
Multi-Agent Reinforcement Learning - From Game
Theory to Organic Computing

Maurice Gerczuk
University of Passau

Passau, Germany
gerczuk@fim.uni-passau.de

Abstract—Complex systems consisting of multiple agents that
interact both with each other as well as their environment can
often be found in both nature and technical applications. This
paper gives an overview of important Multi-Agent Reinforcement
Learning (MARL) concepts, challenges and current research
directions. It shortly introduces traditional reinforcement learn-
ing and then shows how MARL problems can be modelled as
stochastic games. Here, the type of problem and the system
configuration can lead to different algorithms and training goals.
Key challenges such as the curse of dimensionality, choosing the
right learning goal and the coordination problem are outlined. Es-
pecially, aspects of MARL that have previously been considered
from a critical point of view are discussed with regards to if and
how the current research has addressed these criticism or shifted
their focus. The wide range of possible MARL applications is
hinted at by examples from recent research. Further, MARL is
assessed from an Organic Computing point of view where it takes
a central role in the context of self-learning and self-adapting
systems.

Index Terms—reinforcement learning, multi-agent, organic
computing, game theory

I. INTRODUCTION

Complex and intelligent systems consisting of multiple
interacting agents sharing a common environment are finding
application in a variety of areas including traffic control [1]–
[3] and power management [4]. These systems can often
be managed more easily in a distributed fashion, benefiting
from reduced complexity and parallel computation [5], [6]. To
ensure that such a system delivers the desired performance in a
wide range of often unpredictable situations it needs to be able
to adapt its behaviour. In traditional reinforcement learning, a
single agent interacts with its environment and changes its pol-
icy based on rewards it receives for its actions [7]. Compared
to this scenario, in a multi-agent setting, the individual agents
not only adapt and learn from their shared environment but
also from the actions and learning processes of all the other
agents, making multi-agent reinforcement learning (MARL) a
more complex problem overall.

This paper aims to give an overview over the complexity
of MARL and how the field has traditionally been strongly
linked to game theory. Furthermore, it addresses a critical
perspective on some of the game-theoretic notions at the basis
of MARL. It then tries to answer the research question of
how the presented historical criticisms and agendas have been
addressed by reviewing recent literature and developments in
the field.

The paper is laid out in the following way: An overview
of single-agent reinforcement learning is given in Section II
after which the multi-agent case is described in Section III.
The research question is addressed in Section IV and a short
conclusion is given in Section V.

II. REINFORCEMENT LEARNING

Reinforcement learning can be described as a subset of
machine learning that distinguishes itself from other areas, like
supervised machine learning, by not trying to learn from data
but rather how an agent can learn to optimise its interaction
with an environment in order to control it in a beneficial
way [7]. A traditional reinforcement learning scenario is
characterised by a model of the environment, reward and
value functions that are assigned to specific actions and or
environmental states, and the agent’s action policy. The agent
observes its environment and changes in it (e. g. by analysing
sensor data). Based on these observations, it perceives the
environment to be in a certain state and then proceeds to
act according to its action policy. These actions in turn again
transform the environment - a state transition. The agent can
further assess its interaction by scalar reward values it receives
for a specific state-action transition. It is essential to point out
that, in contrast to supervised learning, the agent does not
learn about the ”best” action it could have chosen in the state
[8]. Depending on the scenario, immediate rewards may not
always reflect upon the long-term reward an agent will receive.
Instead, the agent tries to maximise the discounted return over
the course of its entire interaction. An informal model of a
reinforcement learning scenario is visualised in Figure 1.

A. Markov Decision Processes

Formally, single-agent reinforcement learning can be mod-
elled as a Markov Decision Process (MDP) [9].

