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Abstract

A scenario of particles with unbroken supersymmetry has been proposed re-
cently, a supersymmetric preon model. It offers an economic basis for con-
structing the standard model particles and going beyond it to supergravity. The
model predicts that the standard model’s superpartners do not exist in nature.
The article is largely a review of selected papers. The model is tentatively ex-
plored towards quark and lepton structure. The supersymmetric Wess-Zumino
and Starobinsky type of models of inflation are discussed. Both are found to
agree well with the Plank 2018 CMB data, thus giving experimental support
to supersymmetry on an energy scale of 1013 GeV. Some future directions are
hinted.
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1 Introduction
It is commonly stated that the CERN LHC has ’failed’ to discover supersym-
metry (SUSY). However, LHC has given strong support for the standard model
of particles (SM). Accordingly, I have proposed model that is supersymmetric
and the constituents of which build the standard model. Supersymmetry func-
tions on the constituent, or preon, level and it is unbroken, or spontaneously
broken. The SUSY preon model contains all the fields and their superpartner
fields in its supermultiplets. This has the consequence that, within this model,
no standard model superpartners (like squarks, sleptons, gluinos etc.) exist in
nature. This is the crucial test of the SUSY peon scheme. Other tests are many
phenomenological calculations, which differ from the SUSY SM ones.

In the preon model, quarks and leptons are represented as three preon bound
states. The number of elementary superfield fermion fields is NF = 2 , whereas
in the supersymmetric standard model NF = 16 (2 quarks in 3 colors, 2 leptons
and their superpartners, for the first generation in both models). On the other
hand, the physics on preon level is largely open. To get some idea of it, I
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overview results obtained by studying the Kerr-Newman metric for complex
values of radial coordinate. I explore and collect ideas that would make it
possible to approach a model of SM particles with bound preons and which
makes contact with gravity.

The proper case of comparing this supersymmetric model with available
experimental data is at present the CMB data of Planck 2018. The CMB
measurements open a window to energies well above any accelerator energy
and only a few decades below Planck scale. The agreement between the gravity
driven model and data is good. The connection of the leading inflationary model
to supersymmetry is elucidated.

The article is organized as follows. In section 2.1 I give motivation for the
preon model. The construction of scalars, quarks and leptons as composite
states of supersymmetric preons is presented in section 2.2. In section 3.1 a
graviton condensate model and in section 3.2 an over-spinning black hole model
of the microscopic black hole interior are overviewed and discussed. A possi-
ble mechanism for white hole formation is black hole to white hole tunneling
process which is treated in section 4 together with supersymmetry compatible
Starobinsky and Wess-Zumino models of inflation. The possibility of primordial
black holes making substantial part of dark matter is considered. Conclusions
are given in the final section 5. Section 2 contains summary of previous original
work while sections 3 - 4 form an exploratory overview of some recent literature
on model building for black holes that might give support the preon model. The
leading thought of the article is supersymmetry - unbroken. Sections 3.2 - 3.5
may be omitted on first reading. The article is intended to be pedagogical and
self-contained. An Appendix, in two sections A.1 - A.2, is included to cover
basic material of gravity, which may show current and future directions on the
subject.

2 Preons

2.1 Why Preons?

When one wants to go beyond the standard model one has to consider what is
the most important element missing from the SM. Here it is assumed this would
be gravity. Admittedly, it also is the most difficult problem in all of theoretical
physics. Therefore it is safer to start with something reasonably simple and
generally accepted like vacuum solutions of Einstein equations. Or in other
words, global internal symmetries are not allowed by quantum gravity [3]. In
such a scheme the SM particles, quarks and leptons carrying baryon and lepton
number, may not be the best particles for supersymmetric model building.

A model for quark and lepton constituents was introduced in [4, 5, 6, 1]. I
consider the supersymmetric1 model scheme with these properties

1 Supersymmetry was anticipated in passing in [4].
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• the quantum numbers of basic objects must be those available for vacuum
solutions of Einstein equations: mass, spin and charge (no-hair),

• supersymmetry, the unbroken global spacetime symmetry, is valid for pre-
ons; the basic superfields are members of a supermultiplet which includes
the graviton, photon, a spin 1

2 preon, and their superpartners, and

• scalar particles, preons, quarks and leptons are classified using the quan-
tum group SLq(2) representations [7, 8].

I believe this structure of the preon model brings clarity as compared to the
case of traditional approach to supersymmetry and grand unification as follows.
The crucial distinctive feature of the present model is that

• it inholds matter-radiation unification, or supersymmetry, built in on
preon level. This means e.g. that the photon has a superpartner with
the same quantum numbers, but spin 1

2 lower (see (2.3)), and

• secondly, at energies above

Λcr ∼ 1016GeV (2.1)

there are only two interactions, gravity and electromagnetism.2 The weak
and strong interactions are stellar and terrestrial level inreactions (to be
derived from (2.4)).

I presume that quantum gravity, when available, will organize the preons
in bound states in three generations. Alternatively, there may be a new very
strong gauge interaction between the preons, like e.g. in [9, 10, 11, 12]. In those
cases introducing supersymmetry as indicated above fails.

2.2 Supersymmetric Preon Model
In the present scenario, at the energy of the order Λcr ∼ 1016±1 GeV quarks and
leptons ionize, or make a phase transition, into their constituents, preons. Below
this critical point, I consider the standard model a well behaving renormalizable
theory with a UV momentum cutoff Λcr. Above this transition energy unbroken
supersymmetry enters the scene: it is defined for preons, which are now unbound
and massless.

Compared to main stream theory parameters, Λcr is of the order of the
grand unified theory gauge coupling unification energy and the proton decay
mediating X-boson mass lower limit, corresponding to a proton lifetime of 1032

years. If gravitational waves of quantum feature were detected (several years
ago) the energy scale would be 1016 GeV.

