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Abstract—Organic Computing (OC) systems vary from tradi-
tional software systems, as these systems are composed of a large
number of highly interconnected and distributed subsystems.
In systems like this, it is not possible to predict all possible
system configurations and to plan an adequate system behavior
entirely at design time. An open/decentralized desktop grid is
one example, Trust mechanisms are applied on agents that show
the following Self-X properties (Self-organization, Self-healing,
Self-organization and so on). In this article, some mechanisms
that could help in the classification of agents behavior at run
time in trust-based organic computing systems are illustrated.
In doing so, isolation of agents that reduce the overall systems
performance is possible. Trust concept can be used on agents and
then the agents will know if their interacting agents belong to
the same trust community and how trustworthy are they. Trust
is a significant concern in large-scale open distributed systems.
Trust lies at the core of all interactions between the agents which
operate in continuously varying environments. Current research
leads in the area of trust in computing systems are evaluated
and addressed. This article shows mechanisms discussed can
successfully identify/classify groups of systems with undesired
behavior.

Index Terms—Organic Computing, Trust Communities, Trust
based organic computing systems, Agents behavior.

I. INTRODUCTION

In recent years, Organic Computing (OC, [1]) and Au-
tonomous Computing (AC, [2]) have developed in ways
to cope with the increasing complexity in Information and
communication technology systems(ICT) by means of Self-
X factors(self -management, adaption, organization, healing,
protection, optimization and so on). The term definition of or-
ganic computing by Sven Tomforde in [3] states that: Organic
Computing System is a technical system, which is equipped
with sensors (to perceive its environment) and actuators (to
manipulate it). It adapts autonomously and dynamically to
the current conditions of the perceived environment. This
adaptation process has an impact on the systems utility, which
is continuously improved by the organic system itself. To allow
for such adaptive behavior [8], it employs so-called Self-X
mechanisms. The term autonomic computing is emblematic
of a vast and somewhat tangled hierarchy of natural self-
governing systems, many of which consist of interacting, self-
governing components that in turn comprise large numbers

of interacting, autonomous, self-governing components at the
next level down [3].

The basic idea is to transfer responsibilities from design-
time to run-time and from the system engineer to the systems
themselves [5]. Here agents are considered to operate on
behalf of a user which self-adapts in a way to preserve
a specific purpose and self-improve its behavior over time
[4]. One particular challenge in the context of coupled and
highly interconnected ICT is the rising trend toward open
systems [27] consisting of autonomous and heterogeneous
agents. Open means that agents are free to join and leave
at any time, including those that are faulty or even malicious
[4] [11]. Furthermore, heterogeneous refers to varying capa-
bilities, knowledge, decision freedom, and pursue goals [13].
The question is that, can a Trust based intelligent system,
consisting of interacting and self-organized agents, detect and
isolate malicious agents over a period of time [10]. In this
article, a few mechanisms are discussed to identify and classify
agents behavior and separate faulty agents to improve the
overall system performance which is the goal [6] [7].

The remainder of this article is organized as follows: After a
short review of the state of the art in Section II, follows a quick
understanding of Decentralized Desktop Grid as Trust Based
Intelligent System in Section III, Section IV discusses the
application scenario with a system and agent goal, agent types
and trust graph are stated followed by different approaches to
identify agents behavior in Section V. Section VI Concludes
the article and provides an outlook to Future Work.

II. RELATED WORK

The OC-Trust project aims at enhancing complexity in
highly dynamic systems by trust-based algorithms and mech-
anisms derived from Organic Computing. Trust in a technical
system has been the focus of many research communities.
In the following, a selection of related work that helps to
define the view of the term trust as well as present different
approaches to the application of trust concepts in desktop
grid systems is discussed [14]. Organic Computing method
intends to design systems in a way that they are provided a
definitive measure of autonomy so that they can deal with



