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ABSTRACT: 

Using simple box quantization, we demonstrate explicitly that a spatial transition will release or 

absorb energy, and that compactification releases latent heat with an attendant change in 

volume and entropy.  Increasing spatial dimension for a given number of particles costs energy 

while decreasing dimensions supplies energy, which can be quantified, using a generalized 

version of the Clausius-Clapyeron relation.  We show this explicitly for massive particles trapped 

in a box.  Compactification from 𝑁-dimensional space to (𝑁 − 1) spatial dimensions is also 

simply demonstrated and the correct limit to achieve a lower energy result is to take the limit, 

𝐿𝑤  0 , where 𝐿𝑤 is the compactification length parameter.  Higher dimensional space has 

more energy and more entropy, all other things being equal, for a given cutoff in energy. 
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Introduction 

Compactification is an old idea [1,2] where one reduces the dimension of space to account for 

observed symmetries and conservation laws.  In the very earliest versions, this was seen as a 

mechanism to unify electromagnetism with gravity.  The concept has since been extended [3 −

6] in the modern era to include supergravity and superstring theory, which seeks to 

accommodate the known particle spectrum of elementary particles and known conservation 

laws under one grand unification scheme.  These Kaluza –Klein theories entertain dimensions as 

high as 10 and even 26-dimensional space, and often predict particles which are yet to be 

observed, such as supersymmetric partners.   The underlying symmetries are also new, and 

reduce in a low energy limit, to the known weak-electromotive forces, gravity and QCD.  

Temperature must play a key role in such theories.  Compactification is thought to occur at very 

high temperatures, i.e., very short distance scales.  It seems to us that a thermodynamic 

treatment is therefore necessary.  Pressure is also of fundamental importance, as we are 

dealing with massive particles and mediating fields in the very early universe.   Recently [7], we 

generalized the Clausius-Clapyeron (CC) relation to allow for a phase transition involving a 

change in spatial dimension at a given temperature and pressure.  Using black-body radiative 

photons as our substance, this generalization allowed us to quantify the latent heat given off in 

transitioning from 𝑁-spatial dimensions to (𝑁 − 1) dimensions, and the latent heat absorbed 

in going from (𝑁 − 1) spatial dimensions to 𝑁 dimensions.  Moreover, expressions for the 

changes in entropy and volume were derived when undergoing this type of first order 

discontinuous phase transition. 

To illustrate the generalized CC relation, we also gave a specific numerical example, considering 

a temperature which applied to the very early universe.  It was conjectured that, based on the 

explosive release of heat energy, and the attendant changes in entropy and volume, that the 

𝑁 = 4 to (𝑁 − 1)  = 3 transition may have a connection to inflation.  The universe may have 

underwent a phase transition from 4-space to 3-space within the earliest times [8].  We argued 

[7] that this would bypass the need for the inflaton field, as well as do away with a-causal 

expansion.  If it is the spatial dimension itself, which is changing, i.e., undergoing a phase 

transition, a-causality within a given fixed space becomes a secondary issue.  Finally, quantum 

mechanical fluctuations about a mean temperature were also discussed when transitioning 

between spatial dimensions.  It was shown that if the phase transition involves the same 

thermodynamic process on both sides of the co-existence curve, such as from adiabatic 

expansion to adiabatic expansion, then the temperature fluctuations, 𝛿𝑇/𝑇, carry through 

unperturbed from one space to the neighboring space.  If, on the other hand, the phase 

transition involves a difference in thermodynamic process on either side of the coexistence 
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curve, such as from isothermal expansion to adiabatic expansion, then it was discovered that 

the thermal fluctuations can be created within the transition itself. 

In this short note, we pursue this analysis further and prove that space is equivalent to energy 

another way.  We focus on box quantization and specialize to massive particles, such as 

electrons.   We consider what happens in the simplest case of a 𝑁 = 3 to (𝑁 − 1)  = 2 

transition.  The goal is to highlight some basic principles by means of a very simple, almost 

pedestrian, example.  The concept can be easily illustrated and explained to a broader audience 

without advanced mathematics using the methods discussed in this short note. 