In this simple supersymmetric preon model there is the graviton G and its
spin 3

2 superpartner gravitino G̃

G =

(
→
←

)
and G̃ =

(
→
←

)
(2.2)

2 Because of asymptotic freedom of quantum chromodynamics this may be considered as an
approximation to a grand unified theory.
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This the graviton supermultiplet.
In addition there are the massless fields the photon γ and its neutral spin

1
2 superpartner, the photino, denoted m̃0. The second superpair is the spin 1

2 ,
charge 1

3 light preon m+ and two scalar superpartners s̃+
i , i = 1, 2. All fields γ,

m̃0, m+ and s̃+
i have two degrees of freedom:

γ =
(
→
←

)
and m̃0 =

(
↑
↓

)
, m+ =

(
↑
↓

)
and s̃+

1,2 (2.3)

where the horizontal and vertical arrows refer to helicity and spin, respectively,
and + and 0 refer to charge in units of 1

3 electron charge. The m̃0 is a Majorana
fermion. The γ and the m̃0 form the gauge, or vector, supermultiplet and the
m+ and the s̃+

1,2 form the chiral supermultiplet. The R-parity for fields in (2.3)
is simply PR = (−1)2(spin). The m+ and m̃0 are assumed to have zero, or light
mass of the order of the first generation quark and lepton mass scale.3

The supermultiplet construction (2.2) together with (2.3) define matter-
radiation unification, or preunification, in terms of spacetime symmetry rather
than internal symmetry.

Assuming a generic attractive interaction, or potential, the preons combine
freely without extra assumptions into standard model fermion composite states.
They form a three member combinatorial system, modulo three [5]. For the
same charge preons fermionic permutation antisymmetry factor εijk must be
included. These arguments lead heuristically to four bound states made of
preons, which form the first generation quarks (q) and leptons (l) (dropping the
tildes)

uk = εijkm
+
i m

+
j m

0

d̄k = εijkm
+m0

im
0
j

e = εijkm
−
i m
−
j m
−
k

ν̄ = εijkm̄
0
i m̄

0
jm̄

0
k

(2.4)

More details are given in [1, 5] and references therein.
Bound states of scalar constituents do not make a spectrum like fermions.

A neutral, very light two body bound state is expected to exist

a0
i = s̃+

i s̃−i , i = 1, 2 (2.5)

Scalar bound states can also be formed from the fermions
b0 = m+m−

c0 = m0m0

h± = m±m0

(2.6)

The states (2.5) and (2.6) (and other possible states including mixtures)
are candidates for the Higgs and axion, which are important in spontaneously
broken symmetries of the standard model. Finally, the model allows an unbound
scalar charge 1

3 field.

3A different kind of supersymmetric preon model has been presented in [13, 14].
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3 Particles and Holes
Lacking experimental data on black holes, one has to experiment with models
as in this section. To this end, I consider what role black holes may have
in fundamental particle structure. This idea is, for better or worse, not new
[15, 16, 17].

3.1 Graviton Condensate Singularity
Let us begin with a brief overview of the model of [18]. The authors propose a
model which includes spacetime phase transition and graviton condensate inside
a spinning black hole. The radii of the two horizons of a Kerr-Newman black
hole [19] are

r± = m±
√
m2 − a2 − q2 (3.1)

where m is its mass, a its angular momentum per mass J/m and q its charge.
When m2 < a2 + q2 (3.1) may loose its physical meaning unless a complex
radius is introduced: with complex radius (3.1) has wider meaning so rewrite it
as follows

r± = m±
√
m2 − a2 − q2 = m± i

√
a2 + q2 −m2 ≡ (rR,±rI) (3.2)

For a light low energy particle a � q,m and therefore rI ≈ ia. As the
energy of the particle increases the imaginary radius rI decreases. After the
value m = a2 + q2 rI becomes real and the particle makes a phase transition
into a Kerr-Newman black hole. The time-like space between the two horizons
is realized imaginary space encrusted by real space outside the horizon. rR of
a real KN black hole describes its origin as a 2D spherical surface in 3D space.
The rI determines the boundary of the realized imaginary space, appearing as
its two horizons.

In the Dvali-Gomez model [20] a graviton in a Schwarzschild black hole
consisting of Bose-Einstein condensate (BEC) of N gravitons has a mass m =
M/N = 1/M . The spin of the graviton is 2 and charge 0, thus

rI = ia = 2iM (3.3)

The module of graviton’s rI = 2M is the radius of the Schwarzschild black hole.
The graviton’s rR

rR = m =
1

M
(3.4)

is the Compton wavelength of the black hole of mass M .
The singularity of the black hole in the center extends up to the horizon [21]

making it a firewall.
In [21] it is shown that the gravitons of the Bose-Einstein condensate model

[20] can be described by the complex Kerr-Newman metric. The hole is slightly
naked firewall. Most notably, both particles and black holes are derivable from
the complex KN metric. The module of gravitons rI is the same as the radius
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of the BEC black hole. The rR of a KN black hole gives the position of the
origin of the imaginary space, which shrunk to real axis, and it appears as a 2D
sphere centered at the origin. The real valued rI gives the boundary of the real
valued imaginary space, appearing as its two horizons.

The imaginary radius of a Dirac particle has both positive and negative
values. To have meaning for the negative value the origin of the complex space
of the Dirac particle has to be a 2-dimensional surface centered at the origin.
The particle appears as an Schwarzschild black hole with radius Ri = 2rI [21]

Ri = 2rI = 2i
√
a2 + q2 −m2 (3.5)

This Schwarzschild black hole has a mass Mi = rI = i
√
a2 + q2 −m2 and

Hawking temperature Ti =
(
4i
√
a2 + q2 −m2

)−1.
A point particle moves forward in four dimensional spacetime along the time

dimension. This motion looks different in the hidden three dimensional imag-
inary space. The energy moves on the horizon of the imaginary Schwarzschild
black hole at the speed of light

θ =
ct

|Ri|
≈ ct

2a
= mt (3.6)

where θ is the phase angle of the particle’s wave function.
Let the particle consist of small pieces of mass dmj which move on the origin

surface at half speed of light thus keeping the same phase angle. The energy
of the particle is in uniform circular motion around the origin having a radius
|Ri|/2. The spin of the particle has a dynamic angular momentum origin in the
hidden imaginary space [21]

L =
∑
j=1

dmjc
|Ri|

2
(3.7)

The gyromagnetic ratio has the value two, as given by the Dirac equation. Each
preon could be a black hole of this kind. But it is difficult to think of this model
as confining preons in the interior.