the increasing complexity of current systems. In systems
that are able to adjust themselves to a dynamic change in
environment or system state, trust among the subsystems can
play a vital role as described in [16]. The definition of trust by
Mui et al. [17] is as follows: Trust: a subjective expectation
an agent has about anothers future behavior based on the
history of their encounters. Jasang [18] differentiates trust and
reputation, Reputation is a collective measure for the esteem
of a community of agents for a single agent.
In this article, trust is defined as a local value within each
agent aggregated from both reputation (i. e. the accumulated
experiences of the community with an agent) and the history
of its own experience with the other agent. The conventional
reputation building process such as the one used in Internet-
based systems such as eBay consists of a rating process
carried out by the community and a behavior modification
expected from the single agent in response to a (possibly
inferior) reputation. In eBay, however, only the rating and
reputation building is supported by the system. In this context,
the idea is to automate also the behavior modification process.
These adaptation abilities lead to considerable changes in
the architecture of the agents involved [19]. Trust has been
the focus of many multi-agent systems. S. D. Ramchurn has
shown in [21], that trust concept in multi-agent systems can
be distinguished into individual-level trust and system level
trust. The focus here is on individual-level trust by modeling
adaptive agents and thus aiming at reaching an optimal state at
system-level by, e.g., autonomously isolating egoistic agents
[11].

III. TRUST BASED INTELLIGENT SYSTEMS

The system design is a distributed system without central
control. The system is open since there is no central control-
ling entity and all communication are done peer-to-peer. An
agent/node consists of both worker and submitter component
[23]. Worker nodes belong to different administrative domains.
Thus, good behavior cannot be assumed. Nodes participate
voluntarily to submit work into the system and, thereby,
increase the speedup of their jobs. However, the nodes also
have to compute work units for other submitter [15]. In the
decentralized or open desktop grid system, agents become
submitters whenever a user application on their machine
produces a grid job. The job is split into single Work Units
(WUs) and distributed among available worker clients.
The workers process the jobs and return the results to the
submitters which validate the results. The validation can be
done either programmatically or by comparing results from
different sources (depending on the application). However,
these systems might be exposed to threats by clients that
plan to exploit or damage the system. A worker can, for
example, return a wrong result or not return a result at all. By
extending each client with an agent component and modeling
the relations between the agents with a trust mechanism, a
counter to these threats can be expected and thus increase
the robustness as well as the efficiency of the system. If
for example, an agent chooses only those workers that it

already had good experiences with (i.e., those with a trust
level above a threshold), the expected outcome is better. By
taking that approach further, Agent organizations that build
bottom up because of these trust relations are analyzed. These
so-called Trusted Communities (TCs) are composed of agents
that mutually trust each other. This organization allows the
members of a TC to omit safety overhead (like work unit
replication) which makes them more efficient [9]. DGVCS is
an open/decentralized desktop grid system and with a trust
concept(TC) implemented for efficient communication be-
tween agents makes DGVCS a Trust based intelligent system.

IV. APPLICATION SCENARIO

The application scenario that is commonly applicable to
all the approaches discussed in Section V is a Decentralized
Desktop Grid and Volunteer Computing System (DGVCS,
[22], [35]) with agents acting on behalf of the users. To
understand such systems, a multi-agent system is used, and
nodes are modeled as agents. A multi-agent system is a system
with numerous agents that are heterogeneous by nature and are
present in the same system. Methods of organic computing are
used to ensure robust and efficient operations. Participation of
agents to cooperate among themselves to mutually gain an
advantage. Every agent works for a user and periodically gets
a job, which contains multiple parallelizable work units. The
goal here is to get all work units processed as fast as possible
by requesting other agents to work for it. Since the application
scenario here is an open system, agents are autonomous and
can join or leave at any time [11]. Below are some basic
concepts necessary for a better understanding of DGVCS.

