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Abstract
The elementary proof to the twin prime conjecture.
The content of the article
Let ps denote the s’th prime and Ps the product of the first s primes.
Define As to be the set of all positive integers less than Ps which are

relatively prime to Ps.
1. Each As, for s ≥ 3, contains two elements which differ by 2.
2. Consider the finite arithmetic progression {a+mPs}, where a is in As

and 0 ≤ m < Ps. More than half of the elements are prime.
3. Combining 1) and 2), there is always a pair of twin primes which are

relatively prime to Ps, and therefore infinitely many twin primes.
For every pair of values a, b in As differing by d, there exist at least ps+1−2

pairs of values in As+1 differing by d. (And exactly that many when d is not
divisible by ps+1).

Given this, the claim follows using induction with d = 2, noting for the
base case that 11, 13 are both in A3.

The proof is as follows: Suppose a and b are in As, with b−a = d. Consider
the set of values a+mPs, where 0 ≤ m < ps+1. These are all less than Ps+1,
and since Ps is relatively prime to ps+1, there is a unique value m1 with
a+m1Ps divisible by ps+1. Similarly, there is a unique value m2 with b+m2Ps

divisible by ps+1. Furthermore, if m1 = m2, then (b+m2Ps)−(a+m1Ps) = d
would be divisible by ps+1. So when d is not divisable by ps+1, for the
ps+1 − 2 values of 0 ≤ m < ps+1 which are not equal to m1 or m2, the pair
(a + mPs, b + mPs) are a pair in As+1 differing by d.

Proof of 2
Consider the finite arithmetic progression {a + mPs}, where a is in As

and 0 ≤ m < Ps. More than half of the elements are prime.
The largest number generate by a + mPs = Ps

2 − 1 is when a = Ps − 1
and m = Ps − 1

Able to approximate all the non-prime numbers generated by the arith-
metic progression Ps−1+mPs where 0 ≤ m < Ps with arithmetic progression
0 + n(Ps − 1) where 1 ≤ n ≤ Ps + 1.

The first and last terms of the two arithmetic progressions are equal:
Ps−1+0×Ps = 0+1×(Ps−1) and Ps−1+(Ps−1)Ps = 0+(Ps+1)(Ps−1).

And the approximate arithmetic progression common difference is smaller:
Ps − 1 < Ps.

1



Therefore able to generate non-overlapping Ps integer intervals between
and inclusive of Ps−1 to (Ps−1)(Ps+1) such that each interval only contains
a number from Ps − 1 + mPs.

The inclusive intervals are as follows:
Ps − 1 to 2× (Ps − 1)− 1
2× (Ps − 1) to 3× (Ps − 1)− 1
3× (Ps − 1) to 4× (Ps − 1)− 1
4× (Ps − 1) to 5× (Ps − 1)− 1
. . .
(Ps

2
+ 1)× (Ps − 1) to Ps+2

2
× (Ps − 1)− 1

Ps+2
2
× (Ps − 1) to (Ps+2

2
+ 1)× (Ps − 1)

(Ps+2
2

+ 1)× (Ps − 1) + 1 to (Ps+2
2

+ 2)× (Ps − 1)
. . .
(Ps + 1− 3)× (Ps − 1) + 1 to (Ps + 1− 2)× (Ps − 1)
(Ps + 1− 2)× (Ps − 1) + 1 to (Ps + 1− 1)× (Ps − 1)
(Ps + 1− 1)× (Ps − 1) + 1 to (Ps − 1)× (Ps + 1)
All terms of 0 + n(Ps − 1) when n > 1 are non-prime numbers.
Assume 1× (Ps − 1) is non-prime.
Apply the restriction that all non-prime numbers must be odd to arith-

metic progression 0 + n(Ps − 1)
There are already least (Ps + 1) − Ps+2

2
prime numbers in arithmetic

progression Ps − 1 + mPs after converting 0 + n(Ps − 1) into Ps − 1 + mPs.
The first and last terms of the two arithmetic progressions are equal:

Ps−1+0×Ps = 0+1×(Ps−1) and Ps−1+(Ps−1)Ps = 0+(Ps+1)(Ps−1)
To convert form arithmetic progression 0 + n(Ps − 1) to arithmetic pro-

gression Ps − 1 + mPs where 1 ≤ n ≤ Ps + 1 and 0 ≤ m < Ps.
First remove the term 0 + Ps+1+1

2
× (Ps − 1).

For all terms less than 0+ Ps+1+1
2
×(Ps−1) and greater than 0+1×(Ps−1)

add a positive integer.
For all terms greater than 0 + Ps+1+1

2
× (Ps − 1) and less than 0 + (Ps +

1)× (Ps − 1) substract a positive integer.
Therefore revising the number of prime numbers in arithmetic progression

Ps − 1 + mPs to be at least (Ps)− (Ps+2
2
− 2)

Ps + 1 + 1

2
− 2 <

Ps

2

Now consider the finite arithmetic progression {a + mPs}, where a is in
As and 0 ≤ m < Ps and a 6= Ps − 1.

The approximate arithmetic progress 0 + n(Ps − 1) can be adjusted to
become −(Ps − 1) + a + n(Ps − 1) where 1 ≤ n ≤ Ps + 1.
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For example 1 +mPs has the approximate arithmetic progression −(Ps−
1) + 1 + n(Ps − 1).

The value of a is relatively prime to Ps−1. Therefore for all odd numbers
in approximate arithmetic progression −(Ps−1)+a+n(Ps−1) where 3 ≤ n ≤
Ps− 1 to be odd non-prime numbers then for each −(Ps− 1) + a+n(Ps− 1)
must be divisable by n. But −(Ps − 1) + a + 3(Ps − 1) is not divisable by 3.
But −(Ps − 1) + a + (Ps − 1)(Ps − 1) is not divisable by (Ps − 1). Therefore
there are at least 2 odd numbers in −(Ps − 1) + a + n(Ps − 1) which are
prime.

Therefore the maximum number of possible non-prime generated which
could be non-prime numbers in actual arithmetic progression is Ps+1+1

2
− 2

Ps + 1 + 1

2
− 2 <

Ps
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https://www.reddit.com/r/badmathematics/comments/aljw4b

/elementary_proof_to_the_twin_prime_conjecture_to/

User Leet_Noob rewrote proof structure and proof to 1.
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