We start by considering the energy levels of a massive particle trapped in a box or lattice in 𝑁 =

3 versus (𝑁 − 1)  =  2 dimensional space.  As is well known [9], in 3-d space the energy levels 

are given by 

    𝛦(3)  =  ℎ2/8𝑚 (𝑛𝑥
2/𝐿𝑥

2  +  𝑛𝑦
2/𝐿𝑦

2  +  𝑛𝑧
2/𝐿𝑧

2  )                                (1) 

In equation (1), (𝑛𝑥,  𝑛𝑦,  𝑛𝑧) are quantum numbers, (𝐿𝑥, 𝐿𝑦,  𝐿𝑧) are the dimensions of the box 

in the (𝑥, 𝑦, 𝑧) direction, respectively, ”ℎ” is Planck’s constant and “𝑚” refers to the mass of the 

particle trapped in the box.  In 2-d, this reduces to 

    𝛦(2)  =  ℎ2/8𝑚 (𝑛𝑥
2/𝐿𝑥

2  +  𝑛𝑦
2/𝐿𝑦

2  )                                                  (2) 

In order to keep the discussion simple, we consider a cubic 3-d box where 𝐿𝑥  =  𝐿𝑦  =  𝐿𝑧  =

 𝐿, and correspondingly, 𝐿𝑥  =  𝐿𝑦  =  𝐿 in 2-d space.  The superscript on a variable such as the 

energy, 𝐸, refers to the space over which the physical quantity is defined. 

The lowest energy level in 3-space is (𝑛𝑥,  𝑛𝑦, 𝑛𝑧)  =  (1,1,1) and thus, 𝛦111
(3)

 =  3ℎ2/8𝑚𝐿2 ; for 

the same particle in 2-d space, we have (𝑛𝑥, 𝑛𝑦)  =  (1,1) and therefore 𝛦11
(2)

 =  2ℎ2/8𝑚𝐿2 .  

The next energy level in three dimensional space has a three-fold degeneracy as (𝑛𝑥,  𝑛𝑦, 𝑛𝑧) 

can take on the values, (1,1,2), (1,2,1) or (2,1,1) and this leads to the same energy, 𝛦112
(3)

 =

 𝛦121
(3)

 =  𝛦211
(3)

 =  6ℎ2/8𝑚𝐿2.  In two dimensional space, (𝑛𝑥,  𝑛𝑦) can take on the values (1,2) 

or (2,1); this leads to 𝛦12
(2)

 =  𝛦21
(2)

 =  5ℎ2/8𝑚𝐿2, a two-fold degeneracy.  We continue in this 

vein and present our results in table form, table I.  In this table, 𝐸0 , is defined by the equation 

𝐸0  = ℎ2/8𝑚𝐿2 , and we consider energies up to, and including 27/8 𝐸0 , an arbitrary but 

sufficient cut-off in energy for our purpose.  The degeneracy for a particular energy level is 

abbreviated as “deg.” 

 

TABLE I 
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𝑁 =  3 Spatial Dimensions   Versus  (𝑁 − 1)  =  2 Spatial Dimensions 

(𝑛𝑥, 𝑛𝑦, 𝑛𝑧)  =  (1,1,1)     (𝑛𝑥, 𝑛𝑦)  =  (1,1)  

=>  𝛦111
(3)

 =  3ℎ2/8𝑚𝐿2  =  3𝐸0/8    =>  𝛦11
(2)

 =  2𝐸0/8 
 
 

(𝑛𝑥, 𝑛𝑦, 𝑛𝑧) =  (1,1,2)         (𝑛𝑥, 𝑛𝑦)  =  (1,2)    

          =  (1,2,1)         =  (2,1)  

          =  (2,1,1)           =>  𝛦12
(2)

 =  𝐸21
(2)

 =  5𝐸0/8 

=>  𝛦112 
(3)

=  𝛦121
(3)

 = 𝛦211 
(3)

=  6𝐸0/8          (𝑑𝑒𝑔. =  2)  
 (𝑑𝑒𝑔. =  3) 
 
 

(𝑛𝑥, 𝑛𝑦, 𝑛𝑧) =  (1,2,2)     (𝑛𝑥, 𝑛𝑦)  =  (2,2) 

          =  (2,1,2)     =>  𝛦22
(2)

 =  8𝐸0/8 
          =  (2,2,1)  

=>  𝛦122 
(3)

=  𝛦212
(3)

 = 𝛦221
(3)

 =  9𝐸0/8             
 (𝑑𝑒𝑔. =  3) 
 
 