Definition 1: Let X be a finite set of environmental states
and U contain all actions an agent can take in this environment.
Further, a state transition function f : X × U × X → [0, 1]
defines the probability of the environment transitioning from
a specific state xk ∈ X to another state xk+1 ∈ X if the
agent takes a certain action uk ∈ U . Lastly, a reward function
ρ : X × U × X → R determines a scalar reward the agent
receives immediately after a certain state transition. The tuple
〈X,U, f, ρ〉 is called a Markov Decision Process.
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Fig. 1. In reinforcement learning, an agent perceives his environment through
some sort of interpretation mechanism. It then performs actions accordingly.
In response to its action, the environment may change its state and the agent
receives a scalar reward.

How an agent acts in response to a certain environmental
state is defined by its policy π : X × U → [0, 1]. It is
important to note that the Markov Decision Process assumes
the environment to be stationary and not influenced by any
other adaptive agent [10], restrictions that are inherently not
fulfilled in the multi-agent case.

B. Q-learning

One of the most popular algorithms for finding a solution to
MDPs is called Q-learning [11]. This method relies on finding
a strategy that maximises the state-value function Q which
estimates the expected discounted return of a specific state
action pair under a chosen policy π over the whole course of
the interaction (expressed by the infinite sum over all steps t):

Qπ(x, u) = E

[ ∞∑
t=0

γtrt+1|π

]
(1)

Here, γ is the discount factor which exponentially decreases
rewards the further the corresponding state-action pairs are
distanced from the initial state and action (x and u). The
optimal Q function for a specific state action pair can therefore
be written as Q∗(x, u) = maxπQπ(x, u). In Q-learning an
iterative algorithm based on the Bellman equation is used to
approximate this function [7]:

Qi+1(xi, ui) = Qi(xi, ui)+

αi

[
ri+1 + γmax

u′
Qi(xi+1, u

′)−Qi(xi, ui)
]

(2)

The Q-values for performing a specific action ui in state xi
are updated with the immediate reward received for this action,
ri+1, and the discounted (by multiplication with γ) highest Q-
value achievable in the following state xi+1. αi ∈ (0, 1] is the
learning rate and is often decreased over the course of the

algorithm [9]. Q-learning also forms the basis of a range of
multi-agent reinforcement learning algorithms [12]–[14].

C. Deep Q-Networks

A modern variation of the algorithm comes in the form
of Deep Q-Networks (DQNs) [15]. This algorithm combines
the advances in training deep neural networks to learn useful
high level representations of raw input data, e. g. in image
classification [16], [17], with reinforcement learning. The
Q-function is now no longer approximated using a linear
function but by a deep neural network that introduces non-
linearity. This neural network is fed raw sensory data as input
from which it learns to derive a higher level representation
that is useful for estimating the correct Q-values of actions.
Using a non-linear function approximator for Q-learning has
previously led to instability which is addressed in the DQN
model by the usage of experience replay [18] and updating
target values of the Q-function only periodically.

III. MULTI-AGENT REINFORCEMENT LEARNING

By extending the framework of reinforcement learning to
systems with multiple agents acting in shared environment,
new challenges, benefits and perspectives arise. This section
gives an overview over the game-theoretic and algorithmic
basics of multi-agent reinforcement learning (MARL).

A. Markov Games as a model of Multi-Agent Reinforcement
Learning

Compared to single-agent reinforcement learning, it be-
comes apparent that MARL is intrinsically linked to the
field of game theory, the study of multiperson decision prob-
lems [19]. Each agent acting in a shared environment not
only has to consider the effects of his own actions but is also
influenced by the actions of the other agents [9].

From this point of view, the Markov Decision Process as
a formal model of the single agent reinforcement learning
problem can be generalised to the so-called stochastic or
Markov game with multiple agents [9], [20].

Definition 2: Let X be the set of states of a shared environ-
ment and U1,...,Un the action sets of n agents acting in this
environment. State transitions are controlled by a transition
function f : X × U × X → [0, 1], i. e. they depend on the
joint actions U of all agents. Furthermore, each agents reward
function is defined by ρi : X × U × X → R. The tuple
〈X,U1, ..., Un, f, ρ1, ..., ρn〉 is then called a Markov Game.
Like in the Markov Decision Process, each agent has a policy
πi : X × Ui → [0, 1] but the expected returns of each agent
now depend on the joint policy of all agents, as the reward
functions of the individual agents in turn also depend on the
joint actions of all agents.

