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In this study, we will describe how one electron could consist of a two-state spin system on
the basis of a previous study, wherein we obtained a model in which two spinor particles could
exist in one electron. The previously reported electronic model used equations to show the energy
conservation law of an electron system, which included two spinors. Herein, we will consider these
two oscillators as two bases and will start the discussion from the viewpoint that one electron can
be considered two-bitwise. For this purpose, we apply the two-bitwise system with a Riemann
surface via an analytic continuation. This trial could explain the mixed state of up and down spin
states. Furthermore, the two states in which the electron can be of either state can be selected as
the disconnection of the analytic continuation of the complex analysis. To consider the magnetic
gradient field which would have a force to disconnect the analytic continuation to separate the two
domains, it is possible to explain how the spin is fixed in the abovementioned states.

I. INTRODUCTION

Generally, it is difficult to form an imagine of spin-
1/2 behaviour. Steven Hawking explained the rotation
of particles with spins of 1, 2, and 1/2 using an anal-
ogy of rotating playing cards [1]. Spin-1 particles were
compared to the ace of spades, a figure in which one
can distinguish the upward and downward directions. A
spin-1 particle is inverted upside down with a 180-degree
rotation, and then it returns to its original position with
a 360-degree rotation.

Hawking compared spin-2 particles to the queen of
hearts. Rotating the queen of hearts 90 degrees coun-
terclockwise, the card can be turned sideways and dis-
tinguished from its initial state. If we rotate the queen
180 degrees, we will no longer be able to differentiate be-
tween the new position and the original position because
the queen has two heads with vertical symmetry. Hawk-
ing also demonstrated the difficulty of particles of spin-
1/2 behaviour in his book. For this, he did not use the
front designs of the playing cards but instead turned the
back of a playing card to show its mysterious behaviour.

In this study, we visualize the spin duality using a Rie-
mann surface and the black body model, which was ex-
plained in our previous study [2]. In addition, we try to
explain this phenomenon using the analytic continuation
[3] of a Riemann surface in which the direction of the
spin is determined at the moment of measurement.

II. METHODS

A. Review of the previous work

In our previous study[2], we considered the bare elec-
trons to be two spinor oscillators contained in one elec-
tron. This electron model obtains two bases of spin and
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FIG. 1. A schematic of the manner in which a virtual photon
can be moved as a simple harmonic oscillator with the emer-
gence and disappearance of bare electrons at the fixed points
x = a and x = −a. The two bare electrons are two spinors
1 and 2 represented by the blue and green dots, respectively.
The open circles express the thermal potential energy, which
has a zero value. The arrows within the yellow circles (b)
and (d) have two meanings: the direction in which the vir-
tual photon is moving, and the direction to which the thermal
potential energy is radiated between the two spinor particles
(i.e., the blue and green dots).

results in a significantly different the electronic model
compared to conventional electronic models. Hence, we
obtain
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where θ denotes the electron’s phase ωt.
The first and the second terms on the right-hand side

of the equation represent spinors 1 and 2, respectively,
and the third term represents the virtual photon. Since
the first and the second terms have the half-angle θ/2,
which are performed as spinor particles, the range of θ/2
is required from 0π to 4π in order to rotate its one cycle,
whereas, the third term, photon, can be restored from 0π
to 2π, and the previous two terms on the right-hand side
require a 720-degree rotation. This is a relation corre-
sponding to the character that a spinor particle requires
a 720-degree for one cycle, and a vector particle rotates
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360-degree to become one cycle as well.

(Spinor1) : Te1 ≡ E0 cos4
(
θ

2

)
,

(Spinor2) : Te2 ≡ E0 sin4

(
θ

2

)
,

(Photon) : γK.E. ≡
1

2
E0 sin2 θ.

(II.2)

Figure 1 illustrates the change for each phase of the
electronic model. Let the value of the particle’s rest mass
m0 be one. The ratio of the thermal potential energy
possessed by spinor 1 (Te1) spinor 2 (Te2) and the ki-
netic energy possessed by the virtual photon (γK.E.) is as
follows:

(a) Te1 : Te2 : γK.E. = 1 : 0 : 0 (0π),

(b) Te1 : Te2 : γK.E. = 1/4 : 1/4 : 1/2 (1/2π),

(c) Te1 : Te2 : γK.E. = 0 : 1 : 0 (π),

(d) Te1 : Te2 : γK.E. = 1/4 : 1/4 : 1/2 (3/2π),

(e) Te1 : Te2 : γK.E. = 1 : 0 : 0 (2π).

