑖𝜋, 𝑘 = 0±𝑖 ∗ ∞,   𝑘 ≠ 0  

In fact, this is how RH could either disguise some infinity-reaching, purely imaginary 

solutions or, by contrast, end up appearing as one of these going undetected experimentally 

(observationally).  

The rest of the in-branch bridges appear even more straightforward than that. For 

instance, per (2), 2.2 and 2.3 feature restrictions of phi to +1 or -1 values. For that matter, as 

regards 2.2 and 2.1: 𝑛!−1𝑛~𝜀, 𝜀𝑁~0,         0−1~𝑙𝑜𝑔0 

Not least, whilst it has been deemed as outside this paper’s scope (let alone a daring and 

risky enterprise), deployment of an [interim] generalization of zeta spanning a sub-infinity 

interval has paid off just handsomely, in that the implied solution structure fits squarely into the 

grand pattern as well as its inter- and intra-branch ‘levels-of-narrowness.’  
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