3.2 Dirac–Kerr-Newman Fermion
In general relativity little is known of microscopic systems, which could be
considered for modeling of elementary particles. Let us study in more detail the
candidate geometry of the previous section 3.1: a rotating black hole [22]. The
safest fact about black holes is the existence of a horizon though some discussion
is still going on of its detailed structure. The inside of the hole is fully open
and the singularity is a point where the classical theory will certainly break
down. Therefore something new has to be made up to describe the inside. It is
known that fermions generate a strong repulsive force under conditions like in
the center of a black hole. The singularity is in this case said to be replaced by
a bounce. A heuristic scheme is proposed on this basis. A black hole spacetime
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is divided in the radial coordinate in three regions (i) the region r < M−1
Pl is

the quantum (and non-linear) gravity region. It may be characterized by a
’potential’ inside the hole such that V (r ∼ 0) ∼ ∞ due to quantum effects, or
fermionic repulsive interaction, (ii) boundary region with V (r = 2M) ∼ ∞ due
to the horizon, (iii) in the interior region M−1

Pl < r < 2M the system is classical
and non-linear.

The simplest assumption for the interiorM−1
Pl < r < 2M is Minkowski space

[23]. A dynamical model for the Minkowski interior with Kerr-Newman exterior
solution was developed in [24, 25], which I attempt to summarize below.

The Kerr-Newman solution has been used as a model for the electron after
the discovery [22] that it has the gyromagnetic ratio g = 2. This leads to
the question are the Dirac equation and the Kerr-Newman solution somehow
connected? In this subsection I disclose a model by Burinskii [26] which connects
the Dirac equation and the spinor (twistor) structure of the Kerr solution. The
Burinskii model is based on the assumption that the Dirac equation and the
Kerr solution are complementary to each other. The Dirac spinors fit together
with the structure of the Kerr spinning particles. The combined Dirac–Kerr-
Newman system is indistinguishable from the behavior of the Dirac electron. I
refer to [26] for details, and discuss here only the Kerr-Schild metric used in the
model.

The angular momentum per unit mass a = J/m is important for elementary
particles. For an electron a is huge, about 1022 (in units G = c = ~ = 1). This
is so big that the black hole horizons disappear. This is called over-rotating
Kerr geometry.

The source of a Kerr spinning particle is classical naked ring singularity. The
ring represents a string which is able to have excitations generating the spin and
mass of the extended object. The ring is a focal line of the principal null vector
congruence which is a bundle of light-like rays (Riemann tensor eigenvectors).
Towards the end of this section we build a regular field model for the Kerr
source such that the source forms a flat metric bubble with a superconducting
interior vacuum and an exterior with an exact Kerr solution.

The form of the metric is determined by a null vector field kµ(x) which is
tangent to the vortex of light-like rays. The metric is called the Kerr-Schild
form of Kerr-Newman metric

gµν = ηµν + 2H(r, θ)kµkν (3.8)

where ηµν is the Minkowski metric, the vector potential for the charged Kerr-
Newman solution is

Aµ = A(x)kµ (3.9)

and the function H(r, θ) is

H(r, θ) =
mr − e2/2

r2 + a2 cos2 θ
(3.10)

where r, θ are ellipsoidal coordinates

x+ iy = (r + ia)eiφ sin θ, z = r cos θ, t = ρ− r (3.11)
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The complexification (x, y, z)→ (x, y, z + ia) to the source of the Coulomb
potential at origin yields

Φ(x, y, z) = Req
r̃

(3.12)

where r̃ =
√
x2 + y2 + (z − ia)2 is complex. On the real slice (x, y, z) this

solution gains a singular ring for r̃ = 0. The radius of the ring is a and it
is located in the plane z = 0. The solution can be presented in the oblate
spheroidal coordinate system (r̃, θ) where r̃ = r + ia cos θ. The space is seen
to have twofold structure with the ring-like singularity as the branch line. For
each real point (t, x, y, z) there are two points, one lying on the positive sheet
with r > 0 and the other on the negative sheet with r < 0.

The potential (3.12) corresponds exactly to the electromagnetic field of the
KN solution. The complex shift ~a = (ax, ay, az) indicates the angular momen-
tum of the KN solution.

3.3 Gravitating Bag Model
The Dirac equation inside the KN soliton has been analyzed [27] with the results
that the KN solution shares many features with the hadronic bag models. The
gravitating bag has to preserve the external KN field. The bag models are
based on semiclassical theory including elements of quantum theory based on
Minkowski spacetime without gravity. To resolve the conflict between gravity
and quantum theory the following solution is proposed [29, 30]: inside the bag
there is flat spacetime and outside the bag there is exact KN model solution.

The Kerr-Schild form of metric is (3.8) and (3.10). The variables r and θ are
ellipsoidal coordinates and the null vector field kµ(x) forms a vortex polarization
of Kerr spacetime. Between the negative sheet r < 0 and the positive sheet r > 0
there is the surface r = 0, a bridge connecting the two sheets. The disk r = 0 is
spanned by the Kerr singular ring r = 0 and cos θ = 0. The null vector fields are
different on these sheets and are thus denoted as kµ±(x) making two different
congruences K± with metrics g±µν = ηµν + 2Hk±µ k

±
ν .

A regularization of the two-sheeted Kerr geometry was suggested by Lopez
[28]. The singular region and the negative sheet were excised and replaced by a
regular core manifold having flat metric ηµν . This core forms a vacuum bubble.
It is glued to the external manifold, the Kerr-Newman solution, which it must
match at the boundary r = R as follows

Hr=R(r) = 0 (3.13)

which gives

R = re =
e2

2m
(3.14)

The bubble covers the Kerr-Newman singular ring and forms a thin rotating
disk of radius4

rC ∼ a =
~
mc

(3.15)

4 The electron radius can be estimated by considering the electron’s charge inside a sphere and
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The oblateness of the disk re/rC ∼ e2 is the fine structure constant α ∼ 1/137.
The bubble model is a soliton structure of a vacuum bubble with domain wall
boundary. Classical gravity controls the external spacetime and quantum the-
ory makes a pseudo-vacuum state inside the soliton with the Higgs mechanism
breaking the symmetry.