(II.3)

In phase (a), 0π, spinor 1 occupies all the energy of
the system in the electron. In phase (b), 3/2π, the ratio
of energies is the same as in phase (d), 1/2π. However,
the direction in which the virtual photon moves in phase
(d) is opposite to that in phase (b). The energy of spinor
1 (Te1) that started radiating in phase (a) in Fig. 1 be-
comes the middle energy in the process of radiation in
phase (b) and finishes radiating all its mass energy as
thermal potential energy in phase (c). That is because
Te1 in phase (c) has a value of zero.

Of particular note is that Eq. (II.4) would contain zero
point energy at every phase θ = 1/2π. For every phase
θ = 1/2π, the virtual photon occupies half the energy of
the electron’s system.

The energy ratio for each phase is obtained from Eq.
(II.4) which includes three oscillators. This equation is
a mathematical expression that preserves the law of con-
servation of energy at any phase while the three particles
oscillate. See the Appendix V and [2] for details. If we let
E0 = m0, the system of the electron in the phase change
can be represented as

m0 = m0
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2
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)
. (II.4)

In the conventional electronic model, the up spin and
down spin are expressed as a single basis vector with
respect to the dimension in one direction (i.e., the z-
axis). This is a model with one-state spin in each elec-
tron. However, in the above electronic model, because
two spinors are included in one electron, each spinor can

FIG. 2. (a) Two spinors as bare electrons at two points, -a
and a, are separated by a distance of 2a. Each spinor can ex-
change thermal potential energy as the electron’s mass energy
via radiation and can be regarded as one organised oscillator.
(b) A representation of the 720-degree rotation performed on
a two-state spin. This figure is drawn with reference to the
Bloch sphere. Two Bloch spheres are combined into one cir-
cle to represent each two spinor state. The horizontal axis
z1 indicates the direction of spinor 1, and the vertical axis
z2 indicates the direction of spinor 2. These two bases can
represent the two-state system.

have a unique base representing a spin. Therefore, there
are two-state spins in each electron.

The model assumes that each spinor (spinor 1
and spinor 2) independently has a basis of the
“up:|↑〉” spin and “down:|↓〉” spin. These combina-
tions |spinor1, spinor2〉 which has same meaning of
|Te1 spin, Te2 spin〉 mentioned in the previous study [2] can
be denoted as |↑↑〉, |↓↑〉, |↑↓〉, and |↓↓〉 to represent the
spins in one electron.

One of the spinors becomes an emitter, and the other
becomes an absorber depending on the electron’s phase.
Spinors 1 and 2 alternately exchange their thermal po-
tential energy via radiation between phases 0π and 2π,
that is, phases (a) and (e), in one cycle. One emitter–
absorber cycle is represented every 2π (i.e., 2π, 4π, 6π...,
etc.) (see the Appendix V, Fig. 8).

Both spins and emitter–absorber cycle could have each
single degree of freedom. In order to add one more
degree-of-freedom to the one cycle 0π to 2π, one cycle
should be doubled and expanded to 4π (Fig. 2).
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FIG. 3. Transplant of the two-state spins to a Riemann sur-
face according to Figs. 2 (a) and 2(b). The phases of the
two-state spins, |↑↑〉, |↓↑〉, |↑↓〉, and |↓↓〉, change every period
π. There are four types of two-state spins |↑↓〉, and one cycle
requires a 720-degree rotation.

B. Transplant of the two-state spins to Riemann
surface

Referring to Fig. 2, when the phase is something other
than nπ, the spin has four combinations of up and down.
This is a combination that we have conventionally ex-
pressed as the spin state of two particles. There are two
spinors in the electrons in this electronic model [2]; there-
fore, four types of combinations occur. These combina-
tions |Te1 spin, Te2 spin〉 can be denoted as |↑↑〉, |↑↓〉, |↓↑〉,
and |↓↓〉, except in the phase ωt = nπ(n = 0, 1, 2, 3, ..., n).
We quote part of our previous study [2] below.

“Hence, an electron that comprises two
spinor states, which can be defined as
|Te1 spin, Te2 spin〉, could be denoted as: |↑↑〉,
|↓↑〉, |↑↓〉, and |↓↓〉, except in the phase;
θ = nπ, (n = 0, 1, 2, 3, ..., n). An expres-
sion using two arrows, such as |↑↓〉, could de-
note an isolated system as one whole electron.
For example, |↓↑〉 indicates that one electron
has thermal energy Te1 which has “down:|↓〉”
spin, whereas Te2 has “up:|↑〉” spin.