Here, different kinds of Markov games can be distin-
guished, depending on how the state of the environment is
incorporated into the model [9]. In the simplest case, agents
play a static game, i. e. there is no dynamic environmental
state [21]. Such a game can be formally described as a
tuple 〈U1, ..., Un, ρ1, ..., ρn〉. Each agent i again now has a



corresponding action set Ui and a reward function ρi : U→ R
which solely depends on the joint action space U : U1×U2×
... × Un of all agents, i. e. the state of the environment is
disregarded. When there are only two agents, these type of
stochastic games are also often referred to as matrix games,
as the reward functions of both agents can be expressed in a
matrix, the columns responding to the action of the first agent
and the rows to those of the second agent [21]. In a stateful
environment, a stage game can be seen as a static game that
is played in this particular fixed state. Lastly, a repeated game
is simply a stage game that is played more than one time by
a specific set of agents. In this context, an important criterion
for finding a solution is the Nash Equilibrium: This type of
equilibrium describes a sort of status-quo from which no agent
has an incentive to deviate. A game state can be seen as a such
an equilibrium if each agent’s strategy is a best response to
the other agents’ strategies [22].

B. Cooperation
The models, techniques and algorithms applied to multi-

agent reinforcement learning also greatly depend on the
degree of cooperation between the individual agents. From
this perspective, MARL settings can be organised into three
categories. In a fully cooperative multi-agent system all agents
aim to achieve the same common goal, maximising a common
discounted reward. A fully cooperative MARL scenario with
a central controller can further be modelled as a traditional
reinforcement learning problem in the form of a Markov
Decision Process [9]. In contrast, agents can also act in a
competitive environment where their individual rewards are
negatively impacting the rewards of other agents. A fully
competitive setting is most often restricted to a case in which
two agents have opposing goals, i. e. the reward function of
one agent is the negative of the other agent’s reward function.
From a game theoretic point of view, these are therefore
commonly referred to as zero-sum games. Finally, MARL
scenarios that can neither be described as fully cooperative
or fully competitive are referred to as mixed. In these cases,
the returns received by individual agents are not the same but
correlated to the returns of the other agents in some fashion.

C. Mutual Knowledge
Another distinction in MARL can be made about the knowl-

edge each agent has about the other agents. Claus and Boutilier
differentiate two types of learners: Independent learners and
joint action learners [19]. The former learn independently from
one another, i. e. each agent only has information about the
shared environment and not the actions or policies of other
agents. This also means, that they learn Q-values for their
own actions exclusively. Joint Action learners on the other
hand, are able to observe all actions taken by any agent and
therefore also learn Q-values for every combination of actions
of the individual agents.

D. Learning Goals
Specifying a good learning goal for MARL is challeng-

ing [9]. In general, there are two aspects of learning goals

that are deemed desirable in the context of multi-agent sys-
tems [21]. For one, stability describes the policy of an agent
to converge to a stationary policy after a certain amount of
time. Adaptation on the other hand expresses how an agent
deals with the changing behaviour of other agents [9]. One
of the most common stability requirements is convergence
e. g. towards a stationary strategy [23], [24] or to a kind of
equilibrium [4], [25], often the Nash Equilibrium [12], [22]
mentioned in Section III-A. Convergence to equilibria has been
seen as problematic by Shoham et al. [26]. These criticisms
are reviewed in Section IV-A. The notion of adaptation has
been represented in different ways e. g. in the concept of
rationality [23], [24]. Here, if the other agents converge
towards a stationary strategy, a rational learning algorithm
will converge towards a best-response strategy. It is important
to note, that both stability and adaptation are needed for an
efficient MARL algorithm. Furthermore, these two aspects are
conflicting with each other, i. e. an algorithm cannot be both
perfectly stable and perfectly adaptable [9].

E. Challenges Compared to Single-Agent Case

Extending the reinforcement learning framework to the
multi-agent case inherently comes with some challenges that
can either be seen as intensifications of problems found in the
single agent case or as entirely unique to MARL.