(𝑛𝑥, 𝑛𝑦, 𝑛𝑧) =  (2,2,2)     (𝑛𝑥, 𝑛𝑦)  =  (1,3) 

=>  𝛦222
(3)

 =  12𝐸0/8          =  (3,1)  

        =>  𝛦13
(2)

= 𝐸31
(2)

= 10𝐸0/8 

                    (𝑑𝑒𝑔. =  2) 
 
 

(𝑛𝑥, 𝑛𝑦, 𝑛𝑧) =  (1,1,3)         (𝑛𝑥, 𝑛𝑦)  =  (2,3)    

          =  (1,3,1)         =  (3,2)  

          =  (3,1,1)           =>  𝛦23
(2)

 =  𝐸32
(2)

 =  13𝐸0/8 

=>  𝛦113 
(3)

=  𝛦131
(3)

 = 𝛦311 
(3)

=  11𝐸0/8         (𝑑𝑒𝑔. =  2)  
 (𝑑𝑒𝑔. =  3) 
 
 

(𝑛𝑥, 𝑛𝑦, 𝑛𝑧) =  (1,2,3)     (𝑛𝑥, 𝑛𝑦)  =  (3,3)       

         =  (1,3,2)      =>  𝛦33
(2)

 =  18𝐸0/8 
          =  (2,1,3) 
          =  (2,3,1) 
          =  (3,1,2) 
          =  (3,2,1)  

=>  𝛦123
(3)

 =  𝛦132
(3)

 = 𝛦213
(3)

 =  𝐸231
(3)

  =  𝐸312
(3)

 =  𝐸321
(3)

 =  14𝐸0/8 
 (𝑑𝑒𝑔. =  6) 
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(𝑛𝑥, 𝑛𝑦, 𝑛𝑧) =  (2,2,3)         (𝑛𝑥, 𝑛𝑦)  =  (1,4)    

          =  (2,3,2)         =  (4,1)  

          =  (3,2,2)           =>  𝛦14
(2)

 =  𝐸41
(2)

 =  17𝐸0/8 

=>  𝛦223 
(3)

=  𝛦232
(3)

 = 𝛦322 
(3)

=  17𝐸0/8         (𝑑𝑒𝑔. =  2)  
 (𝑑𝑒𝑔. =  3) 
  
 

(𝑛𝑥, 𝑛𝑦, 𝑛𝑧) =  (1,3,3)         (𝑛𝑥, 𝑛𝑦)  =  (2,4)    

          =  (3,1,3)         =  (4,2)  

          =  (3,3,1)           =>  𝛦24
(2)

 =  𝐸42
(2)

 =  20𝐸0/8 

=>  𝛦133 
(3)

=  𝛦313
(3)

 = 𝛦331 
(3)

=  19𝐸0/8         (𝑑𝑒𝑔. =  2)  
 (𝑑𝑒𝑔. =  3) 
 
 

(𝑛𝑥, 𝑛𝑦, 𝑛𝑧) = (2,3,3)      (𝑛𝑥, 𝑛𝑦)  =  (3,4) 

          = (3,2,3)          =  (4,3) 

          = (3,3,2)      => 𝛦34
(2)

= 𝐸43
(2)

= 25𝐸0/8 

=>  𝛦233
(3)

 =  𝛦323
(3)

 = 𝛦332
(3)

 =  22𝐸0/8    (𝑑𝑒𝑔. =  2) 
     (𝑑𝑒𝑔. =  3)            
 
 

(𝑛𝑥, 𝑛𝑦, 𝑛𝑧) = (3,3,3)      (𝑛𝑥, 𝑛𝑦)  =  (4,4) 

=>  𝛦333
(3)

 =  27𝐸0/8      =>  𝛦44
(2)

 =  32𝐸0/8 

 
As stated, our cut-off in energy was artificially set at 27 𝐸0/8; higher energy states are not 
considered.  Specific wave functions can be specified for each of these eigenstates and, in 
general, the higher the energy level, the more complicated (involved) is the wave function.  We 
now highlight some simple findings.  For 𝑁 = 3, the total number of energy levels is 27; for 
𝑁 = 2 spatial dimensions, the corresponding number is only 15.  Furthermore, for 𝑁 = 3, we 
have a greater degeneracy in energy levels, whereas for 𝑁 = 2 there is a lessor level of 
degeneracy, both in terms of number and magnitude.  The highest degeneracy for 𝑁 = 3 is 6-
fold while for 𝑁 = 2, that corresponding number is 3-fold.  The maximum degeneracy for 
spatial dimension 𝑁 is given by the equation, max.deg.(𝑁) =  𝑁! . 
 