A. System Goal and Agent Goal

The overall system aim is to allow agents to act as per
the system rules and to achieve the best possible speedup.
The overall system goal is measured either by the average
speedup of the well-behaving agents or by considering the
amount of cooperation(see Equation (3)) coupled with average
submit to work ratio of agents(see Equation (4)). Herein,
work(Ai,Aj) represents the number of work units, which agent
Ai successfully processed for agent Aj(see Equation (2)).
Similarly, submit(Ai,Aj) counts the work units Ai submitted to
Aj(see Equation (1)). In contrast, submit(Ai) is the number of
work units Ai submitted to all other agents. Herein, work(Aj)
shows the count of work units an agent processed for other
agents [6].

submit(Ai) :=

n∑
j=1,j 6=i

submit(Ai, Aj) (1)

work(Ai) :=

n∑
j=1,j 6=i

work(Ai, Aj) (2)

cooperation :=

n∑
i=1

work(Ai) (3)



fairness :=

n∑
i=1

min( submit(Ai)
work(Ai)

), work(Ai)
submit(Ai)

n
(4)

//
The agent performance is measured by a speedup(see

Equation (5)), timeself is the time an agent would require
computing a job containing multiple work units without any
cooperation. timedistributed represents the time to compute
all work units of one job with the collaboration of other
workers including all communication times( [24], [25], [26]).
As a consequence, the speedup can only be determined after
the results of the last work unit have been returned [6].

speedup :=
timeself

timedistributed
(5)

In case no cooperation agents are found, agents have to
calculate work units on there own and obtain a speedup value
equivalent to one. Usually, agents tend to act selfishly and only
cooperate if they can get a reward. Agents need to decide to
which other agents they want to work for and to what agents
they have to assign work. Since the agent implementation
is not controlled, agents can be even malicious. Hence, the
system is vulnerable to different kinds of attacks. For instance,
a Freerider can gain an advantage at the expense of cooperative
agents by choosing not to work for any other agents [6].

B. Agent Types
The following agent types are considered in this article:
• Adaptive Agents - Adaptive agents are cooperative and

also work for other agents that have a good reputation in
the system. The estimated present system load and how
much the input queue of the agents is filled up are the
factors on which the reputation usually depends.

• Free-riders - Free-riders reject all the work requests and
do not work for other agents. But, they do ask other
agents to work for them. This behavior impacts the utility
of well-behaving agents and increases the overall system
load.

• Egoists - Egoists pretend to work for other agents and
return correct results with only a certain probability.
They return faked results to agents by accepting all work
requests and by blocking other agents as they evaluate
the results.

• Cunning Agents - Cunning agents initially show good
behavior but can change their behavior over time. Some-
times they even behave like Free-riders or Egoists. Such
behavior is not easy to detect and may reduce overall
system performance.

• Altruistic Agents - Altruistic agents do not reject any job
requests and accept every job. Generally, such behavior
is not malicious and in turn, increases the system perfor-
mance. But this behavior makes it hard to isolated bad
behaving agents and has an impact on system goals.

Figure 1: Simple Trust graph [6].

Adaptive agents are considered to be as well-Behaving
(WB) agents, Free-riders and Egoists as Bad-behaving (BB)
ones. Cunning agents seem to alter their behavior in between
WB and BB, and hence cannot be classified clearly. Altruistic
agents might be seen as WB agents but they also work for
BB agents and thereby decrease the fairness in the system, in
such contexts can be considered as BB agents.

C. Trust graph

In a way to analyze the system state, a trust graph G = (V, E)
is built where all agents are added as nodes V. Eventually, trust
relationships are fetched between agents from the reputation
system and added as edges E to the graph. The amount of
trust between the connected agents Ai and Aj is represented
by the weight of the edge eij which connects vi and vj.
Agents trust each other and tend to work together in the center
of the graph. The center is called the core of the network. At
the border of the graph, all isolated agents are located and are
only weakly connected. The graph can be seen as a complete
graph as there exists a trust relationship between every pair of
agents.