1) Curse of Dimensionality: A problem that can also be
found with many single-agent reinforcement learning algo-
rithms that rely on discrete state and action spaces, the so-
called Curse of Dimensionality, becomes even more pro-
nounced in the multi-agent case. Algorithms that estimate Q-
values for every state-action pair are exponential in complexity
with regards to the size of the state and action space. In
multi-agent settings, action spaces for each agent exist, further
exponentially increasing the complexity per agent.

2) Coordination: The problem of coordination between
agents can arise in different ways in multi-agent reinforcement
learning. For one, individual agents are always influenced
not only by the shared environment but also the actions of
other agents. This can lead to situations in which agents
must decide in a consistent way on which one of multiple
equally good joint actions to take in order to reach an optimal
outcome [9]. In relation to the learning goals of MARL
algorithms, coordination is also needed in cases where multiple
equilibria exist. Here, agents not only have to converge towards
the same but for the best result also the optimal equilibrium.

F. Sample MARL Algorithms

In the following, two MARL algorithms that aim to extend
the single agent Q-learning method to the multi-agent case are
outlined and put into the context of aspects described above.

1) Independent Q-learning: The most popular approach
for MARL is known as independent Q-learning [13]. Here,
each agent solves its own single-agent reinforcement problem
with Q-learning in a shared environment. The agents further
have no mutual knowledge about each other and only receive
state and reward signals from the environment, making the
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Fig. 2. In independent reinforcement learning, such as independent Q-
learning, agents disregard the presence and actions of other agents in the
shared environment and only act on state signals and rewards they receive
individually.

approach distributed and scalable. An independent Q-learning
scenario is visualised in Figure 2. This approach has also been
combined with modern Deep Q-Networks [27].

2) Nash Q-learning: Nash Q-learning on the other hand
displays a vastly different perspective to transfer Q-learning
to general sum (as in mixed cooperation and competition)
multi-agent scenarios: A centralised learning agent updates Q-
values of the joint actions of all agents based on assuming
Nash Equilibrium behaviour [12]. In contrast to independent
Q-learning, this algorithm inherently requires full observability
of the environmental state and the actions of individual agents,
thus making it less scalable to systems with many agents.

IV. MARL BETWEEN GAME THEORY AND MACHINE
LEARNING

As made clear in the overview given in the previous
sections, multi-agent reinforcement learning sits at the inter-
section of game theory and machine learning. In this section,
problematic aspects of the game-theoretical approach, e. g. the
focus on equilibria, are outlined. Specifically, criticisms made
by Shoham et al. [26] are reviewed and put into the context of
current research. It is also discussed, how their criticisms and
suggestions have been addressed by current trends in MARL.

A. Problems with Game Theoretical Approach

In their critical survey published in 2003 [26], Shoham
et al. reviewed a sample of multi-agent reinforcement learning
literature, pointing out problems with what they call the Bell-
man Heritage, i. e. the strong focus on the Bellman equations
that are at the core of many popular reinforcement learning
algorithms, like Q-learning [11].

1) Problems with Equilibria as Training Goals: The au-
thors argue that MARL research at that time has focused
too heavily on convergence to equilibria which take a central
role in game theory [22], especially the Nash Equilibrium.
In their opinion, this is especially problematic in the case
when the multi-agent problem cannot be described as fully
competitive or fully cooperative, but mixed. They point out
that this convergence criterion is not only used for evaluation
but also directly incorporated into popular algorithms at that
time, e. g. Nash-Q [12] or Correlated Q-learning (CE-Q) [28].
Using equilibria for the execution of the training algorithm