The entropy will be considered next.  According to Boltzmann, the entropy is given by the 
expression, 𝑆 =  𝑘𝐵  𝑙𝑛 𝛺, where 𝑘𝐵 is Boltzmann’s constant and 𝛺 refers to the number of 
microstate permutations for which an ensemble can be organized to give the same measurable 
macroscopic result.  Consider, for example, 𝐸 =  17 𝐸0/8.  According to table I, for 𝑁 = 3, we 
have a three-fold degeneracy for this energy and thus, 𝑆 =  𝑘𝐵  𝑙𝑛(3)  =  1.099 𝑘𝐵.  In contrast, 
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for 𝑁 = 2, the entropy becomes 𝑆 =  𝑘𝐵 𝑙𝑛(2)  =  .693 𝑘𝐵 .  We have less entropy because 
there is only a 2-fold degeneracy for that same energy level. 
 
Further insights can be deduced from table I.  We present these in paragraph/ bullet form. 
 

1) From our simple example, we first notice that space is equivalent to energy and vice 
versa.  This is so because we clearly see that a higher dimensional (larger 𝑁) space can 
accommodate, i.e. hold more energy.  It simply has more degeneracy, and a higher 
spectrum of energy levels, than a lower dimensional space for a given cut-off in energy.  
If we have a finite amount of energy at our disposal, such as 27 𝐸0/8, we see that we 
have 27 energy levels for 𝑁 = 3, versus only 15 energy levels for (𝑁 − 1) = 2.  
Furthermore the total energy accommodated in 𝑁 = 3 space can be summed up, up to 
and including, 27 𝐸0/8.  The result is  

𝐸𝑇𝑂𝑇𝐴𝐿
(3)

 =  [1(3) + 3(6) + 3(9) + 1(12) + 3(11) + 6(14) + 3(17) + 3(19) + 3(22)
+ 1(27)]/8 𝐸0  

                           =  378 𝐸0/8          (3) 

where 𝐸0 was defined as 𝐸0  =  (ℎ2)/𝑚𝐿2.   For (𝑁 − 1) = 2, the corresponding total 
energy accommodated, for that same cut-off in energy, is  

 𝐸𝑇𝑂𝑇𝐴𝐿
(2)

 =  [1(2) + 2(5) + 1(8) + 2(10) + 2(13) + 1(18) + 2(17) + 2(20)

+ 2(25)]/8  𝐸0  

         =  208 𝐸0/8          (4) 

The difference in energy between the two spaces is 𝐸𝑇𝑂𝑇𝐴𝐿
(3)

 −  𝐸𝑇𝑂𝑇𝐴𝐿
(2)

 =  170 𝐸0/8, if 

each space were populated up to the same cut-off energy, 27 𝐸0/8 .  

 
2) This equivalency between space and energy is a quantum mechanical effect due to the 

presence of “ℎ” in equations (1) and (2).  In the classical limit where ℎ 0, there is no 
connection between energy given by the left hand side of equations (1) and (2), and 
the  spatial dimensions of the box, which is specified by the right hand side.  The same 
holds for photons (radiation) as shown in reference [7].  Because the particles are 
trapped in a box, we have quantized energy levels.  As is well known, all bound states 
have a discrete, versus a continuous, spectrum of energy levels. 

3) The higher the spatial dimension, the higher the associated entropy, all other things 
being equal.  𝑆 cannot be defined for 𝑁 = 0 using the formula, 𝑆 =  𝑘𝐵  𝑙𝑛 𝛺, because 
𝛺 = 0.  Also, 𝑆 = 0 for 𝑁 = 1 because there is no degeneracy possible in 1-d space 
[10].  Here, 𝛺 = 1.  We count up the total entropy in 𝑁 = 3 space, versus (𝑁 − 1)  = 2 
space, for the same cut-off in energy, 27 𝐸0/8.  For 𝑁 = 3, we obtain  
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             𝑆𝑇𝑂𝑇𝐴𝐿
(3)

 =  𝑘𝐵  [𝑙𝑛(6) + 6 ∗ 𝑙𝑛(3)]  =  8.383 𝑘𝐵                            (5) 

