The title Proof to the twin prime conjecture Authors ZhangAik, Leet_Noob Abstract The elementary proof to the twin prime conjecture. The content of the article

Let p_s denote the s'th prime and P_s the product of the first s primes.

Define A_s to be the set of all positive integers less than P_s which are relatively prime to P_s .

1. Each A_s , for $s \ge 3$, contains two elements which differ by 2.

2. Consider the finite arithmetic progression $\{a + mP_s\}$, where a is in A_s and $0 \le m < P_s$. More than half of the elements are prime.

3. Combining 1) and 2), there is always a pair of twin primes which are relatively prime to P_s , and therefore infinitely many twin primes.

For every pair of values a, b in A_s differing by d, there exist at least $p_{s+1}-2$ pairs of values in A_{s+1} differing by d. (And exactly that many when d is not divisible by p_{s+1}).

Given this, the claim follows using induction with d = 2, noting for the base case that 11, 13 are both in A_3 .

The proof is as follows: Suppose a and b are in A_s , with b-a = d. Consider the set of values $a + mP_s$, where $0 \le m < p_{s+1}$. These are all less than P_{s+1} , and since P_s is relatively prime to p_{s+1} , there is a unique value m1 with $a+m1P_s$ divisible by p_{s+1} . Similarly, there is a unique value m2 with $b+m2P_s$ divisible by p_{s+1} . Furthermore, if m1 = m2, then $(b+m2P_s) - (a+m1P_s) = d$ would be divisible by p_{s+1} . So when d is not divisable by p_{s+1} , for the $p_{s+1} - 2$ values of $0 \le m < p_{s+1}$ which are not equal to m1 or m2, the pair $(a + mP_s, b + mP_s)$ are a pair in A_{s+1} differing by d.

Proof of 2

Consider the finite arithmetic progression $\{a + mP_s\}$, where a is in A_s and $0 \le m < P_s$. More than half of the elements are prime.

The largest number generate by $a + mP_s = P_s^2 - 1$ is when $a = P_s - 1$ and $m = P_s - 1$

Able to approximate all the non-prime numbers generated by the arithmetic progression $P_s - 1 + mP_s$ where $0 \le m < P_s$ with arithmetic progression $0 + n(P_s - 1)$ where $1 \le n \le P_s + 1$.

The first and last terms of the two arithmetic progressions are equal: $P_s - 1 + 0 \times P_s = 0 + 1 \times (P_s - 1)$ and $P_s - 1 + (P_s - 1)P_s = 0 + (P_s + 1)(P_s - 1)$.

And the approximate arithmetic progression common difference is smaller: $P_s - 1 < P_s$.

Therefore able to generate non-overlapping P_s integer intervals between and inclusive of $P_s - 1$ to $(P_s - 1)(P_s + 1)$ such that each interval only contains a number from $P_s - 1 + mP_s$.

The inclusive intervals are as follows: $P_s - 1$ to $2 \times (P_s - 1) - 1$ $2 \times (P_s - 1)$ to $3 \times (P_s - 1) - 1$ $3 \times (P_s - 1)$ to $4 \times (P_s - 1) - 1$ $4 \times (P_s - 1)$ to $5 \times (P_s - 1) - 1$ $\frac{(\frac{P_s}{2}+1) \times (P_s-1) \text{ to } \frac{P_s+2}{2} \times (P_s-1) - 1 }{\frac{P_s+2}{2} \times (P_s-1) \text{ to } (\frac{P_s+2}{2}+1) \times (P_s-1) }{(\frac{P_s+2}{2}+1) \times (P_s-1) + 1 \text{ to } (\frac{P_s+2}{2}+2) \times (P_s-1) }$ $(P_s + 1 - 3) \times (P_s - 1) + 1$ to $(P_s + 1 - 2) \times (P_s - 1)$ $(P_s + 1 - 2) \times (P_s - 1) + 1$ to $(P_s + 1 - 1) \times (P_s - 1)$ $(P_s + 1 - 1) \times (P_s - 1) + 1$ to $(P_s - 1) \times (P_s + 1)$ All terms of $0 + n(P_s - 1)$ when n > 1 are non-prime numbers. Assume $1 \times (P_s - 1)$ is non-prime.

Apply the restriction that all non-prime numbers must be odd to arithmetic progression $0 + n(P_s - 1)$

There are already least $(P_s + 1) - \frac{P_s+2}{2}$ prime numbers in arithmetic progression $P_s - 1 + mP_s$ after converting $0 + n(P_s - 1)$ into $P_s - 1 + mP_s$. The first and last terms of the two arithmetic progressions are equal:

 $P_s - 1 + 0 \times P_s = 0 + 1 \times (P_s - 1)$ and $P_s - 1 + (P_s - 1)P_s = 0 + (P_s + 1)(P_s - 1)$ To convert form arithmetic progression $0 + n(P_s - 1)$ to arithmetic pro-

gression $P_s - 1 + mP_s$ where $1 \le n \le P_s + 1$ and $0 \le m < P_s$. First remove the term $0 + \frac{P_s + 1 + 1}{2} \times (P_s - 1)$.

For all terms less than $0 + \frac{P_s + 1 + 1}{2} \times (P_s - 1)$ and greater than $0 + 1 \times (P_s - 1)$ add a positive integer.

For all terms greater than $0 + \frac{P_s + 1 + 1}{2} \times (P_s - 1)$ and less than $0 + (P_s + 1)$ 1) \times ($P_s - 1$) substract a positive integer.

Therefore revising the number of prime numbers in arithmetic progression $P_{s} - 1 + mP_{s}$ to be at least $(P_{s}) - (\frac{P_{s}+2}{2} - 2)$

$$\frac{P_s + 1 + 1}{2} - 2 < \frac{P_s}{2}$$

Now consider the finite arithmetic progression $\{a + mP_s\}$, where a is in A_s and $0 \le m < P_s$ and $a \ne P_s - 1$.

The approximate arithmetic progress $0 + n(P_s - 1)$ can be adjusted to become $-(P_s - 1) + a + n(P_s - 1)$ where $1 \le n \le P_s + 1$.

For example $1 + mP_s$ has the approximate arithmetic progression $-(P_s - 1) + 1 + n(P_s - 1)$.

The value of a is relatively prime to $P_s - 1$. Therefore for all odd numbers in approximate arithmetic progression $-(P_s-1)+a+n(P_s-1)$ where $3 \le n \le P_s - 1$ to be odd non-prime numbers then for each $-(P_s-1)+a+n(P_s-1)$ must be divisable by n. But $-(P_s-1)+a+3(P_s-1)$ is not divisable by 3. But $-(P_s-1)+a+(P_s-1)(P_s-1)$ is not divisable by (P_s-1) . Therefore there are at least 2 odd numbers in $-(P_s-1)+a+n(P_s-1)$ which are prime.

Therefore the maximum number of possible non-prime generated which could be non-prime numbers in actual arithmetic progression is $\frac{P_s+1+1}{2}-2$

$$\frac{P_s + 1 + 1}{2} - 2 < \frac{P_s}{2}$$

https://www.reddit.com/r/badmathematics/comments/aljw4b
/elementary_proof_to_the_twin_prime_conjecture_to/

User Leet_Noob rewrote proof structure and proof to 1.