Interval Sieve Algorithm

Creating a Countable Set of Real Numbers from a Closed Interval

© 2019 by Ron Ragusa All rights reserved

I. Introduction

I wrote a paper posted on viXra.org e-Print archive (viXra:1806.0030) titled <u>The</u> <u>Function f(x) = C and the Continuum Hypothesis</u> wherein I proposed a proof of the CH. In the paper I showed that by indexing (using a unique natural number for each index value) the calculation of the function's range values for each element of the domain I could establish a one-to-one correspondence between the domain and my index. It was pointed out that in order to present the domain of the function in the form of a list, which I needed to do in order to create my index, I first had to prove that the list contained every element in the interval from which the domain was defined.

I began working on the problem and came up with what I call the Interval Sieve Algorithm which uses a method of repeatedly dividing a closed interval into a series of closed sub-intervals and using the numbers bounding each sub-interval to form a list that will be used as the domain of f(x) = C.

II. Abstract

The Interval Sieve Algorithm is a method for generating a list of real numbers on any closed interval $[r_i, r_j]$ where $r_i < r_j$, which can then be defined as the domain of the function f(x) = C.

The purpose of this paper is to delineate the steps of the algorithm and show how it will generate a countable list from which the domain for the function f(x) = C can be defined. Having constructed the list we will prove that the list is complete, that it contains all the numbers in the interval $[\mathbf{r}_i, \mathbf{r}_j]$.

III. Given

1. The set of natural numbers

$$\mathbb{N}, \{ n \in \mathbb{N} \mid 1 \le n \}$$

2. The set of real numbers

$$\mathbb{R}, \{r \in \mathbb{R} \mid r \text{ is real}\}$$

3. The closed interval

 $[r_1, r_2]$ where $r_1 < r_2$ and r_1, r_2 are real numbers

4. The list

$$\mathbf{L} = \{\mathbf{r}_1, \mathbf{r}_2\}$$

IV. Definitions

1. The **lower bound** of a closed interval is the smaller of the two numbers comprising the interval. In the interval $[r_1, r_2]$ where $r_1 < r_2$, r_1 is the lower bound of the interval.

2. The **upper bound** of a closed interval is the larger of the two numbers comprising the interval. In the interval $[r_1, r_2]$, where $r_1 < r_2$, r_2 is the upper bound of the interval.

4. A **conjoined interval pair** is a pair of closed intervals where the upper bound of one and the lower bound of the other are the same number. $[\mathbf{r}_i, [\mathbf{r}_k], \mathbf{r}_j]$ is an example of a conjoined interval pair where \mathbf{r}_k is both the upper bound of $[\mathbf{r}_i, \mathbf{r}_k]$ and the lower bound of $[\mathbf{r}_k, \mathbf{r}_j]$.

5. A **relative bound** is a number that is common to both intervals in a conjoined interval pair. In the conjoined interval pair $[r_1, [r_3,]r_2]$, where $r_1 < r_3 < r_2$, r_3 is a relative bound in both intervals $[r_1, r_3]$ and $[r_3, r_2]$.

The importance of the relative bound will become apparent when we get into the description of the Interval Sieve Algorithm.

6. The **immediate predecessor** of a number λ is a number β such that there exists no number δ where $\beta < \delta < \lambda$.

7. The **immediate successor** of a number λ is a number β such that there exists no number δ where $\lambda < \delta < \beta$.

From definitions 6 and 7, for any 2 real numbers λ and β , in the interval, we can always find another real number, δ , such that if $\lambda > \beta$ then $\beta < \delta < \lambda$ and if $\lambda < \beta$ then $\lambda < \delta < \beta$.