The discrepancy between gravity and quantum theory is avoided by three
principles: (i) spacetime is flat inside the core, (ii) outside the core there is the
Kerr spacetime and (iii) the boundary between inside and outside of the core is
determined by the Lopez condition (3.13).

The effectiveness of these principles (i)-(iii) define uniquely the form of the
soliton and the following properties [29, 30, 31, 32, 33]: (a) The Higgs field is
an oscillon, oscillating with a frequency ω = 2m and (b) angular momentum is
quantized as J = n

2 , n = 1, 2, 3, ...
A tentative model for preon physics is a construction by Burinskii where the

electron, or a light preon in this article, is considered an over-spinning Kerr black
hole with a superconducting bag vacuum with supersymmetric scalar potential
[24]. The scalar and U(1) part of the Lagrangian is

L = −1

4
FµνF

µν − 1

2

(
DµΦ

)(
DµΦ

)∗ − V (Φ) (3.16)

where Dµ = ∇µ + ieAµ, Φ is the Higgs field, Fµν = ∂νAµ − ∂µAν and V (Φ) ∼
(Φ∗Φ − 〈|Φ|〉20)2 is a potential derived from a superpotential W (Φi). In fact,
a preonic scalar field scheme must be introduced which includes three fields
Φi, i = 1, 2, 3 with the Higgs field being Φ1. The potential V is

V (r) =
∑
i

|∂W/∂Φi|2 (3.17)

and the superpotential is

W (Φi, Φ̄i) = Φ2
(
Φ3Φ̄3 − η2

)
+
(
Φ2 + µ

)
Φ1Φ̄1 (3.18)

where µ and η are real constants. (3.18) gives the necessary concentration of
the Higgs field inside the bag. Using the condition ∂W/∂Φi = 0 one gets two
vacuum states V = 0:

(i) internal vacuum r < R− δ where |H| = η,
(ii) external vacuum r > R+ δ where |H| = 0 and
(iii) transitional area R− δ < r < R+ δ with a spike of potential V > 0.

The requirements (i)-(iii) above concerning the structure of the vacua establish
the stability of the bag. The wave length of a Kerr fermion is brought to
Compton scale ~/2m because of high spin/mass value ∼ 1022 [24]. This makes
gravity meeting the quantum world consistent with the uncertainty relations.

neglecting its angular momentum. In Reissner–Nordström metric the radius of the sphere rq can be
defined, in SI units, by rq =

√
q2G/4πε0c4 where q is the electron’s charge and ε0 is the vacuum

permittivity. This gives rq = 1.4 × 10−36m. The size of the Kerr-Newman ring singularity is
ra = J/mc which gives with electron’s mas and spin ra = 1.9× 10−13m.
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A supersymmetric source matching the Kerr solution has now been indi-
cated. More complicated models have been studied in the literature but the
above considerations are characteristic of the present situation. The model dis-
cussed above can be considered as modeling a preon or, rather, confining three
preons as a bound state. The stability of the three preon state in the black hole
to white hole tunneling, see next section 4, would have to be established.

3.4 Kruskal-Szekeres Spacetime

The Kruskal-Szekeres (KS) coordinates extend the Schwarzschild solution to
maximally large spacetime manifold available. It turns out that there is our
universe and ”another” universe which includes a white hole. The KS coor-
dinates (T,X) are defined in terms of Schwarzschild coordinates (t, r, θ, φ) as
follows

T =
( r

2m
− 1
)1/2

er/2m sinh
( t

2m

)
X =

( r

2m
− 1
)1/2

er/2m cosh
( t

2m

)
(3.19)

for the exterior region r > 2m, and

T =
( r

2m
− 1
)1/2

er/2m cosh
( t

2m

)
X =

( r

2m
− 1
)1/2

er/2m sinh
( t

2m

)
(3.20)

for the interior region 0 < r < 2m.

Figure 1: Kruskal-Szekeres diagram illustrated for 2m = 1. The quadrants I and III are the two
exterior regions, II is the black hole interior and IV the white hole interior. The ±45° lines are the
event horizons. The hyperbolas which bound the top and bottom of the diagram are the physical
singularities.
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The Schwarzschild radius in KS coordinates is given implicitly from

T 2 −X2 =
(
1− r

2m

)
er/2m (3.21)

for both interior and exterior regions. This is in terms of the Lambert function
W

r

2m
= 1 +W

(X2 − T 2

e

)
(3.22)

The Lambert function is defined by the equation x = W (x)eW (x). The metric
in terms of (T,X) is

ds2 =
32m3

r
e−r/2m

(
− dT 2 + dX2

)
+ r2dΩ2 (3.23)

The event horizons are given by T = ±X for r = 2m. The curvature singularity
is on the hyperbola T 2 −X2 = 1.

The coordinate transformation equations (3.19) and (3.20) are defined for
r > 2m and −∞ < t <∞. In this region r is an analytic function of T and X.
It can be extended at least to the first singularity at T 2 −X2 = 1. The metric
(3.23) is defined for −∞ < X <∞ and −∞ < T 2 −X2 < 1.

We analyze what happens to an arbitrary point P near the singularity of a
Schwarzschild black hole [34, 35]. The geometry of the interior is homogenous in
a third spatial coordinate x, which was originally time-like coordinate t outside
the horizon. The gravitational field gµν(τ, x, θ, φ) in the line element can be
written in the form

ds2 = gττ (τ)dτ2 − gxx(τ)dx2 − gθθ(τ)dΩ2 (3.24)

where the angular coordinate values satisfy 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π.
The coordinate x values are in a finite part of the cylinder’s axis ]xmin,xmax [
and the temporal coordinate τ ’s range is determined dynamically resulting as
−
√

2m < τ <
√

2m. Putting (3.24) into Einstein equations one obtains the
solution for the line element

ds2 =
4τ4

2m− τ2
dτ2 − 2m− τ2

τ2
dx2 − τ4dΩ2 (3.25)

The value τ = 0 corresponds to locations where cylinder’s radius goes to zero.
The region −

√
2m < τ < 0 is the interior of a BH. It is the the region II of

Kruskal-Szekeres diagram figure 1. This can be shown by a change of variables
ts = x and rs = τ2.