This system includes both kind of spins,
Te1 spin and Te2 spin. The state of an electron
expressed as |↑↓〉 is a spin-mixed state:|↑〉 :
Te1 spin has “up” spin, whereas |↓〉 : Te2 spin

has “down” spin. We could suggest the
following: the superposition in the phase-
dependence of |Te1 spin, Te2 spin〉 by generaliz-
ing the angle of circulation at every (4n+0)π,

|↑↑〉 : (4n+ 0)π < θ < (4n+ 1)π ,

|↓↑〉 : (4n+ 1)π < θ < (4n+ 2)π ,

|↓↓〉 : (4n+ 2)π < θ < (4n+ 3)π ,

|↑↓〉 : (4n+ 3)π < θ < (4n+ 4)π ,

(n = 0, 1, 2, 3, ..., n) .′′

(II.5)

In order to visually create easy-to-understand dia-
grams of a particle with spin 1/2, we will use a Riemann
surface. Riemann surfaces deal with bivalent functions
and are suitable for expressing the behavior of spinors.
In our previous study, we mentioned “spin states,” where
the phase changes from 0π to 4π; it was assumed that the
changes were analyzed on a Riemann surface and were
connected implicitly as a complex plane.

If the electron are in the phase ranging from 0π to
4π, these combinations |Te1 spin, Te2 spin〉 force to take as
“|↑↑〉, |↓↑〉, |↑↓〉, and |↓↓〉 circulation” cycle. As long as
the spinors adopt the concept of the previous electronic
model that takes one cycle at 720-degree, the electron
would not be uniquely determined as up or down. We
need to modify this view in (Eq. II.5) with a Riemann
surface corresponding to two bases of the spinors shown
in Fig. 3.

III. DISCUSSION

A. Disconnecting an analytic continuation to
identify the spin direction

How should we consider the “fixed spin” state for an
electron that is comprised of two spinor states? This
subsection discusses this issue.

Let us consider the Riemann surface for w →
√
z.

There are two domains: D0 and D1. An arbitrary point
(r, 0) in D0 corresponds to a point on the w-plane. The
argument (r, 0) in D1 is shifted by π from the argument
w0. The domain of D0 occupies 0π to 2π, and the domain
of D1 occupies 2π to 4π.
Te1 spin = |↑〉 (blue up arrow) and Te2 spin = |↑〉 (green

up arrow) correspond to the domain D0. Conversely,
Te1 spin = |↓〉 (blue down arrow) and the Te2 spin = |↓〉
(green down arrow) correspond to the domain D1, as
shown in Fig. 3. These domains D0 and D1 correspond
to planes I and II, respectively, shown in the Fig. 4 (a).

One feature of this study is that we assume that these
domain separations occur when a magnetic field gradi-
ent is applied to the field. This assumption determines
the electron’s spin as being either up or down. Figure
4(a) shows the behavior of these spinors according to the
phase change. There is no magnetic field gradient in this
system, and whether the electron spin is up or down is
not fixed.

However, Fig. 4(b) shows that if the bond that con-
nects the two domains (D0 and D1) no longer exists,
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FIG. 4. (a) Connected: D0∩D1 6= ∅. In order to represent the
bivalent function of the spinors, we divided the spinor states
into two domains (D0 and D1) and illustrated the value using
the analytic continuation in two-dimensional x−y-planes. (b)
Disconnected: D0 ∩ D1 = ∅. These planes, S′I and S′II, are
separated from each other. These analysis figures show the
case in which the two connected domains (D0 and D1) are
separated by a magnetic field gradient or a measurement.

then the two connected domains will split into two. The
connection between the two domains (D0 and D1) is lost
because of a magnetic field gradient with a nonzero value.
That is, it is not possible to swap the spins of the elec-
trons from one domain to the other. At this time, the
spin is determined to be either up or down. The timing
at which the spin is fixed to either up or down depends
on the gradient of the magnetic field applied to the elec-

FIG. 5. The meaning of each coordinate axis is given in Fig.3.
The two spinors present on the x-axis are located at equidis-
tant spatial coordinates (i.e., +a and −a). The meanings of
the z-axes and x-axes reflect the electron model in our pre-
vious study; however, further consideration is necessary with
respect to the validity of the y-axis:γ∗K.E..

tron. Additionally, it can be interpreted that analytic
continuation, domains (D0 and D1) are reconnected to
the particle which fixed spin status become mixed state
again.

Due to the fact that, the yellow and purple lines can
no longer be connected because they are alternate routes
between spins from up to down and vice versa. Therefore,
this state on plane SI in Fig. 4(a) no longer appears on
plane S′I in Fig. 4(b), and the red and purple circles
appear instead of the previous yellow and brown lines.