V. The Interval Sieve Algorithm

Procedure:

0. We begin the procedure with the interval

 $[r_1, r_2]$ where $r_1 < r_2$ and r_1, r_2 are real numbers

and the list

$$\mathbf{L} = \{\mathbf{r}_1, \mathbf{r}_2\}$$

1. Sub-divide each interval $[r_i, r_j]$ by selecting a number r_k such that $r_i < r_k < r_j$ to get a conjoined interval pair:

```
[\mathbf{r}_{i}, [\mathbf{r}_{k}, ]\mathbf{r}_{j}]
```

2. Insert the relative bound number, r_k , into the list L to get

$$\mathbf{L} = \left\{ \mathbf{r}_{i}, \, \mathbf{r}_{k}, \, \mathbf{r}_{j} \right\}$$

3. Return to step 1.

The algorithm produces the following results:

Interval Sieve Algorithm

[r ₁								r ₂]
[r ₁				[r ₃]				r ₂]
[r ₁		[r ₄]		[r ₃]		[r ₅]		r ₂]
[r ₁	[r ₆]	[r ₄]	[r ₇]	[r ₃]	[r ₈]	[r ₅]	[r ₉]	r ₂]
[r ₁	[r ₁₀] [r ₆]	[r ₁₁] [r ₄]	[r ₁₂] [r ₇]	[r ₁₃] [r ₃]	[r ₁₄] [r ₈]	[r ₁₅] [r ₅]	[r ₁₆] [r ₉]	[r ₁₇] r ₂]

Intervals Generated by the Algorithm

 $[r_1, r_2] \\ [r1, r3][r3, r2] \\ [r1, r4][r4, r3][r3, r5][r5, r2] \\ [r1, r6][r6, r4][r4, r7][r7, r3][r3, r8][r8, r5][r5, r9][r9, r2] \\ [r_1, r_{10}][r_{10}, r_6][r_6, r_{11}][r_{11}, r_4][r_4, r_{12}][r_{12}, r_7][r_7, r_{13}][r_{13}, r_3][r_3, r_{14}][r_{14}, r_8][r_8, r_{15}][r_{15}, r_5][r_5, r_{16}][r_{16}, r_9][r_9, r_2] \\ \end{cases}$

List of Real Numbers Generated by the Algothrim

 $L = \{r_1, r_2\}$ $L = \{r_1, r_3, r_2\}$ $L = \{r_1, r_4, r_3, r_5, r_2\}$ $L = \{r_1, r_6, r_4, r_7, r_3, r_8, r_5, r_9, r_2\}$ $L = \{r_1, r_{10}, r_6, r_{11}, r_4, r_{12}, r_7, r_{13}, r_3, r_{14}, r_8, r_{15}, r_5, r_{16}, r_9, r_{17}, r_2\}$

Beginning with one interval, growth of the number of intervals created is exponential and after the fourth iteration we have a total of 16 intervals. If n is the number of iterations and I is the number of intervals, we have $I = 2^n$ and if L_n is the number of list elements then

 $L_n = 2^n + 1.$

VI. Proving the List is Complete

The question remains as to whether or not the list L will contain all real numbers in $[r_1, r_2]$. With the help of Cantor's Diagonal Argument we will prove that: All the real numbers in $[r_1, r_2]$ are contained in the list L.

Proof:

Let each number in L be represented by its digits so that:

```
r_{1} = d_{1}d_{2}d_{3}d_{4}...
r_{2} = d_{1}d_{2}d_{3}d_{4}...
r_{3} = d_{1}d_{2}d_{3}d_{4}...
.
.
```

Let a vertical list of elements of L be called List B.

Using Cantor's Diagonal Argument we will generate a number X that is not contained in List B and then show that X will be contained in L.

Examining X we note that:

1. $r_1 < X < r_2$, since for any number in L, r_k , $r_1 < r_k < r_2$ and X is created from numbers in L that have been arranged vertically in List B. We know therefore that X is in $[r_1, r_2]$.

2. Since X is in $[r_1, r_2]$ then it must be either a member of a sub-interval contained in $[r_1, r_2]$ or the relative bound of 2 sub-intervals in $[r_1, r_2]$.

3. If X is a relative bound of 2 sub-intervals in $[r_1, r_2]$ it is already an element of L.

4. If X is a member of a sub-interval contained in $[r_1, r_2]$ and not a relative bound, then at some point it will become a relative bound of 2 sub-intervals contained in $[r_1, r_2]$.

5. Once X becomes a relative bound of 2 sub-intervals it will be included in L and become a member of L.

6. There are no other cases regarding the nature of X to consider, therefore at any point in time, all numbers X_i are or will be elements of L.

7. We can then assert that at infinity L will be complete and this ends the proof.