To ascertain equation (5) we have referred to Table I.  For (𝑁 − 1)  = 2, the total 
entropy amounts to  

                         𝑆𝑇𝑂𝑇𝐴𝐿
(2)

 =  𝑘𝐵 [6 ∗ 𝑙𝑛(2)] =  4.159 𝑘𝐵                                  (6) 

This is for the same selected cut-off in energy.    We have made use of Table I and the 
relation, 𝑆 =  𝑘𝐵 𝑙𝑛 𝛺.  It is clearly seen that the difference in entropy between the two 

spaces is 𝑆𝑇𝑂𝑇𝐴𝐿
(3)

 −  𝑆𝑇𝑂𝑇𝐴𝐿
(2)

 =  4.224 𝑘𝐵 , where we assume that each space is 

populated to the same cut-off energy, namely, 𝐸 =  27 𝐸0/8. 

 

4) For a massive particle, following the steps in reference [7], but now for a massive 
particle, we claim that 
 

     𝐸𝑇𝑂𝑇𝐴𝐿
(3)

 +  𝑆𝑇𝑂𝑇𝐴𝐿
(3)

 𝑇 =  𝐸𝑇𝑂𝑇𝐴𝐿
(2)

 +  𝑆𝑇𝑂𝑇𝐴𝐿
(2)

 𝑇 +  𝛥𝑄(2)                        (7) 

      Here, 𝑇 is the temperature in Kelvin, and 𝛥𝑄 is any latent heat given off in 2-space as a 
result of the transition from 𝑁 = 3 to (𝑁 − 1)  =  2.  At this stage, 𝛥𝑄 can be positive, 
zero or negative.  This is our extension of the CC relation for massive particles in a box.  
Unlike radiation, there is no pressure component.  However, utilizing our above example 
with the specified cut-off in energy, we obtain from equation (3), the following result. 

378 𝐸0/8 +  8.383 𝑘𝐵𝑇 =  208 𝐸0/8 +  4.159 𝑘𝐵𝑇 +  𝛥𝑄(2)   

 Therefore, 

    𝛥𝑄(2) =  170 𝐸0/8 +  4.224 𝑘𝐵𝑇            (8) 

It is to be noticed that the right hand side is definitely greater than zero for any 
temperature, 𝑇, and ground state energy, 𝐸0.  Equation (8) assumes that both spaces 
are populated to the same specific cut-off energy.  Therefore, latent heat must be 
released in the 2-dimensional space when transitioning from 𝑁 = 3 to (𝑁 − 1)  = 2.   If 
we were to increase the spatial dimension from (𝑁 − 1)  = 2 to 𝑁 = 3, then latent heat 
would have to be supplied in this amount in order to make the reverse transition.  
Equation (8) also tells us that the amount of latent heat given off depends specifically 
on temperature, cut-off energy, and ground state energy.   

      A simple example might involve electrons trapped in a box of dimensions, (10−10 𝑚) by 
(10−10 𝑚) by (10−10 𝑚), and having total energy 378 𝐸0/8 =  1.024 ∗  10−15 𝐽.  All 
energy levels are filled, and thus 27 electrons are accommodated.  We ignore spin and 
Pauli statistics in order to keep the discussion simple.   Upon transitioning to a 2-d box 
of dimensions (10−10 𝑚) by (10−10 𝑚), 12 electrons are expelled, i.e., left in the 
originating 𝑁 = 3 space, due to the fact that only 15 energy states are available in this 
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reduced (𝑁 − 1)  =  2 space for the specified cutoff energy.  Assuming a transition 
temperature of 293 𝐾 (room temperature), the heat released would be given by 
equation (7).  We obtain before the spatial transition from 3-d to 2-d, 

 

 𝐸𝑇𝑂𝑇𝐴𝐿
(3)

 =  378 𝐸0/8,      𝑆𝑇𝑂𝑇𝐴𝐿
(3)

 =  8.383 𝑘𝐵,      𝐸𝑇𝑂𝑇𝐴𝐿
(2)

 =  0,        𝑆𝑇𝑂𝑇𝐴𝐿
(2)

 =  0           (9) 

  After the spatial transition from 3-d to 2-d, due to the 12 electrons left behind in 3-d 
space, we find that  

𝐸𝑇𝑂𝑇𝐴𝐿
(3)