When this state is represented by a two-state spin sys-
tem, it can be explained as follows: The two states of the
yellow and purple lines disappear because the states with
spin |↑↓〉 and spin |↓↑〉 disappear. Instead, both spinors
1 and 2 on plane SI are in the “up” state, so even if there
is a phase change, only state |↑↑〉 can exist. Likewise, in
plane SII, there is a domain where only the “down” spin
exists.

The spin state can be determined by the disconnected
planes SI and SII. If the two domains (D0 and D1) are
connected, there can be four quantum states: |↑↑〉, |↓↑〉
|↑↓〉, and |↓↓〉. Conversely, if the two domains (D0 and
D1) are disconnected, only two quantum states (|↑↑〉 and
|↓↓〉) are permitted instead of four.

B. Proposing a meaning for the three axes of the
Riemann surface

The dimension shown in Fig. 5 indicates that the space
is only in the x-axis, and the model represented by the
Riemann surface is one spatial dimension. The value rep-
resented by this spatial dimension may be the position
of the spinor and the virtual photon that reciprocates
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FIG. 6. x-axis: the position of the two spinors in the state
restricted to the plane I′. y-axis: γ∗K.E. stands for the value
of the kinetic energy of the virtual photon within an electron.
The value of γ∗K.E. take 1/2~ν in phase 1/2π according to
phase (b), as shown in Appendix Fig. 8. Note that the di-
ameter of the virtual photon (the yellow-filled circles) is not
drawn in proportion to the diameter of the electron.

between the two spinors.
Figure 6 shows the total amount of energy of the bare

electrons representing two spinors in one electron on the
y-axis. On the x-axis, spinors 1 and 2 are represented at
the positions +a and −a, respectively. While spinors 1
and 2 exchange their thermal potential energy back and
forth, the virtual photon acts as a vibrator, oscillating
spinors 1 and 2 as the two end amplitudes of an oscillator
due to the centering force of the bare electrons and the
virtual photon. These conditions are the same as those
discussed in our previous model [2].

For example, the electron at position 0π (a) spreads
via the radius of the virtual photon to −a. Therefore,
the thermal potential energy at +a can be radiated to
−a via the virtual photon.

In this case, the defined state of the “up:|↑↑〉” spin (red
arrows and ellipse) remains over all phases because the
domains D0 and D1 are disconnected.

Figure 6 shows a particularly unusual chart because
the form of the coordinates in which the energy is taken
on both the horizontal and vertical axis, which is very
similar to phase space in classical mechanics.

Classical phase space cannot be applied to quantum
mechanics because of the uncertainty principle (see the
following equation).

∆x ·∆p ≥ ~
2
. (III.1)

Here, we modify the interpretation of the model ac-
cording to the uncertainty principle. So, far, we have
assumed that the two spinors are present at +a and −a
of the spatial coordinates. However, in reality, there exist

quantum fluctuations and the two spinors never remain
in a fixed space such as +a and −a. This is an extremely
simplified model condition.

In actuality, the absorber spinor, spinor 2, can occur
in any spatial direction within the radius of the virtual
photon, which has the range within which it can receive
radiative energy from the emitter. Therefore, this elec-
tronic model should incorporate the concept of random
walk in possible further developments. The mechanism of
quantum fluctuation, therefore, is left for future research.

C. LIMITATIONS

Measuring the position of an electron involves using
the interaction between a photon and the electron. Ac-
cording to this electronic model, when a virtual photon
has its kinetic energy due to vibration, the two spinors
obtain 1/2~ν energy value in its system in phase 1/2π
and 3/2π, as shown in the Appendix Fig. 8, i.e., the
summation of the two spinors obtain a nonzero thermal
potential energy value through whole phase.

When the virtual photon is located at +a or −a and
every π phase in an integer phase, the kinetic energy of
the virtual photon becomes zero in the electron model.
Therefore, no virtual photon is detected in such integer-
π phases. The measurement of quantum mechanics has
been discussed for a long time; however, this study does
not go into depth and discuss quantum measurement.

When the electron’s phase is in an integer-π, either
spinor 1 or 2 possesses the all the potential thermal en-
ergy. Herein, we assumed that the two bare electrons
emerge and keep staying in each fixed place +a and −a,
respectively (i.e., Figs. 1, 2(a), and 6). However, be-
cause we do not know where the other spinor will appear
in space, we do not know in which direction the virtual
photon will travel next. Therefore, even if the position of
spinor 1 is measurable, the direction of the momentum of
the electron cannot be determined (i.e., the virtual pho-
ton’s momentum), which is unlike classical dynamics.

