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Abstract

This tutorial sets out the detailed steps which produce the causal solution in integral form of the Maxwell
field equation set, the causal solution being the one which vanishes in the absence of the source charge-
current density, including during the time prior to that source being switched on. After warming up by
obtaining the causal solution in integral form for the static source and field case, the Lorentz-covariant
antisymmetric electromagnetic field tensor is defined, and the Maxwell field equation set is converted to its
Lorentz-covariant form, whose formal causal solution is obtained in nine lines, but whose Green’s function
initially is ill-defined, a subtle issue whose ultimate causal resolution prompts a substantial effusion of ink.
The integral solution which emerges can be exhibited either as manifestly Lorentz covariant or as very
closely related to the static-case solution, except for systematic causal time retardation. Although direct
solution for the electromagnetic field tensor is emphasized, the algebraically less involved four-vector
intermediary potential approach is outlined in parallel.

Introduction: static electromagnetism’s causal solution in integral form

For time-independent charge-current densities and electromagnetic fields, the Maxwell field equations are,

∇ ·E = 4πρ, ∇×E = 0, ∇ ·B = 0, ∇×B = (4π/c) j. (1a)

The last one of these four equations imposes on the time-independent current density j the requirement,

∇ · j = 0. (1b)

Taking the curl of the second Eq. (1a) static Maxwell field equation produces,

∇(∇ ·E)−∇2E = 0, (1c)

into which we substitute the right side of the first Eq. (1a) Maxwell field equation to obtain,

−∇2E = 4π(−∇ρ). (1d)

Likewise, taking the curl of the fourth Eq. (1a) static Maxwell field equation produces,

∇(∇ ·B)−∇2B = (4π/c)(∇× j), (1e)

into which we substitute the right side of the third Eq. (1a) Maxwell field equation to obtain,

−∇2B = (4π/c)(∇× j). (1f)

The solutions for the static electromagnetic fields E and B of Eqs. (1d) and (1f) which are causal , i.e., which
vanish when their respective sources 4π(−∇ρ) and 4π(∇× j/c) vanish, are formally given by,

E = 4π
(
−∇2

)−1
(−∇ρ) and B = (4π/c)

(
−∇2

)−1
(∇× j). (1g)

The mathematical meaning of
(
−∇2

)−1
(f(r)) is obtained by using Fourier-transform methodology. Since,

f(r) =
∫ [

(1/(2π))3
∫
eik·(r−r

′) d3k
]
f(r′) d3r′, (2a)

it follows that,
−∇2f(r) =

∫ [
(1/(2π))3

∫
|k|2 eik·(r−r′) d3k

]
f(r′) d3r′, (2b)
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and since
(
−∇2

)−1(−∇2f(r)
)

= f(r) = −∇2
((
−∇2

)−1
(f(r))

)
, it also follows that,(

−∇2
)−1

(f(r)) =
∫ [

(1/(2π))3
∫
|k|−2 eik·(r−r′) d3k

]
f(r′) d3r′. (2c)

The integral inside the square brackets in Eq. (2c) is evaluated using spherical polar k coordinates,

(1/(2π))3
∫
|k|−2 eik·(r−r′) d3k = (1/(2π))2

∫∞
0

(∫ 1

−1 e
ik|r−r′|α dα

)
dk =

(1/(2π2))
∫∞
0

(sin(k|r− r′|)/(k|r− r′|)) dk = (1/(4π))|r− r′|−1,
(2d)

which upon insertion into Eq. (2c), yields,(
−∇2

)−1
(f(r)) = (1/(4π))

∫
|r− r′|−1f(r′) d3r′. (2e)

Eq. (2e) converts the Eq. (1g) formal causal solution of static electromagnetism into well-defined integrals,

E(r) =
∫
|r− r′|−1(−∇ρ(r′)) d3r′ and B(r) = (1/c)

∫
|r− r′|−1(∇× j(r′)) d3r′. (2f)

It is often easier to first calculate intermediary potentials A0 and A, and then to differentiate them to obtain
E and B than it is to calculate E and B directly from Eq. (2f). Via integration by parts, Eq. (2f) yields,

E(r) = −∇A0(r), where A0(r) =
∫
|r− r′|−1 ρ(r′) d3r′ and

B(r) = ∇×A(r), where A(r) = (1/c)
∫
|r− r′|−1 j(r′) d3r′.

(3)

It is to be borne in mind that the specific A0 and A of Eq. (3) aren’t the only intermediary potentials which
yield E and B; to that specific A0 we can clearly add an arbitrary constant, and to that specific A we
can add the gradient of an arbitrary scalar function of r. The specific Eq. (3) A0(r) tends toward zero as
|r| → ∞, and, because of the Eq. (1b) requirement that ∇ · j = 0, the specific Eq. (3) A satisfies ∇ ·A = 0.