The next step of this analysis is done by changing the variables as follows

gττ = N2a

b
, gxx =

b

a
, gθθ = a2 (3.26)

The solutions in these variables are

a(τ) = τ2, b(τ) = 2m− τ2, N2(τ) = 4a(τ) (3.27)
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This is the BH interior solution (3.25). From (3.27) we see that the solution can
be continued from negative values past τ = 0 without loss of regularity. The
gravitational field gµν(τ, x, θ, φ) evolves regularly over the central singularity to
the region 0 < τ <

√
2m.

We cite a simple model for quantum fluctuating line element dsq which
deviates from the classical line element in the vicinity of the classical singularity.
We replace a(τ) in (3.27) by [34]

a(τ) = τ2 + l (3.28)

where l � m is a quantity depending on lPl, to be fixed later. Now the line
element dsl is

ds2
l =

4(τ2 + l)2

2m− τ2
dτ2 − 2m− τ2

τ2 + l
dx2 − (τ2 + l)2dΩ2 (3.29)

This line element has no singularities. The curvature of this pseudo-Riemann
spacetime is bounded by the value of the Kretschmann invariant K(τ) in (3.32),
see below.

I assume that Kerr black holes should also have finite curvature at the clas-
sical singularity, in spite of the different horizon and singularity structure, as
compared to Schwarzschild black holes. It has been shown that a transformation

r = r + ia cos θ (3.30)
v′ = v − ia cos θ (3.31)

takes the Schwarzschild metric to the Kerr metric, with a few subtleties [36]. In
fact the situation is better, in the limit m→ 0 the Minkowski spacetime results
from Kerr metric in agreement with the superpotential (3.18) internal vacuum
state.

3.5 Physical Picture
The values τ ∼ 0 give the maximal curvature and smooth out the central
singularity at r = 0. High curvature leads to quantum particle creation which
includes gravitons. Their energy-momentum tensor back-reacts on the classical
geometry changing its evolution. The value of l can be estimated from the
boundedness of curvature at Planck scale. This can be estimated from the
Kretschmann invariant K(τ) [40] for high mass is to order O(l/m)

K(τ) = RµνσρR
µνσρ ∼ 9l2 − 24lτ2 + 48τ4

(l + τ2)8
m2 (3.32)

The maximum value of (3.32) is K2(0) = 9m2/l6. In this case the cylindrical
tube has a finite thickness, which causes a bounce at the small value l.

The approximate quantum geometry (3.29), which is able to cross the sin-
gularity, is constructed to approach the classical geometry (3.25) in the limit
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l → 0. The value of l can be estimated from the condition that the curvature
is bound at the Planck scale: l ∼ lPl (m/MPl)

1/3.
In a semi-classical description the infalling matter near the singularity con-

sists of a superposition of quantum states,
∑
ψ(m, s, q). These are Fock space

states of (2.3) in the present model. According to (4.1) the lightest preons have
the largest tunneling probability. Light preon fermions therefore fulfill the con-
dition of over-rotating Kerr geometry discussed in subsection 3.2. In terms of
the Kruskal-Szekeres diagram in figure 1 the tunneling corresponds folding the
XT-plane around the T-axis.

The black to white hole tunneling introduces a special particle ’recycling’ or
’reshuffling’ (bounce) universe. This seems to get support from recent observa-
tions of black holes in the galactic center [37]. Alternatively, the universe may
have started from one or more suitable sized black KN holes tunneling in white
holes and then preons. The mechanism for producing preon is rather laborious
in the present scenario. A third possibility, perhaps the least likely, is that the
big bang initial state is given in terms of the supermultiplet field in a major
role.

This ends the analysis of Schwarzschild black hole to white hole transition
with finite curvature. So there is finite probability for a small mass, e.g. of
the order of 100 MeV, to go through the black to white hole transition. It is
suggestive to assume that this produces a high spin/mass (a = J/m) value
∼ 1022. The limit m → 0 where the curvature goes to zero corresponds to
Minkowski spacetime. However, to have finite a, m cannot go to zero. So there
is a mass gap. The last emitted particles, when T > Λcr, are a preons. When
T ≤ Λcr the preons combine into quarks and leptons. The standard model
reigns the scene.

The quark and lepton generation question can be roughly estimated assum-
ing the three preons, approximated as preon dipreon, forming bound system.
The wave equation of the system is in a first approximation of type Klein-Gordon
equation with boundary conditions like Ψ(r = 2M) = Ψ(r = 0) = 0, where M
is of the order light fermion mass, like 100 MeV. With proper parameters one
(or more) energy states can be obtained.

4 Cosmological Inflation

4.1 Cosmological Tunneling

The over-spinning state of a Kerr black hole cannot be obtained by dropping
material of certain angular momentum into a Kerr black hole (see e.g. [38]).
How, then, can one create a horizonless white hole? A possibility for white hole
formation is black hole to white hole tunneling process [39, 40, 41]. A stellar
mass object (m > 3M�) is in classical GR thought to collapse into a black
hole. A quantum gravitational process may, however, disrupt that. In quantum
tunneling the classical equations are violated for a short period of time. The
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classical causal structure is altered so that the dynamics of the local apparent
horizon is modified. Therefore the apparent horizon may not evolve into an
event horizon.

The information, originally trapped inside the black hole and containing only
mass, spin and charge, is now radiated by the white hole. The radiation can
only be in the form of supermultiplet (2.3) fields. After a some time the white
hole evaporates leaving a spin 0 or 1

2 remnant preon and later, with decreasing
temperature, the phase transition into standard model particles takes place.