can be seen as questionable and problematic in several ways
using the example of Nash-Q: First of all, Nash Equilibria
only describe a sort of status-quo when learning should stop,
rather than making any prescriptive assumptions prior to that.
This is especially the case when multiple equilibria exist in
a stochastic game, then the need for a kind of oracle driving
the agents towards the same optimal equilibrium arises. The
concept of the Nash Equilibrium is also limited to stage
games but the importance of convergence to an equilibrium
in every stage game of an extended stochastic game is also
questionable in the authors’ opinion. These concerns about
the usefulness of equilibria have also been extended and
reinforced by research. Panait et al. point out, that also in
cooperative settings convergence to a Nash Equilibrium might
be away from team optimal solutions [29]. In their work on
incorporating emotional behaviour into multi-agent systems
dealing with social dilemmas, Yu et al. specifically argue that
standard MARL convergence towards an equilibrium leads
to mutual defection among self-interested agents preventing
cooperative behaviour [30]. Shoham et al. further make the
argument that equilibria might not be reached in a reasonable
amount of time for complex problem spaces [26].

2) Bounded Rationality and Real-World Applicability: An-
other important issue with the game theory centric modelling
of MARL systems can be seen in how game theory approaches
the concept of ”bounded rationality”. Many MARL algorithms
require exact measurements of the state and also of the other
agents’ actions [9] and some go further in assuming infinite
mutual modelling of the other agents [26]. This view is
especially inappropriate for applying MARL algorithms to
real world applications where the state and action spaces are
complex and it is not computationally feasible for individual
agents to make comprehensive observations about their sur-
roundings [15].

Shoham et al. also gave their opinions and suggestions on
how the field of MARL research should continue to progress
and outlined directions that they deemed fruitful [26]. In their
paper, they postulated research agendas ranging from the field
of behavioural studies to machine learning. First of all, they
argue that psychological research should be made into the
learning behaviours of humans in order to find a well-reasoned
model for multi-agent learning settings. They further mention
distributed control settings in which a central designer gives
agents in a distributed system adaptive policies as a direction
that excludes equilibrium analysis. Finally, they describe the
so-called AI agenda as the most important one for the field.
This agenda expresses a wish to move away from game theory
and instead focus on approaches that are more strongly rooted
in machine learning. Here, the question should become how
an effective agent can be designed given its environment and
the other agents.

B. Current Directions and Resolutions

In the following, a sample of recent literature concerning
MARL algorithms and applications is reviewed with regards
to how it fits into the aforementioned critique and research



agendas. It should be noted that the samples have been
chosen because they represent some aspect of the agendas and
problems discussed above.

1) Inspiration from Human Learning Behaviours for
MARL: Two examples of research on how to incorporate
human learning behaviours into MARL algorithms can be
found in the works of Sukhbaatar et al. [31] and Yu et al.
[30]. The former investigate how effective communication
between agents can be learned using backpropagation. Here,
the agents are controlled by deep feedforward networks with
an additional shared communication channel, represented by
a continuous vector. Furthermore, their approach also incor-
porates the concept of ”bounded rationality” as the individual
agents can only partially observe their environment. To im-
prove their performance, they learn to transmit and evaluate
continuous signals about their local environments and actions
to each other. They test their approach on a set of tasks
including a traffic junction simulation and achieve significant
improvements over baseline models without communication.

Yu et al. investigate how the emotional dynamics of self-
interested humans interacting in a shared environment can
be modelled to improve the performance of MARL methods
for social dilemmas [30]. In a social dilemma, selfish agents
must decide between pursuing strategies to increase their
individual short-term rewards and choosing actions that will
benefit the whole group over a larger period of time. An
example of a social dilemma occurring in a multi-agent system
can be found in load balancing and package routing in wire-
less networks [32]. If no altruistic incentives are introduced,
standard MARL algorithms will often converge to a Nash
Equilibrium of mutual defection. The authors argue that this
goes against what can be observed and has been extensively
studied about human interaction in similar settings where
altruistic behaviour and in turn cooperation naturally emerge.
Two appraisal variables are used in different ways to derive
an emotional state and intrinsic rewards for each agent: social
fairness and personal well-being. Different prioritisations and
combinations of these two variables are evaluated and the
authors find that for experiments on the classic prisoner’s
dilemma task, choosing fairness as the core appraisal variable
and after that considering individual well-being leads to the
highest amount of cooperation and overall rewards for all
agents.