V. DIFFERENT APPROACHES TO IDENTITY AGENTS
BEHAVIOUR

A. Approach 1: Trust adaptive agents

The application scenario in this approach is DGVCS as
discussed in Section III. Agents are heterogeneous in terms
of administrative domains, resource usage patterns and so
on. How adaptive trust among agents increases the system
efficiency and robustness by isolating agent types which decay
the system performance is discussed here. The fitness of an
agent is determined to access the success behavior parameters
adopted by agents(see Equation (6)).

fitness = α ∗ benefit + (1− α) ∗ (1− effort) (6)

The weight 0 ≤ α ≤ 1 denotes the preference of the
user. The higher value of α means that the user wishes the



agent to focus on maximizing its benefit and lower α means
user preference is for better cooperative behavior. The fitness
function is used to conclude how successful an agent’s choice
has been in current situations. The agent can take one of two
decisions here:
• Which agent to give work units to process (submitter

role).
• and whether to accept offered work units (worker role).
In the submitter role, the trust threshold for work unit

distribution TTsub, and in the worker role, the trust threshold
for the acceptance of a work unit TTacc is determined.

1) Adaptivity in submitter role:: The submitter role needs
only the current workload in the system WLtotal from the
short-term situation description as information input for the
threshold decision. Based on this workload, it determines the
submitter trust threshold TTsub, which means an agent will
accept all agents as workers which fulfill:

Ti,j ≥ TT sub (7)

An agent that is adaptive in the submitter role is more likely
to get willing workers to process its work units and result
in better fitness than an agent that is unable to change its
threshold at run time. Agents distinguish between personal
experiences and experiences other agents had with their po-
tential interaction partner. Essential trust and reputation values
are gathered from agents.

2) Adaptivity in worker role: Every time an agent Ai is
asked to process a work unit, it analyzes the short term
situation description and accordingly changes its behavior. The
reputation values are scaled in between 1 and -1. An agent
needs to accept every work unit if its own reputation value
is negative to be able to distribute a work unit in the future.
If an agent has a good reputation then it can afford to refuse
work requests from other agents and hence optimize its fitness
by minimizing its own effort. TTacc is the threshold for Ai

to accept a work unit from Aj based on the current workload
and its own reputation value:

Ti,j ≥ TT acc (8)

3) Evaluation: The evaluation here is addressed based
on how adaptivity is leading to increased efficiency and
robustness in the system after the isolation of low reputation
agents. The experiment is originally performed in [12], and
the workload setup was such that each agent produced a job
every 1500 to 4500 ticks, each job consisting an average of 31
work units with a computation size of an average 175 ticks.
• Efficiency is increased by trust-based adaptivity: As fit-

ness function consists of a benefit term and an effort
term, if agents can reach a high benefit with a low
effort, then they are successful. But as benefit and effort
are coupled by reputation, which is needed to reach a
high benefit, a static strategy is not the optimal solution
in every situation, especially if faulty agents threaten
to exploit agents which altruistically accept work units.

Figure 2: Fitness of adaptive agents [12].

Agent adaptivity is used to let the agent decide based on
the current situation whether to optimize the benefit or
the effort. Figure 2 clearly shows that adaptivity leads
to oscillating reputation values resulting in high fitness.
The fitness of adaptive agents shows to be much smoother
because, in situations where they do not have to distribute
their jobs, they improve their fitness by acting less as a
worker if the α weight of the fitness function is changed
to the weight of low effort higher than benefit agents
increases whereas it decreases with Altruists [12].

• Robustness is increased trust-based adaptivity: First
thought is that the recovery phase to be longer if the
system has to cope with a higher degree of disturbance.
This is because the disturbing new freeriders ask not only
the well-behaving agents but also the other new freeriders
to process work units for them. freeriders decline all
offered work unit calculations, they get bad ratings for
this behaviour and thus build up a bad reputation. As
soon as the reputation has reached a certain threshold,
the freeriders are isolated from the implicit Trusted
Community. If there are more agents available to give
bad ratings for work unit decline, this isolation process
speeds up [12].

B. Approach 2: Graphical approach to detect attacks

This approach concentrates on detecting possible suspicious
situations by procuring a system-wide graphical representation
at run time. According to a set of metrics discussed below,
the graph is continuously updated and analyzed. A detailed
description of this approach is illustrated in [11]. Evaluation
with different metrics to identify the behavior of all agent types
is monitored with the help of graphs [20]. The organization
of this approach is as follows: Metrics used for continuous
analysis in (1), followed by evaluation in (2).