For a macroscopic black hole the tunneling probability is small. It becomes
larger for smaller mass near the end of the evaporation. The tunneling proba-
bility factor P is

P ∼ e−SE/~ ∼ e−Gm2/~c

∼ em/MPl
(4.1)

where SE is the Euclidean action of the tunneling process. P is of the order of
unity when 0 < m ≪ MPl with masses close to zero favored. The tunneling
probability is no longer suppressed as the black hole approaches the end of its
evaporation. The transition may produce a long-lived white hole with Planck
size horizon and very large interior whenm→MPl. On the other hand, ifm→ 0
is allowed by quantum gravity light particles may be copiously produced. This
may open a way to create over-spinning, light and very short lived white holes.

Some estimates for time scales of quantum processes can be given [41]. The
deaths of a black and white holes are quantum phenomena. White hole is formed
when a black hole is dying [42]. The lifetime of a black hole is estimated from
Hawking radiation. It is τBH ∼ m3

0 where m0 is the initial mass of the hole.
The lifetime of a white hole is longer τWH ∼ m4

0. Thus

τWH =
m0

MPl
τBH (4.2)

The time of the tunneling process from white to black hole is of the order of the
current mass at transition time [43]. The horizon area and mass of the black hole
decrease when the hole is emitting Hawking radiation. The transition occurs
when the BH mass reaches the value MPl.

Consider the possibility that white hole remnants form part of dark matter
in the universe. A local dark matter density of ∼ 0.01M�/pc

3 is approximately
one Planck remnant per 10,000 km3. These objects are still observable if their
lifetime larger than the Hubble time, i.e. m4

0 > TH . But one expects remnants to
be produced by already evaporated black holes the lifetime of which is therefore
m3

0 < TH . Now we have an estimate for possible values of m0

1010g < m3
0 < 1015g (4.3)

These masses of primordial black holes may have produced dark matter now in
the form of remnants. The corresponding Schwarzschild radii are between

10−18cm < R0 < 10−13cm (4.4)
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The prevailing theory of primordial black hole (PBH) formation indicates
that BHs of given mass were formed when their Schwarzschild radii were of
the order of the cosmological horizon, which was in the range 4.4 at the end of
inflation. These black holes are with us as remnants. They have ended their
Hawking evaporation but the resulting white holes have not yet dissipated. For
the above black/white hole discussion to be relevant for our particle model
enough PBHs must have been produced at the end of inflation. This should not
be a problem with the observed mass ratio DM/SMM ∼ 5 where SMM denotes
ordinary SM matter.

4.2 LISA and Primordial Black Holes
The nature of dark matter is an open question in astro-particle physics. Of the
various for candidates of DM the primordial black hole proposal is rather natural
because the energy density is very high during inflation. This possibility has
gained increasing interest after the observation of gravitational waves (GW)
produced in the merger of two ∼ 30 M� black holes. PBHs are generated
in the early universe by enhancing the comoving curvature perturbations ζ at
small scales during inflation. The perturbations are transfered to radiation after
inflation through the reheating process, producing PBHs upon horizon re-entry.
A collapse to PBHs takes place during the radiation era in regions where the
density contrast [44]

∆(~x) = 4/9a2H2∇2ζ(~x) (4.5)

is larger than a critical value ∆c which depends on the shape of the power
spectrum.

The comoving curvature perturbation power spectrum is defined as follows

〈ζ( ~k1)ζ( ~k2〉′ =
2π2

k3
1

Pζ(k1) (4.6)

where the prime means dropping the (2π)3 times the Dirac delta function for
momentum conservation. The variance of ∆~x is defined as

σ2
∆(M) =

∫ ∞
0

d ln k W2(k,RH)P∆(k) (4.7)

where W (k,RH) is a window function to smooth out ∆(~x) on the comoving
horizon length RH ∼ 1/aH and P∆(k) = (4k2/9a2H2)2Pζ(k). The fraction of
mass βM of the universe which ends up as PBHs at the time of formation is

βM =

∫ ∞
∆c

d∆√
2πσ∆

e−∆2/2σ2
∆ ' σ∆

∆c

√
2π
e−∆2

c/2σ
2
∆ (4.8)

It corresponds to a present fraction of dark matter ρDMfPBH(M) ≡ dρPBH/d ln M
in the form of PBHs of masses M

fPBH(M) '
( βM

7 · 10−9

)( γ
0.2

)(106.75

g∗

)1/4(M�
M

)1/2
(4.9)
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where γ ' 0.2 accounts for the efficiency of the collapse and g∗ is the number
of effective relativistic degrees of freedom.

Now we come to the key point of this subsection. If there are large comov-
ing curvature perturbations generated during the last stages of inflation they
inevitably act as a second order source of primordial gravitational waves at hori-
zon re-entry. Using entropy conservation one can relate the mass M of a PBH
to the peak frequency of the gravitational waves which collapse to form a PBH

M ' 50 γ
[ Hz

109f

]2
M� (4.10)

The Laser Interferometer Space Antenna (LISA) has the maximum sensitivity
at f ' 3.4 mHz. The corresponding mass 4.10 is M ' 10−12M�. Current
observational constraints on the PBH abundances around this mass are absent,
making fBPH(M) ' 1 possible. If dark matter consits of PBHs with masses
∼ 10−12M�, then LISA can measure the power spectrum of gravitational waves
predictably associated with the production of PBHs.

4.3 Starobinsky Inflation
A quick formula for the early universe is suggested as follows. The inflationary
phase of the universe is driven by gravitation (see (4.14) below). It would, in
the present scenario, be that black hole matter of dense graviton condensate
of section 3.1 expanded the required number of e-folds, like 50 or so. Towards
the end of inflation bubbles and turbulence began to appear in the form of
Kerr-Newman black holes and preon-antipreon pairs. Preons combined mod-
ule three and were trapped inside the remnant black holes. Recent cosmic
microwave background (CMB) measurements, like Plank 2018, have given valu-
able information of scalar spectral index, ns, the tensor-to-scalar ratio, r, and
the non-Gaussianity parameter, fNL. Cosmological inflation models and CMB
measurements offer a lookout of physics at energy scale far above any accelera-
tor energy and a few orders of magnitude below Planck scale, or the scale where
quantum gravitational effects begin to show up.