Dynamic electromagnetism’s Lorentz-covariant causal solution in integral form

The familiar dynamically general Maxwell field equations are,

∇ ·E = 4πρ, ∇×E + (1/c)Ḃ = 0, ∇ ·B = 0, ∇×B− (1/c)Ė = (4π/c)j. (4a)

They become manifestly Lorentz-covariant when the six components of E and B are made the six independent
components of the second-rank antisymmetric electromagnetic field tensor Fµν = −F νµ as follows,

F 00 = 0; F ii = 0, F i0 = −F 0i = (E)i for i = 1, 2, 3; F ij = −F ji = −(B)k for ijk = 123, 231, 312. (4b)

Noting that jµ
def
= (cρ, j), the first Eq. (4a) Maxwell field equation ∇ ·E = 4πρ is, in terms of Fµν and jµ,

∇ ·E =
∑3
i=1 ∂i(E)i = ∂0F

00 +
∑3
i=1 ∂iF

i0 = ∂µF
µ0 = 4πρ = (4π/c)j0, (4c)

while the fourth Maxwell field equation ∇×B− (1/c)Ė = 4π(j/c) of Eq. (4a) is, for ijk = 123, 231, 312,

(∇×B)i − (1/c)(Ė)i = ∂j(B)k − ∂k(B)j − ∂0(E)i = −∂0F i0 + ∂iF
ii − ∂jF ij + ∂kF

ki =

∂0F
0i + ∂iF

ii + ∂jF
ji + ∂kF

ki = ∂µF
µi = (4π/c)(j)i = (4π/c)ji.

(4d)

Thus the first and fourth Maxwell field equations of Eq. (4a) together are the Lorentz-covariant equation,

∂µF
µν = (4π/c)jν . (4e)

The third Maxwell field equation ∇ ·B = 0 of Eq. (4a) is,

∇ ·B = ∂1(B)1 + ∂2(B)2 + ∂3(B)3 = ∂1F 23 + ∂2F 31 + ∂3F 12 = 0, (4f)
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while the second Maxwell field equation ∇×E + (1/c)Ḃ = 0 of Eq. (4a) is, for ijk = 123, 231, 312,

(∇×E)i + (1/c)(Ḃ)i = ∂j(E)k − ∂k(E)j + ∂0(B)i =

∂jF 0k + ∂kF j0 + ∂0F kj = ∂0F kj + ∂kF j0 + ∂jF 0k = 0.
(4g)

Thus the third and second Maxwell field equations of Eq. (4a) together are the four equations,

∂λFµν + ∂µF νλ + ∂νFλµ = 0, (4h)

in the cases where λ 6= µ, µ 6= ν and ν 6= λ. However the antisymmetry Fµν = −F νµ of Fµν ensures the
validity of Eq. (4h) even when λ = µ, µ = ν or ν = λ, as is easily verified . In summary, the Eq. (4a)
Maxwell field equations for E and B are equivalent to the following Lorentz-covariant equations for Fµν ,

Fµν = −F νµ, ∂µF
µν = (4π/c)jν , ∂λFµν + ∂µF νλ + ∂νFλµ = 0. (4i)

The first two of these equations impose the equation-of-continuity requirement on the source jν , i.e.,

∂νj
ν = 0, (4j)

which is the dynamical extension of the static Eq. (1b) requirement that j must adhere to ∇ · j = 0.
To work out the causal solution of the Eq. (4i) electromagnetic field equations, we emulate the differen-

tiation and subsequent substitution of a source term carried out in the static case in Eqs. (1c) and (1d). We
take the divergence of the third equation ∂λFµν + ∂µF νλ + ∂νFλµ = 0 of Eq. (4i), and thus obtain,

(∂λ∂
λ)Fµν + ∂µ∂λF

νλ + ∂ν∂λF
λµ = 0, (5a)

into which we substitute the source jν via the second equation ∂µF
µν = (4π/c)jν of Eq. (4i), aided by the

antisymmetry Fµν = −F νµ, with the result,

(∂λ∂
λ)Fµν − (4π/c)(∂µjν − ∂νjµ) = 0. (5b)

Eq. (5b) immediately yields the formal causal solution Fµν of the three field equations given by Eq. (4i),