1) Metrics: The metrics are selected based on the survey
( [6], [36]) and evaluation results from simulations are refer-
enced.



• Prestige: In a directed graph prestige metric counts the
number of incoming nodes. Every incoming edge refers
to some trust from another agent. In Figure 3, the prestige
for all agent types is shown. This metric helps in differen-
tiating cooperative and non-cooperative agents. Adaptive
Agents, Altruists, and Cunning Agents gain a high value.
However, in the long term, Cunning Agents stay below
Adaptive Agents. Altruists grow higher than Adaptive
agents. Egoists and Freeriders both stay at a very low
value. Egoists gain some Prestige at the beginning but
lose it again.

• Actor Centrality: In a directed graph actor centrality
metric counts the number of outgoing edges. Usually,
these edges denote that this agent gave some positive
rating to another agent for cooperating. Actor centrality
and prestige metric behave likewise. Freerider and Egoists
are at a low value, or they stay at zero. Adaptive Agents
gain a high value. Cunning Agents and Altruists stay a
little lower than Adaptive Agents.

• Degree Centrality: In an undirected graph, degree cen-
trality counts all the edges for a node. This metric is a
combination of prestige and actor centrality. In a trusted
desktop grid degree centrality will count mutual trust rela-
tionships. This metric is used to identify non-cooperative
agents (Freerider and Egoists). Adaptive Agents gain a
very high value. Cunning Agents stay significantly below
in the long term. Altruists have a value between the
previous two.

• Clustering Coefficient: Clustering coefficient is a metric
to measure the degree to which nodes tend to form a
cluster in an undirected graph. It helps to find groups of
connected nodes with a high density of edges. Cunning
Agents and Altruists gain a very high Clustering Coeffi-
cient value. Adaptive Agents stay below. Non-cooperative
agents have a value of zero again.

• Authorities: Authorities is a metric calculated by the
HITS Algorithm [37] to rate the importance of a node
in the graph. Authorities metric performs well in dis-
tinguishing Adaptive Agents and Altruists from Cunning
Agents. Egoists gain a little more Authority at the be-
ginning but start to lose it afterward. Freerider stays at a
value of zero all the time.

• Hubs: Hubs metric aggregates the authorities of all linked
nodes. Hubs have a high value if the node links to a large
number of important nodes. Hubs allow us to categorize
agents into a cooperative and a non-cooperative group.
Similar to Actor Centrality, Egoists and Freerider only
get a value higher than zero if Altruists are in the system.
All cooperative agents reach a high value and stay very
close.

2) Evaluation: The effectiveness of this approach is eval-
uated as a graph is shown with group size during an attack
for all the agents in the group. Here several experiments for
different system attack sizes are performed. The system from
the below-shown images consists of 100 agents and an attack

percentage of 50%, indicating 50 agents enter the system at
simulation tick 100k, resulting in a system of 150 agents [11].
• Adaptive Agents: Mostly all agents enter the High Rep-

utation class and stay consistent for the entire time.
Some momentarily enter the Suspicious class. 50% to
75% of the agents enter the Core. No agents are in the
Low Reputation class. In Figure 3, after 100k ticks, 50
additional Adaptive Agents join the system and quickly
join the High Reputation class. A short time later, they
also join the Core. While the size of High Reputation
class increases, the Degree Centrality drops because new
Adaptive Agents have a lower value. However, Core stays
constant in value and slightly increases over time.

Figure 3: Adaptive agents [11].

• Freeriders: When Freerider enter the system they cause
a Trust Breakdown Figure 4. The reputation of the
Adaptive agents is lost and they enter the Suspicious
class. Nevertheless, they still stay in the Core and recover
back to High Reputation class. Freerider quickly moves
into the Low Reputation class and stay in the Non Core.
The Degree Centrality value for Low Reputation class is
nearly equal to zero. Since Non core also contains some
Adaptive Agents, it has a higher value, but still, it is
much lower than all other classes. The Trust Breakdown
is visible for a short period in the High Reputation class
and significantly in Suspicious class. However, Core stays
at a constant level.