2) Influence of Deep Learning: In recent years, the increase
in computational power has enabled a shift in machine learning
away from the traditional careful handcrafting of algorithms
and feature representations towards a trend of using deep
neural networks fed with raw signals, like image, speech and
video data to learn representations in a datadriven way [33].
This trend has also impacted research in the domain of
reinforcement learning and in consequence also influenced
MARL. Mnih et al. introduced a deep neural network model
for end-to-end reinforcement learning from raw sensory input
data [15], as described in section II-C. Since then, research
has been made into how this model can be transferred to
the multi-agent case [34], [35]. Most approaches rely on the

most popular MARL algorithm, independent Q-learning [13]
in which each agent learns separately, disregarding the other
agents’ presence in the environment. In their work, Tampuu
et al. [27] combine independent Q-learning with DQNs to
train a multi-agent system for the game of Pong. They do
not focus on convergence of the algorithm towards an equi-
librium but are interested in how competitive and cooperative
behaviour emerges when altering the reward functions. In the
author’s opinion, the hype in deep learning has put a larger
emphasis on artificial intelligence in MARL, conforming to
the AI agenda proposed by Shoham et al. [26].

3) Connection to Organic Computing: The field of Or-
ganic Computing (OC) is another recent research direction
that relates to MARL and the dichotomy of game theoretic
and machine learning approaches taken in the field. OC is
concerned with systems of autonomous sub-systems which
perceive and interact with their environment and each other
using sensors and actuators. These systems should be able
to organise, adapt and improve themselves over the course of
their runtime. OC also draws heavily from nature as inspiration
on how to design such systems [36], [37]. MARL can be
seen as a central component of the self-adaptation and self-
learning properties of such systems. In contrast to the game
theoretic view on MARL, OC also shifts the focus of MARL
towards stronger imitation of natural/human behaviours. It is
also more interested in emergent behaviour in multi-agent
systems. Bounded rationality is also inherent to OC systems,
as individual agents often only perceive their immediate envi-
ronments with sensors.

V. CONCLUSION

In this paper, an overview of the problem of multi-agent
reinforcement learning has been given. It has been outlined
how MARL differs from single agent reinforcement learning
and also how it is more closely related to the field of game
theory. A critical perspective on early research in the field has
also been reviewed and analysed with regards to how it fits
into the current sphere of MARL. Specifically, the reservations
about the former state of MARL research with its focus on
game theory and equilibrium based methods put forward by
Shoham et al. [26] have been put into context of recent
trends in the field. Examples of incorporating inspiration from
human behaviour, the rise of deep learning based methods and
MARL’s strong connection to the field of Organic Computing
show ways in which these reservations have been addressed.
Further research into this subject could include taking a
closer look at state-of-the-art MARL algorithms or reviewing
learning strategies employed in organic computing systems
with respects to identifying more current paradigms. Overall,
multi-agent reinforcement learning is more important than ever
before in a wide range of research domains and it will be
interesting to see in which ways the field might evolve in the
future.
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[9] L. Busoniu, R. Babuška, and B. De Schutter, “Multi-agent reinforce-
ment learning: An overview,” Innovations in multi-agent systems and
applications-1, vol. 310, pp. 183–221, 2010.

[10] A. G. Barto, R. S. Sutton, and C. J. Watkins, “Learning and sequential
decision making,” in Learning and computational neuroscience. Cite-
seer, 1989.

[11] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no.
3-4, pp. 279–292, 1992.

[12] J. Hu and M. P. Wellman, “Nash q-learning for general-sum stochastic
games,” Journal of machine learning research, vol. 4, no. Nov, pp. 1039–
1069, 2003.

[13] M. Tan, “Multi-agent reinforcement learning: Independent vs. cooper-
ative agents,” in Proceedings of the tenth international conference on
machine learning, 1993, pp. 330–337.

[14] G. Tesauro, “Extending q-learning to general adaptive multi-agent sys-
tems,” in Advances in neural information processing systems, 2004, pp.
871–878.