There is another mechanism for black hole production besides tunneling
of the previous subsection 4.1. Black holes may have been formed before the
big bang assuming a cosmological bounce model [45]. In this case white hole
remnants were formed by evaporating black holes in the contracting phase of
the previous eon [46]. The lifetime of these remnants is of the order τWH ∼ m4

0.
The internal volume of the remnant at birth is of the order VWH ∼ m4

0 [40]. A
remnant must have a lifetime bigger than the Hubble time, τWH > TH , to be
alive at present. The internal volume of the remnant at bounce time must have
been

VWH ∼ m4
0 ∼ τWH > TH (4.11)

The energy density of remnants, in case all dark matter is white hole remnants,
must be of the order of the matter density ρM which is related to TH by the
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Friedmann equation
1

T 2
H

∼ ȧ

a
∼ ρM (4.12)

The current remnant density ρ is of the order

ρ ∼ ρM
1

T 2
H

(4.13)

ρ is also the number density provided the mass of each remnant is of Planckian
magnitude. Entropy considerations are given in [46]. The present preon model,
with its black hole framework as described in sections 3.1 or rather 3.2, sets itself
rather naturally in cosmological considerations about primordial black holes and
dark matter.

Several models of inflation have been proposed some time ago and experi-
mental results from the sky have become more and more accurate. It was noted
in [47, 48] that quantum corrections to general relativity are important in the
early universe. They lead to R2, with R being the curvature of spacetime, cor-
rections in the Einstein-Hilbert action. In situations where curvature is large
these corrections lead to an effective cosmological constant causing an infla-
tionary de Sitter era. In addition, predictions for corrections to the microwave
background were obtained in detailed calculations. The simplest Starobinsky
action is

SStaro =
M2

Pl

2

∫
d4x
√
−g
(

R +
R2

6m2

)
(4.14)

where m (∼ 3 · 1013 GeV) is the inflaton mass as the only parameter. Note that
it is entirely based on gravitational interactions but it is non-renormalizable.
Starobinsky inflation is equivalent to Higgs inflation in supergravity because
both models lead to indistinguishable predictions. The potential of the Starobin-
sky inflation in terms of the canonical inflaton field φ

V (φ) =
3

4
M2

Plm
2
[
1− exp

(
−
√

2/3 φ/MPl

)]2
(4.15)

The charasteristic features of this scalar potential are: it is bounded from below,
it has an absolute minimum at φ = 0 and it has a plateau which leading to
slow roll of inflaton in the inflationary period. The inflation potential drives
the inflation and its quantum fluctuations generate deviations from flatness,
isotropy and homogeneity.

The Starobinsky model predicts for spectral tilt ns and tensor-scalar ratio
the values ns = 1−2/N and r = 12/N2 where N is the number e-folds. The 2018
CMB data from the Planck satellite [49] give r<0.064 (95 percent confidence)
and ns = 0.9649± 0.0042 (68 percent confidence level).

In [50] the Starobinsky action is extended by the following assumptions
(i) introduce four dimensional N = 1 supergravity, (ii) inflaton belongs to a
massive N = 1 vector supermultiplet, and (iii) the kinetic terms of the vector
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supermultiplet have Born-Infeld (BI) structure, inspired by superstrings and D-
branes. These conditions lead to a specific F (R) gravity model. With minimal
coupling to gravity the BI action is

SBI = −b−2

∫
d4x
[√
−g −

√
−det

(
gµν + b/e · Fµν

) ]
(4.16)

This BI structure of the action also occurs in string theory with bosonic part
of open superstrings, D3-branes and partial supersymmetry breaking from N=2
to N=1 supersymmetry. The full action of the self-interacting massive vector
supermultiplet of BI structure is complicated, the reader is directed to [50].

4.4 Wess-Zumino Inflation
Starting from the early model of supersymmetry, the Wess-Zumino model [51],
one is interested to know whether the CMB data can be tried on it. The
data disfavor simple models of inflation with monomial potential φn. Instead
potentials with concave regions like φ2(v−φ)2 may provide reasonable inflation
if v >> MPl and φ0 ∼ v/4. This form can be interpreted as coming from the
minimal Wess-Zumino model with superpotential W and scalar potential V as
follows for real fiels Φ [52, 53]

W =
1

2
µΦ2 − 1

3
λΦ3, V = |∂W

∂Φ
|2 (4.17)

The W-Z model field Φ is, however, complex and it can be written as modulus
and phase Φ = 1√

2
φ exp(iθ). The scalar potential becomes now

V = A
(
φ4 − 2 cos(θ)vφ3 + v2φ2

)
(4.18)

This reduces to hilltop form when θ = 0: V = A(φ2(v − φ)2. For the phe-
nomenological analysis a two field form of Φ = (ψ + iσ)/

√
2 is used. The

parameters ns and r were calculated using perturbation theory, quantum field
theory techniques and numerically integrating two-point scalar field perturba-
tions in Fourier space. The model gives for N = 50 foldings and v = (5−10)MPl

with initial conditions near σ = 0 axis results which are very close to what the
Starobinsky model gave in subsection 4.3.

5 Conclusions
The present supersymmetric preon model is based on the proposal that the
physical domain of supersymmetry is the preon level instead of quark and lep-
ton level. Consequently both the particles/fields and the superpartners are in
the basic supermultiplet. Supersymmetric models possess diffeomorphism in-
variance and they are (D = 10) low energy limits of string theory. Therefore
the model has rich enough structure for quantitative study on the way towards
quantum gravity.