• Egoists: The Egoist agent behaviour is similar to that
of Freerider. But, there is a smaller Trust Breakdown.
Adaptive Agents stay in the High Reputation class. Ego-
ists go into Low Reputation class and stay in Non core.
Compared to Freerider, the Trust Breakdown is hardly
visible in High Reputation class. However, the value for
Suspicious class drops for a longer period. Non Core also
is constant at a medium level Figure 5.

• Cunning Agents: These agents behave like Adaptive
Agents when they have a low reputation and like



Figure 4: Freeriders [11].

Figure 5: Egoists [11].

Freerider when they have a high reputation. As a result,
they end up in the Suspicious class. Partly, they join the
Core. Some Adaptive Agents also, drop to the Suspicious
class. Cunning Agents can be identified by a medium
value in Degree Centrality of the Suspicious class. Also,
the value of Non core decreases, but less. Depending
on the size of the attack, the value of the Core may
get unstable for some time. However, the value of High
Reputation class is nearly constant and slightly increasing
Figure 6.

• Altruists: As these agents accept all work requests in the
system, they gain a high reputation and enter the High
Reputation class Figure 7. They also get included in the
Core. Altruists cluster very similarly to Adaptive Agents.
The value of Degree Centrality for Altruists is also very
similar to the value of Adaptive Agents. Nevertheless,
we can distinguish between these groups using Prestige
or Clustering Coefficient.

Figure 6: Cunning agents [11].

Figure 7: Altruists [11].

• All agent groups combined: All the types above enter the
system. As anticipated, Cunning Agents end up in the
Suspicious class. Egoists and Freeriders end up in Low
Reputation class. Adaptive Agents and Altruists can be
found in High Reputation class and Core. All groups can
be identified: Suspicious class contains Cunning Agents
with a medium value of Degree Centrality. Low Rep-
utation contains both Freerider and Egoists. We cannot
differentiate these groups using this metric. Altruists join
the high Reputation class, which slightly increases in
value Figure 8.

C. Approach 3: Algorithmic approach

This approach focuses on the identification and classifica-
tion of malicious or faulty agents in a trust-based organic
computing system is very illustrated in the article discussed by
Jan Kanterta, Sven Tomforde in [4]. In order to identify group
of similarly behaving agents certain metrics are applied to trust



Figure 8: All agents combined [11].

graphs and then the graphs are evaluated for every node. Later,
a clustering algorithm is selected to group similarly behaving
agents.

1) Algorithms: Based on the requirements of this article
the following algorithms are considered: BIRCH, DENCLUE,
and Wavecluster [28]. An advantage of these algorithms is
that they do not need any prior knowledge about the number
of clusters or their size and are also robust against changes
[4].
• DENCLUE: DENCLUE (DENsity-based CLUstEring)

is a density-based clustering algorithm. This algorithm
forms groups based on the density of points in a particular
area and does handle noise effectively. DENCLUE [31] is
chosen over DBSCAN (Density-based Spatial Clustering
of Applications with Noise) [30] because management of
noise points is more deterministic in this algorithm.

• BIRCH: BIRCH is an example of a hierarchy based
algorithm which seeks to build a hierarchy of groups
and can be achieved in two possible ways: One way
is a top-down approach by starting with one group and
splitting it up, and the other is a bottom-up approach
which is by starting with one group per point and merging
groups. Balanced Iterative Reducing and Clustering using
Hierarchies (BIRCH) [32] is specially designed to handle
noise and outliners effectively.

• Grid-based: WaveCluster is an example of a grid-based
algorithm and uses a multi-resolution grid to cluster
points. This algorithm is based on wavelet transforma-
tions and also meets the requirements [33].