[15] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[16] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[17] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[18] L.-J. Lin, “Reinforcement learning for robots using neural networks,”
Tech. Rep., 1993.

[19] C. Claus and C. Boutilier, “The dynamics of reinforcement learning in
cooperative multiagent systems,” AAAI/IAAI, vol. 1998, pp. 746–752,
1998.

[20] M. L. Littman, “Markov games as a framework for multi-agent rein-
forcement learning,” in Machine Learning Proceedings 1994. Elsevier,
1994, pp. 157–163.

[21] M. Bowling and M. Veloso, “An analysis of stochastic game theory for
multiagent reinforcement learning,” Carnegie-Mellon Univ Pittsburgh Pa
School of Computer Science, Tech. Rep., 2000.

[22] R. Gibbons, A primer in game theory. Harvester Wheatsheaf, 1992.
[23] M. Bowling and M. Veloso, “Rational and convergent learning in

stochastic games,” in International joint conference on artificial intel-
ligence, vol. 17, no. 1. Lawrence Erlbaum Associates Ltd, 2001, pp.
1021–1026.

[24] ——, “Multiagent learning using a variable learning rate,” Artificial
Intelligence, vol. 136, no. 2, pp. 215–250, 2002.

[25] Y. Hu, Y. Gao, and B. An, “Multiagent reinforcement learning with
unshared value functions,” IEEE Transactions on Cybernetics, vol. 45,
no. 4, pp. 647–662, Apr. 2015.

[26] Y. Shoham, R. Powers, and T. Grenager, “Multi-agent reinforcement
learning: a critical survey,” Technical report, Stanford University, Tech.
Rep., 2003.

[27] A. Tampuu, T. Matiisen, D. Kodelja, I. Kuzovkin, K. Korjus, J. Aru,
J. Aru, and R. Vicente, “Multiagent cooperation and competition with
deep reinforcement learning,” PloS one, vol. 12, no. 4, p. e0172395,
2017.

[28] A. Greenwald, K. Hall, and R. Serrano, “Correlated q-learning,” in
ICML, vol. 3, 2003, pp. 242–249.

[29] L. Panait and S. Luke, “Cooperative multi-agent learning: The state of
the art,” Autonomous agents and multi-agent systems, vol. 11, no. 3, pp.
387–434, 2005.

[30] C. Yu, M. Zhang, F. Ren, and G. Tan, “Emotional multiagent reinforce-
ment learning in spatial social dilemmas,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 26, no. 12, pp. 3083–3096, Dec.
2015.

[31] S. Sukhbaatar, R. Fergus et al., “Learning multiagent communication
with backpropagation,” in Advances in Neural Information Processing
Systems, 2016, pp. 2244–2252.

[32] N. Salazar, J. A. Rodriguez-Aguilar, J. L. Arcos, A. Peleteiro, and J. C.
Burguillo-Rial, “Emerging cooperation on complex networks,” in The
10th International Conference on Autonomous Agents and Multiagent
Systems-Volume 2. International Foundation for Autonomous Agents
and Multiagent Systems, 2011, pp. 669–676.

[33] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, p. 436, 2015.

[34] J. Foerster, N. Nardelli, G. Farquhar, T. Afouras, P. H. Torr, P. Kohli,
and S. Whiteson, “Stabilising experience replay for deep multi-agent
reinforcement learning,” arXiv preprint arXiv:1702.08887, 2017.

[35] J. Foerster, I. A. Assael, N. de Freitas, and S. Whiteson, “Learning
to communicate with deep multi-agent reinforcement learning,” in
Advances in Neural Information Processing Systems, 2016, pp. 2137–
2145.

[36] C. Müller-Schloer and S. Tomforde, Organic Computing–Technical
Systems for Survival in the Real World. Springer, 2017.

[37] C. Müller-Schloer, H. Schmeck, and T. Ungerer, Organic Computing—
a Paradigm Shift for Complex Systems. Springer Science & Business
Media, 2011.