′ =  107 𝐸0/8,        𝑆𝑇𝑂𝑇𝐴𝐿
(3)

′ =  3.296 𝑘𝐵,        𝐸𝑇𝑂𝑇𝐴𝐿
(2)

′ =  208 𝐸0/8,        

𝑆𝑇𝑂𝑇𝐴𝐿
(2)

′ =  4.159 𝑘𝐵               (10) 

      Primed variables refer to the situation after.  The difference gives us 𝛥𝑄(2) .  By 
equations (7), (9) and (10), we see that 

  𝛥𝑄(2)  =  (378 –  107 −  208) 𝐸0/8 +  (8.383 −  3.296 −  4.159) 𝑘𝐵𝑇 

              =  1.707 ∗  10−16  +  3.752 ∗  10−21  

                     =  1.707 ∗  10−16 𝐽𝑜𝑢𝑙𝑒𝑠 =  1.067 𝑘𝑒𝑉            (11)   

      This is the release in energy, in 2-d space, for the transition of the 15 electrons from 3-d 
to 2-d space, and we can definitely see that this is a positive release of energy.  The 12 
electrons that cannot be accommodated in 2-d space occupy the lowest states in 3-d 
space.  Particles trapped in a two dimensional box or lattice have lessor degrees of 
freedom, than corresponding particles trapped in a 3- box or lattice for the same cutoff 
energy.   This manifests itself in the release of latent heat through equations (7) and 
(11).   

5) Two limits can take us from the 𝑁-dimensional space to the (𝑁 − 1)-dimensional space.  
The first limit involves taking the length parameter, 𝐿𝑧 in equation (1), and have this 
length approach infinity [11].  The second limit is to let 𝐿𝑧 approach zero.  From an 
energy standpoint, the 2𝑛𝑑 limit makes more sense. 

 
We consider the transition 𝑁 = 3 to (𝑁 − 1)  = 2, where equation (1) reduces to 
equation (2).  In both limits, the “𝑧” space is weighed differently, versus 𝑥 and 𝑦 
coordinates.  In the first limit, the “𝑧” space is stretched out, whereas in the second 
limit, the “𝑧” space is shortened, i.e., compactified.  If the box in the “𝑧” direction is 
stretched out, then there can be little quantization in the 𝑧 sense, as we will have close 
to zero energy levels in this direction in space.  In one dimension, the energy is 
quantized, 𝐸𝑛  =  𝑝𝑛

2/2𝑚 where 𝑝𝑛  is the momentum of the particle.  Because of the de 
Broglie relation, we know that 𝑝𝑛  =  ℎ/𝜆𝑛 , where 𝜆𝑛 is the wavelength.  When 
confined to a box of width 𝐿, this gives for the quantized energy levels, 𝐸𝑛  =
 𝑛2ℎ2/(8𝑚𝐿2).  From this expression it is seen that in the limit where 𝐿 approaches 
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infinity, 𝐸𝑛 must approach zero.  Moreover, as the temperature decreases, we might 
expect a spatial transition.  If this occurs, then the 𝑧-space has lower energy levels in this 
limit, where 𝐿𝑧  →  ∞.   However, even though the quantized energy levels in z-space go 
down relative to the 𝑥-𝑦-space, the expanse of 𝑧-space goes up.  In fact, it approaches 
infinity.   We therefore expect an overall increase in total energy when 3-d space 
transitions to 2-d space when taking this limit.  But based on our arguments above, and 
the entries given in table I, this is clearly not so.  Energy has been given off as latent heat 
upon transitioning from a higher dimension to a lower one, and this is only possible if 
we had more energy to begin with than after.  Thus the 𝑥-𝑦-𝑧-space must have more 
energy versus the 𝑥-𝑦 space + 𝑧-space, separately, after the transition.   

 
A better limit to take is to let 𝐿𝑧 approach zero.  The 𝑧-space is now confined to a 
narrower width, and, as a consequence, there is more quantization in the 𝑧-sense, i.e., 
the energy levels get bumped up to where they, perhaps, are no longer readily 
observable.  However, the physical realm length-wise, over which they act, is much less.  
The 𝑥-𝑦 space is now occupied by lower energy levels than the 𝑧-space energy levels, 
since the 𝑧 space width is much narrower.  When plotting quantized energy levels as a 
function of dimension, each dimension of space has a specific width or weight.  This is 
the realm over which the quantized energy levels can be found.  Associated with a 
spatial dimension is quantized energy, and each has a corresponding height.  If the 
width associated with one particular spatial direction freezes upon transitioning, then 
the associated energy levels must stay fixed.  Therefore, the energy levels in that 
particular spatial direction, the compactified direction, can no longer decrease.  