2) Rating of Results: The metrics used here are similar to
Precision and Recall [34] used in information retrieval systems
to rate the results of our clustering process. Additionally, we
want to consolidate them to only one value. In Figure 9, we
represented a clustering with perfect precision. No cluster with
different groups exists. However, most groups are very small.
In contrast, Figure 10 shows a clustering with one very large
cluster for Adaptive Agents. Unfortunately, the large cluster

Figure 9: Clustering with perfect precision [4].

Figure 10: Clustering with less clusters [4].

also contains three Freeriders. However, from our perspective,
that clustering is superior because it has fewer clusters and
still a high accuracy.

3) Evaluation:
• Algorithm Selection: In a way to identify a well suitable

algorithm which meets the requirements, 50 experiments
with 100 agents for every algorithm is performed, and
the values are averaged. In the worst case, all agent
groups participate in the system, and there is a need
to identify five distinct clusters. Each experiment runs



Figure 11: Average TotalShare for all selected algotithms and
agents. Values range from 0 to 1 and higher is better [4].

80,000 ticks to make sure that the clustering process
stabilizes. Figure 11 shows the average TotalShare for
all groups per algorithm. BIRCH is the best approach for
Adaptive Agents, Altruistic Agents, and Cunning Agents.
For Egoistic Agents and Freeriders, the three algorithms
perform similarly. A TotalShare of 50% per group may
not be sufficient to find all groups. Altruistic Agents can
be singled out with more than 85% share. Unfortunately,
Cunning Agents behave like Adaptive Agents about half
of the time. Therefore, this method cannot reliably sepa-
rate them all the time, and they form a combined group
with a share or more than 90% [4].

• Independence from System Size: To validate that the
approach works autonomously from the system size, large
experiments are preferred with 500, 1,000 and 1,500
agents, each with 20% of all agent types. In the Table
above, we show the average TotalShare for BIRCH with
increasing system size. The values are stable for all
groups within the margin of error. Since BIRCH also has
linear complexity, the clustering scales well even for very
large systems [4].

• Interleaved Attacks: Until now, this approach considered
groups of agents which join at the same time. The
following experiment starts with Group A. After 30,000
ticks Group B joins. Both groups consist of 100 agents
which are of the same types. Refer to the table above, it is
shown the share per group and the combined TotalShare.
We captured the TotalShare at tick 50,000 and at tick
78,000 to analyze the development over time. Most of
the time, the clustering for Group A is superior because
it has been longer inside the system. Also, it can be seen
that the groups of Freeriders and Egoists join into one
cluster. However, this only happens partially for Adaptive
and Cunning Agents [4].

VI. CONCLUSION AND FUTURE WORK

In this article, three different approaches to identify agent
behavior in a decentralized or open desktop system as an
application scenario(DGVCS) as they reflect similar properties
as an open trust based intelligent organic computing system.
Organic Computing systems typically con-sist of diverse in-
teracting agents. Because of the open nature, uncertain or

even malicious agents are free to join - which will decay
the system’s performance. This openness is combined with
the missing possibilities to intervene from the outside agents
are autonomous and act selfishly. Consequently, this work
investigates possibilities to monitor the system status from the
outside by observing interaction and trust relationships. In this
article, different approaches to identify agents and categorize
them based on their behavior in a trust-based organic com-
puting system is illustrated. After explaining the application
scenario in detail, the taxonomy of approaches to identify
agent behavior is discussed. Evaluations shown above have
been focused on factors like the agent behavior, fitness, and
reputation of our trust adaptive agents. The approach estimates
the average system efficiency as well as the robustness of the
system concerning disturbance by faulty agents.

In future work, trust-based adaptivity algorithms will im-
prove the short term situation description by considering
additional information benefits the agents to make better
decisions. Further work regarding robustness will focus on
varieties of disturbance sizes and there impacts on the recovery
phase. Dependency can be quantified and can be used to
validate trust-based mechanisms against varying disturbance
sizes. And there could be an approach with questions on
how the outside and hierarchically designed theories can be
extended by open grid systems solutions. For example, a
completely self-organized detection of faulty agents and their
colluding agents can be blended with the present techniques to
obtain a faster, robust and more reliable clustering information
for recovery technique.
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