Summarizing, the model
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1. is an economic way to build the standard model fermions, a possible mech-
anism for three generations is indicated,

2. has no supersymmetric standard model superpartner issue, i.e. no squarks
or sleptons etc. exist,

3. contains matter-radiation unification in terms of a spacetime symmetry
rather than internal symmetry as traditionally. Weak and strong interac-
tions are, on log scale, late time interactions to provide for chemistry and
biology,

4. is due to unbroken symmetry more constrained than models with broken
super- and grand unified symmetry,

5. includes a tentative connection between quantum realm and classical rel-
ativity defined by boundary condition (3.13),

6. is amenable to the idea of preons being confined inside a Kerr-Newman
white hole having a Compton wavelength of correct order of magnitude of
light quarks and leptons,

7. includes the parameter Λcr = 1016 GeV, in (2.1), which agrees with the en-
ergy scale at the end of the inflationary era and with the coupling constant
grand unification energy,

8. provides a prolific framework for discussing black/white hole processes,
dark matter finds a natural explanation as being formed of primordial
black holes, and

9. underlays description of inflation: the supergravity equivalent Starobinsky
and the supersymmetric Wess-Zumino models of inflation agree with the
Planck 2018 CMB data.

The parameter l in (3.28) is introduced by hand and must be replaced by
an expression of future quantum gravity. As far as the gravitating bag idea
discussed in subsection 3.3 can be shown to be rigorously true and consistent
with section 2.2, even approximately, there may be a reasonably comprehensible
doorway to an extension of semi-classical quantum gravity. The question of
quantizing spacetime itself, like e.g. in loop quantum gravity [54] or causal
dynamical triangulation [55], is beyond the scope of this article.

The preon model complies with both the inflationary and bounce models of
cosmology. In the very early universe an abundance of black holes is expected.
The black holes tunneled into white holes which emitted all content until three
preon remnants were formed as standard model fermions during early reheating.
Matter dominated universe is possible in the present model.

The supersymmetry phenomenology for standard model particles is to be
recalculated with the unbroken symmetry to start with. The next step is to go
to local supersymmetry [56]. It is hoped that the present preon model provides
a new avenue towards better understanding of the roles of all four interactions.
This article is intended to serve as an affirmative feasibility study of a research
proposition which is hoped to receive community response.
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A Brief Recap of Gravity Theories

A.1 Graviton and Diffeomorphism Invariance
Let us consider gravity from the point of view of symmetry and helicity states.
The needed gauge symmetry is linearized general coordinate invariance. The
helicity of the graviton is two. Demanding consistent graviton self-interactions
leads us to general relativity with full general coordinate invariance [57, 58].
Further, helicity two implies the equivalence principle [58].

It is often said that Poincaré group is the gauge symmetry of gravity. Strictly
speaking, gauge symmetries are redundancies of description rather than fun-
damental properties. One can always fix the gauge and eliminate the gauge
symmetry, without changing the physics of the system. If a system does not
have gauge invariance it is always possible to introduce redundant variables and
restore gauge symmetry. This procedure is called Stueckelberg trick [61]. Using
it one can make any Lagrangian invariant under general coordinate diffeomor-
phism. Therefore this symmetry is not adequate for defining general relativity.
The principle of equivalence is in a similar position in general relativity.

Discuss now briefly local supersymmetry following [60]. Let the supersym-
metry parameter depend on spacetime coordinate

δεB = ε̄(x)F

δεF = ε(x)∂B
(A.1)

The commutator of two infinitesimal transformations δε yields

[δε1 , δε2 ]B ∝ (ε̄1γ
µε2)(x)∂B (A.2)

The factor (ε̄1γ
µε2)(x) is an element of the infinitesimal version of the group of

local diffeomorphism on spacetime. Therefore locally supersymmetric theory is
necessarily diffeomorphism invariant. The best known diffeomorphism invariant
theory is, of course, general relativity.

Instead of coordinate invariance, equivalence principle or geometry the basic
principle of general relativity may be taken this statement [57]:

”... general relativity is the theory of a non-trivially interacting massless
helicity two particle. The other properties are consequences of this statement,
and the implication cannot be reversed”.

A.2 Weinberg Rationale
One may perceive the action for any locally supersymmetric model as follows

L = LG + Lg + Lc + Li (A.3)

where the terms are for gravity, gauge field, chiral fields and interactions, respec-
tively. The gravity term is written using supergravity fields (2.2). The gauge
term includes the photon and its superpartner. The matter term contains the
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chiral supermultiplet and the potential term that the the preons undergo (at
this tender stage one may restrain writing all terms explicitly). In (A.3) the 4D
electromagnetic gauge theory is added to gravity, unlike in the gauge/gravity
duality.

The supergravity equation, equivalent to the Einstein equation, is derived
from the variation of (A.3). All the terms are now of the same field theory
origin, supergravity.

The model of section 2.2 is intended to serve as a guide to defining math-
ematical expressions for the next, or beyond standard model level particle de-
scription. Any realistic theory of quantum gravity may differ from the present
model but it is hoped that the present definition of supersymmetry in section
2.2 may give, if properly understood, a useful clue on the road forward. Fair
enough, there seems to be a goal indicated by Weinberg [59], call it the Weinberg
rationale:

”Gravity exists, so if there is any truth to supersymmetry then any realistic
supersymmetry theory must eventually be enlarged to a supersymmetric theory
of matter and gravitation, known as supergravity. Supersymmetry without su-
pergravity is not an option, though it may be a good approximation at energies
below the Planck Scale.”,

In the first sentence of the above quotation, the leap from gravity to super-
gravity is too long. Gravity is basically neither supersymmetric nor microscopic.
Therefore one has to define microscopic matter fields to which the graviton (2.2)
is coupled. Altogether, preons of section 2.2 build the standard model with the
minimum number of elementary fields and, as an agreeable bonus, supergravity
can be formulated. Secondly, superstrings are hinted

”Supergravity is itself only an effective nonrenormalizable theory which breaks
down at the Planck energies. So if there is any truth to supersymmetry then any
realistic theory must eventually be enlarged to superstrings which are ultraviolet
finite. Supersymmetry without superstrings is not an option.”,

and finally the non-perturbative M-theory looms to us
”Superstring theory is itself only a perturbative theory which breaks down at

strong coupling. So if there is any truth to supersymmetry then any realistic
theory must eventually be enlarged to the non-perturbative M-theory, a theory
involving higher dimensional extended objects: the super p-branes. Supersym-
metry without M-theory is not an option.”.
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