 
Another way of arguing the same thing is as follows.  Before the transition, all 𝑥-𝑦-𝑧 
components are weighed equally.  And all have the same fixed energy levels.  As the 
temperature decreases, the quantized energy levels decrease in 𝑥-𝑦-𝑧 directions until, 
at some critical temperature, a transition from 3-d space to 2-d space occurs.  The 𝑥-𝑦 
space continues to decrease in terms of weight, but the 𝑧-space width has frozen since 
positive energy is released in the form of latent heat.   We saw that to be the case by 
our model example.  If, on the other hand, the 𝑧-space weight were to increase and the 
width gets larger, then there would be more energy after, versus before, within the 
space itself.  This is not compatible for a positive release of latent heat as demonstrated 
above. 

 
A specific example might be the early universe, where a hypothetical 𝑁 = 4 to (𝑁 −
1)  = 3 transition may have occurred [8].   Assuming such a model, as the universe 
cools upon expansion, the energy levels must decrease due to box quantization.  Early 
on, each of the 4-dimensions must have been occupied with rather higher energy levels, 
having been confined to a relatively small volume.  At some critical temperature, which 
we denote by 𝑇43, a transition occurs from 4-space to 3-space.  Latent heat is given off 
and the weight of the 4𝑡ℎ  dimension, the w-space, has compactified, i.e. frozen its 
width.  The quantized energy levels continue to decrease for the remaining 𝑥-𝑦-𝑧 spatial 
dimensions, and we only observe 3-d expansion upon decoupling.  An estimate of the 
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compactification length was given in a previous work [7].  The reason we may not see 

the energy levels associated with the 4𝑡ℎ  dimension in this transition, and the reason we 
do not appreciate the lowering of such energy levels due to expansion, is because our 
modern day accelerators have not yet reached, and perhaps will never reach, such small 
compactification scales. 

 
6) The (𝑁 − 1) volume is a subset of the 𝑁 volume when compactification occurs.  Again, 

consider our particle in the box example, and again let us focus on the 𝑁 = 3 to (𝑁 −

1)  = 2 transition.  It is obvious that 𝑉(3)  =  𝐿𝑥 𝐿𝑦 𝐿𝑧  =  𝑉(2) 𝐿𝑧 .  In the first limit,  𝑉(3) 

approaches infinity in cubic meters, whereas, in the second limit, 𝑉(3) approaches zero, 

also in cubic meters.  𝑉(2), on the other hand, is measured in square meters, and being a 

different dimensional quantity, 𝑉(2) cannot be compared to 𝑉(3) directly.  The ratio, 

𝑉(3) / 𝑉(2), is a measure for the weight of the space allocated to 𝐿𝑧 . 
 

In a previous paper [7], we argued that the universe may have once had 4 spatial 
dimensions in a very early epoch and the 3-d world we see now may be a special case 
limit.  The 4𝑡ℎ  dimension has curled up on itself a long time ago, and will only be visible 
once higher accelerator energies are built.  Within the greater universe itself at present, 
such pockets of 4-d space may still exist, and be only visible from the outside, such as in 
a black hole.  The temperature plays a key role in any first order phase transition, and 

here it would be no different.  If, for example,  𝑉(4) equals 10−80 𝑚4, but 𝑉(3) equals 

10−54 𝑚3, then the compactified length, 𝐿𝑤  ≡  𝑉(4)/ 𝑉(3)  =  10−26 𝑚.  This would be 
an unobservable world for which we have little direct knowledge or appreciation. 

 
7) Energy must be conserved when transitioning between different dimensions of space.  