However, Fig. 6 does not contradict the principle of
uncertainty because a scalar value of energy is adopted
on the vertical axis instead of the momentum, which has
a vector value.

Regardless of SI and SII on D0∩D1 6= ∅, or S′I and S′II
on D0 ∩D1 = ∅, the positive value,

γ∗K.E. =
1

2
~ν, (III.2)

on the phase (b) and negative value,

γ∗K.E. = −1

2
~ν, (III.3)

on the phase (d) come out as shown in Fig. 6. Because
the y-axis shown in Fig. 6 has been allocated to repre-
sent the kinetic energy of the virtual photon, there is a
problem in that the value of energy becomes negative.
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It is also conceivable that a Hermitian operator could
shift the phase in Fig. 6. Discussing this point requires
further study. In addition, we did not address the mech-
anism itself of how a spin is generated in this paper. Fur-
ther research is also required concerning the mechanism
of domain disconnection.

IV. CONCLUSION

In this study, we utilized a previous electronic model
containing two spinors in one electron. The two spinors
can individually take “up” and “down” spins as two
bases. Therefore, there are four combinations, that is,
|↑↑〉, |↓↑〉 |↑↓〉, and |↓↓〉, within a single electron due to
these two spinor bases. These phenomena can be ob-
tained via the principle of superposition of the two bases.
In this respect, one electron could be said to be two-
bitwise.

One electron is permitted to have four spin states: |↑↑〉,

|↓↑〉 |↑↓〉, and |↓↓〉. These states result from the interpre-
tation of a Riemann surface that has one cycle for each
720-degree rotation. In this study, we discussed the cor-
respondence between the four spin states and the phases
of the Riemann surface.

Furthermore, an analysis of the spin revealed that one
720-degree rotation can be split into two pairs of 360-
degree rotation cycle. For this purpose, an analytic con-
tinuation with the Riemann surface and two domains,
D0 and D1, were used. The electron’s spin is fixed when
divided into two pairs of 360-degree rotations and the
phase which the electron selects either the spin up:D0 or
the spin down:D1 phase. Such disconnection would not
permit the four combinations; instead, only two types of
states (|↑↑〉 and |↓↓〉) would be permitted. States |↓↑〉 and
|↑↓〉 can exist when domains D0 and D1 are connected
as an analytic continuation of the complex planes.

The two-bitwise state |↑↑〉 is attributed to domain D0

and the other state |↓↓〉 is attributed to domain D1. Be-
cause both bases are aligned, we regard the aligned di-
rection states as electron spin up |↑〉 and spin down |↓〉,
respectively.
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V. APPENDIX

A. Bare electrons as the emitter and the absorber

FIG. 7. Plots of the two oscillators, Te1 = E0 cos4(ωt
2

) (blue)

and Te2 = E0 sin4(ωt
2

) (green), with E0 = 1.

FIG. 8. Energy conservation during the harmonic oscillation
of the three particles as presented in classical dynamics. The
blue and green lines show a pair of bare electrons, and the
yellow line shows the energy of the virtual photon [2].

In this paper, we follow the model of [2] in that one
electron consists of three particles. Two of these three
particles are bare electrons, which are spinors. These are
harmonic oscillators and take part in emitting and ab-
sorbing thermal potential energy. The absorber receives
the emitter’s energy at an assumed distance of the Comp-
ton wavelength. These two oscillators as spinor particles
emit and absorb energy according to the fourth power of
a trigonometric function, as shown Fig. 8.

There is an insufficient phase length to express the spin
from 0π to 2π in Fig. 8. In order to add one degree of
freedom to represent the spin, a period from 0π to 4π,
which is twice the currently given length, is required (see
Fig. 2).

The conservation of energy equation includes the terms
of these three oscillators, where each oscillator preserves
its kinetic and potential energies [2]:

E0 = E0

(
cos4

(
ωt

2

)
+ sin4

(
ωt

2

)
+

1

2
sin2(ωt)

)
,

(V.1)

where E0 is the total initial energy of a single electron
particle. The oscillators are obtained as follows:

(Oscillator 1) : Te1 ≡ E0cos4
(
ωt

2

)
, (V.2)

(Oscillator 2) : Te2 ≡ E0cos4
(
ωt

2

)
, (V.3)

(Oscillator 3) : γ∗K.E. ≡
1

2
E0 sin2(ωt). (V.4)

Here, γ∗K.E. is a constant equal to the kinetic energy of
the virtual photon (treated as a vector particle). γ∗K.E.
can represent the conversion of thermal potential energy
to kinetic energy, which is then transmitted. Similarly,
Te1 and Te2 are the thermal potential energies of the two
spinors representing the bare electrons.
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