Fµν = (4π/c)(∂λ∂
λ)−1(∂µjν − ∂νjµ), (5c)

which clearly satisfies Fµν = −F νµ. Since the space-time gradient operator ∂µ commutes with (∂λ∂
λ), it

must commute with (∂λ∂
λ)−1 as well. Therefore since,

∂λ(∂µjν − ∂νjµ) + ∂µ(∂νjλ − ∂λjν) + ∂ν(∂λjµ − ∂µjλ) =

(∂µ∂νjλ + ∂ν∂λjµ + ∂λ∂µjν)− (∂ν∂µjλ + ∂λ∂νjµ + ∂µ∂λjν) = 0,
(5d)

the formal causal solution Fµν = (4π/c)(∂λ∂
λ)−1(∂µjν − ∂νjµ) also satisfies the equation ∂λFµν + ∂µF νλ +

∂νFλµ = 0. It as well satisfies the equation ∂µF
µν = 4π(jν/c) because ∂µj

µ = 0, as noted in Eq. (4j).
We next use Fourier-transform methodology to obtain the mathematical meaning of (∂λ∂

λ)−1(f(x)). In
strict analogy with the Fourier-transform logic of Eqs. (2a)–(2c) for (−∇2)−1(f(r)), we have that,

(∂λ∂
λ)−1(f(x)) =

∫ [
(1/(2π))4

∫
(−(kλkλ))−1eikµ(x−x

′)µ d4k
]
f(x′) d4x′. (6a)

The entity in square brackets in Eq. (6a) is the Green’s function (or kernel) of the operator (∂λ∂
λ)−1, which

we denote as K(x−x′); by inspection it is a Lorentz-invariant function of its four-vector space-time argument
(x− x′). It is clear from Eq. (6a) that,

(∂λ∂
λ)−1(δ(4)(x)) = K(x). (6b)

Thus K(x) describes how the operator (∂λ∂
λ)−1 propagates in space-time the effect of a point source δ(4)(x)

located at the origin that acts at time zero only . The Eq. (5c) formal electromagnetic field solution Fµν =
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(4π/c)(∂λ∂
λ)−1(∂µjν − ∂νjµ) therefore will be causal only if K(x) vanishes when t < 0, i.e., when x0 < 0.

However upon writing K(x) out in greater detail as,

K(x0, r) = (1/(2π))3
∫ [

(1/(2π))
∫

(−(kλkλ))−1 eik0x
0

dk0
]
e−ik·r d3k, (6c)

we note that,

(−(kλkλ))−1 =
(
−
(
(k0)2 − |k|2

))−1
= (2|k|)−1

(
(k0 + |k|)−1 − (k0 − |k|)−1

)
, (6d)

so the integral over k0 inside the square brackets of Eq. (6c) is ill-defined . That issue is routinely resolved
by infinitesimal displacement of the offending poles into the complex plane, but the result for a given pole
depends on whether the upper or lower half of the complex plane is selected—in our case it is of course
crucial for K(x0, r) to vanish when x0 < 0. When x0 < 0, the factor eik0x

0

in the integrand of the Eq. (6c)
integral over k0 makes the only viable closure of the real-axis k0-contour an arbitrarily-large-radius semicircle
in the lower half of the complex k0 plane. The k0-integral over that closed contour will vanish only if we
infinitesimally displace both offending poles into the upper half of the complex k0 plane. Doing that by using
the positive-imaginary infinitesimal iε changes Eq. (6c) to,

K(x0, r) = (1/(2π))3
∫ [

(4π|k|)−1
∫ (

(k0 + |k| − iε)−1 − (k0 − |k| − iε)−1
)
eik0x

0

dk0
]
e−ik·r d3k, (6e)

When x0 < 0, the k0 integral in Eq. (6e) now of course vanishes, and when x0 > 0, it now equals (2πi) times
the sum of the residues at the two k0-poles, which works out to 4π sin(|k|x0). Eq. (6e) thereby becomes,

K(x0, r) = (1/(2π))3 θ(x0)
∫
|k|−1 sin(|k|x0) e−ik·r d3k, (6f)

where θ(x0) is the Heaviside step function: θ(x0) vanishes when x0 < 0 and equals unity when x0 > 0. We
tackle the remaining Eq. (6f) integral using spherical polar k coordinates, as was done in Eq. (2d),

K(x0, r) = (1/(2π))2 θ(x0)
∫∞
0

sin(kx0)
(∫ 1

−1 e
−ik|r|α dα

)
k dk =

(1/(2π2)) θ(x0) |r|−1
∫∞
0

sin(kx0) sin(k|r|) dk =

(1/(8π2)) θ(x0) |r|−1
∫∞
−∞

[
cos(k(x0 − |r|))− cos(k(x0 + |r|))

]
dk =

(1/(4π)) θ(x0) |r|−1 δ(x0 − |r|) = (1/(2π)) θ(x0) δ
(
(x0)2 − |r|2

)
= (1/(2π)) θ(x0) δ(xλx

λ),

(6g)

whose last expression exhibits K(x) in Lorentz-invariant form as per the discussion below Eq. (6a). We
see that K(x) is nonzero only on the causal (i.e., retarded) half of the light cone, which is a spherical shell
centered on the origin whose radius |ct| grows at speed c when t > 0; it is the locus of space-time points
which satisfy |r|2 = (ct)2 when t > 0, or equivalently, the space-time locus xλx