We next consider a transition from 𝑁 = 4 to (𝑁 − 1)  = 3, and rewrite our generalized 
CC equation, equation (7), as 

                            𝐸𝑇𝑂𝑇𝐴𝐿
(4)

 +  𝑆𝑇𝑂𝑇𝐴𝐿
(4)

 𝑇 =  𝐸𝑇𝑂𝑇𝐴𝐿
(3)

 +  𝑆𝑇𝑂𝑇𝐴𝐿
(3)

 𝑇 +  𝛥𝑄(3)                          (12) 

, where 𝛥𝑄(3) is the latent heat released in 3-d space.  We know that 𝛥𝑄(3) must be 

positive.  Dividing equation (12) by the 3-Volume, 𝑉(3), the equation takes the form 

              (𝑢𝑇𝑂𝑇𝐴𝐿
(4)

 + 𝑠𝑇𝑂𝑇𝐴𝐿
(4)

 𝑇) 𝑉(4)/ 𝑉(3)  =  𝑢𝑇𝑂𝑇𝐴𝐿
(3)

 +  𝑠𝑇𝑂𝑇𝐴𝐿
(3)

 𝑇 +  𝛥𝑞(3)                  (13) 

In equation (13), 𝑉(4) is the 4-Volume, 𝑢(4) and 𝑢(3)  are the energy densities in 4-d and 

3-d  space, respectively, and 𝑠(4) and 𝑠(3)  are the entropy densities in 4-d and 3-d  

space, respectively.  Finally we have the latent heat density, 𝛥𝑞(3), as well.  However, 

𝐿𝑤  ≡  𝑉(4)/ 𝑉(3) where “𝑤” signifies the 4𝑡ℎ  dimension.  Hence, equation (13) 
assumes the form 

                         (𝑢𝑇𝑂𝑇𝐴𝐿
(4)

 +  𝑠𝑇𝑂𝑇𝐴𝐿
(4)

 𝑇)  𝐿𝑤  =  𝑢𝑇𝑂𝑇𝐴𝐿
(3)

 +  𝑠𝑇𝑂𝑇𝐴𝐿
(3)

 𝑇 +  𝛥𝑞(3)                   (14) 
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This equation is dimensionally consistent even though, in terms of units, 𝑖𝑚[𝑢(4)]  =

 𝐽/𝑚4 , which is unequal to 𝑑𝑖𝑚[𝑢(3)]  =  𝐽/𝑚3 .  Moreover, 𝑑𝑖𝑚[𝑠(4)]  =  𝐽/(𝑚4 𝐾) is 

unequal to 𝑑𝑖𝑚[𝑠(3)]  =  𝐽/(𝐾 𝑚3).  Equation (14) allows us to solve for 𝐿𝑤 if we can 

determine the other quantities.  𝐿𝑤 is obviously dependent on 𝛥𝑞(3), as can be seen by 
equation (14). 

In all likelihood, equation (14) will not be that useful for massive particles as it is 
difficult to imagine how one can determine energy densities for massive particles in 4-d 
space.  However, for massless particles, i.e., radiation, it is extremely useful.  For 
radiation the internal energy densities, the pressure, and the entropy densities are 
readily determined as functions of spatial dimension, and temperature [8,12 − 15].  We 
have to include pressure contributions on both left and right hand sides for black-body 
photons, but these are also readily known.  In fact, entropy density and pressure are 
multiples of internal energy density where the numerical factor depends strictly on the 
spatial dimension considered.  As a consequence, the compactification parameter 𝐿𝑤 is 
thus strictly determined by the amount of latent heat given off as shown in a previous 
work [7], where we used a modified, i.e., extended version of equation (14), which 

applies for radiation.  The 𝐿𝑤 versus 𝛥𝑞(3) dependency for radiation is a linear 
relationship.   This is also true for equation (14), which holds for massive particles. 

In conclusion, by means of a simple, almost elementary example, we have shown that space 

has energy content.  In transitioning from a higher dimensional space to a lower one, latent 

heat is invariably released and a generalized CC relation holds.  We focused on massive particles 

in a box, in 𝑁 dimensions, and then again, in (𝑁 − 1) dimensions.  The identity of the particle, 

given by its mass, remained constant and the only thing that changed was the dimension of the 

box itself.  A higher dimensional space can accommodate more particles, and at a higher 

energy, than a lower dimensional space.  In transitioning between spatial dimensions, energy 

therefore must be released.  Moreover, two limits are possible, but only the compactified limit, 

𝐿𝑤 0, seems to make sense from a conservation of energy viewpoint.  We saw that as a 

spatial dimension freezes or compactifies, quantized energy levels in the compactified space 

dimension stay large and, mostly likely, beyond view.  However, the weight or width of 

remaining non-compactified space increases even though a dimension of space has curled up.    
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