λ = 0 for x0 > 0. We now
insert this causal (i.e., retarded) K(x) of Eq. (6g) into Eq. (6a) to obtain the corresponding causal (i.e.,
retarded) version of (∂λ∂

λ)−1(f(x)),

(∂λ∂
λ)−1(f(x)) =

∫
K(x− x′)f(x′) d4x′ = (1/(2π))

∫
θ
(
(x− x′)0

)
δ
(
(x− x′)λ(x− x′)λ

)
f(x′) d4x′, (6h)

which reflects the Lorentz invariance of (∂λ∂
λ)−1. An equivalent form of K(x0, r) is the third-from-the-last

expression given by Eq. (6g), which cleanly eliminates the integration over (x′)0 via its delta function,

(∂λ∂
λ)−1(f(x0, r)) = (1/(4π))

∫
θ((x− x′)0) |r− r′|−1 δ((x− x′)0 − |r− r′|) f((x′)0, r′) d(x′)0 d3r′ =

(1/(4π))
∫
|r− r′|−1 f(x0 − |r− r′|, r′) d3r′.

(6i)

This result is formally very similar indeed to the Eq. (2e) result for (−∇2)−1(f(r)); the only difference is that
(∂λ∂

λ)−1 in addition causally retards (x)0 by the distance to the source, replacing (x)0 by ((x)0 − |r − r′|).
Applying either Eq. (6h) or (6i) to the Eq. (5c) formal solution of the electromagnetic field equations for Fµν ,
namely to Fµν = (4π/c)(∂λ∂

λ)−1(∂µjν − ∂νjµ), makes that formal solution a well-defined integral which is
causal . Applying Eq. (6h) in addition presents that integral in Lorentz-covariant form,

Fµν(x) = (2/c)
∫
θ
(
(x− x′)0

)
δ
(
(x− x′)λ(x− x′)λ

) (
(∂jν(x′)/∂(x′)µ)− (∂jµ(x′)/∂(x′)ν)

)
d4x′. (6j)
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Once again noting from Eq. (6g) that,

θ
(
(x− x′)0

)
δ
(
(x− x′)λ(x− x′)λ

)
= (1/2)θ((x− x′)0) |r− r′|−1 δ((x− x′)0 − |r− r′|), (6k)

and defining the second-rank antisymmetric “source tensor” sµν(x) as,

sµν(x)
def
=
(
(∂jν(x)/∂xµ)− (∂jµ(x)/∂xν)

)
, (6l)

we substitute the right side of Eq. (6k) and the left side of Eq. (6l) into Eq. (6j) to produce,

Fµν(x0, r) = (1/c)
∫
θ((x− x′)0) |r− r′|−1 δ((x− x′)0 − |r− r′|) sµν((x′)0, r′) d(x′)0 d3r′ =

(1/c)
∫
|r− r′|−1 sµν(x0 − |r− r′|, r′) d3r′.

(6m)

Eqs. (6l) and (6m) together also make the causal solution of the electromagnetic field equations a well-
defined integral , just as Eq. (6j) does. Indeed Eqs. (6l) and (6m) have been developed by using Eq. (6j) and
are equivalent to it , but they have a form which is very similar to that of Eq. (2f) for static electromagnetism
(with the single salient exception, of course, of their causal retarded x0 feature).

Instead of calculating Fµν directly from Eq. (6j), or from Eqs. (6l) and (6m), it is often easier to first
calculate the four-vector causal intermediary potential ,

Aν = (4π/c)(∂λ∂
λ)−1(jν), (7a)

by specifically using Eq. (6h) or (6i) to obtain (∂λ∂
λ)−1(jν), followed by the calculation of Fµν by using ,

Fµν =
(
∂µAν − ∂νAµ

)
, (7b)

which is legitimate in light of Eqs. (7a) and (5c). It is to be borne in mind that the specific Aν of Eq. (7a)
isn’t the only intermediary potential which yields Fµν by the application of Eq. (7b); to that specific Aν we
can add the four-gradient ∂ν of an arbitrary scalar function χ(x) of the space-time variable x because,(

∂µ(∂νχ(x))− ∂ν(∂µχ(x))
)

= 0. (7c)

The specific Eq. (7a) causal intermediary potential Aν satisfies the Einstein condition ∂νA
ν = 0 because the

source jν is obliged to satisfy the equation of continuity ∂νj
ν = 0, as is pointed out in Eq. (4j).
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