The title Proof to the twin prime conjecture Authors ZhangAik, Leet_Noob Abstract The elementary proof to the twin prime conjecture. The content of the article

Let p_s denote the s'th prime and P_s the product of the first s primes.

Define A_s to be the set of all positive integers less than P_s which are relatively prime to P_s .

1. Each A_s , for $s \ge 3$, contains two elements which differ by 2.

2. Consider the finite arithmetic progression $\{a + mP_s\}$, where a is in A_s and $0 \le m < P_s$. More than half of the elements are prime.

3. Combining 1) and 2), there is always a pair of twin primes which are relatively prime to P_s , and therefore infinitely many twin primes.

For every pair of values a, b in A_s differing by d, there exist at least $p_{s+1}-2$ pairs of values in A_{s+1} differing by d. (And exactly that many when d is not divisible by p_{s+1}).

Given this, the claim follows using induction with d = 2, noting for the base case that 11, 13 are both in A_3 .

The proof is as follows: Suppose a and b are in A_s , with b-a = d. Consider the set of values $a + mP_s$, where $0 \le m < p_{s+1}$. These are all less than P_{s+1} , and since P_s is relatively prime to p_{s+1} , there is a unique value m1 with $a+m1P_s$ divisible by p_{s+1} . Similarly, there is a unique value m2 with $b+m2P_s$ divisible by p_{s+1} . Furthermore, if m1 = m2, then $(b+m2P_s) - (a+m1P_s) = d$ would be divisible by p_{s+1} . So when d is not divisable by p_{s+1} , for the $p_{s+1} - 2$ values of $0 \le m < p_{s+1}$ which are not equal to m1 or m2, the pair $(a + mP_s, b + mP_s)$ are a pair in A_{s+1} differing by d.

Proof of 2

Consider the finite arithmetic progression $\{a + mP_s\}$, where a is in A_s and $0 \le m < P_s$. More than half of the elements are prime.

The largest number generate by $a + mP_s = P_s^2 - 1$ is when $a = P_s - 1$ and $m = P_s - 1$

Therefore all non-prime greater than 1 generated by arithmetic progression $a + mP_s$ must have an odd factor ≥ 3 and $\leq P_s - 1$

Consider the finite arithmetic progression $a + mP_s$, where $n \leq m < n + f$. If there exist a number divisable by f then there is a unique value m1 with $a + m1P_s$ divisible by f.

Therefore in arithmetic progression $P_s - 1 + mP_s$ and $0 \le m < P_s$ only has two numbers $P_s - 1 + 0$ and $P_s - 1 + (P_s - 1) \times P_s$ which are divisable by $P_s - 1$. Able to approximate all the non-prime numbers generated by the arithmetic progression $P_s - 1 + mP_s$ where $0 \le m < P_s$ with arithmetic progression $0 + n(P_s - 1)$ where $1 \le n \le P_s + 1$.

Note that the common difference of the actual arithmetic progression is larger than the common difference of the approximate arithmetic progression. $P_s > P - s - 1$

Therefore approximate arithmetic progression generates more elements than the actual progression between and including the values of $P_s - 1$ and $(P_s - 1)(P_s + 1)$.

The actual non-prime numbers will either be greater than or equal to or less than or equal to the terms in the approximate arithmetic progression.

For each arithmetic progression term $P_s - 1 + mP_s$ there exist unique n1 such that $0 + n1(P_s - 1) \le P_s - 1 + mP_s \le 0 + (n1 + 1)(P_s - 1)$.

The first and last terms are mapped to 1 and $P_s + 1$: $P_s - 1 + 0 \times P_s = 0 + 1(P_s - 1)$ and $P_s - 1 + (P_s - 1)P_s = 0 + (P_s + 1)(P_s - 1)$

If $P_s - 1 + mP_s < frac(P_s)^2 2$ then map $P_s - 1 + mP_s$ to $0 + (n1+1)(P_s - 1)$ If $P_s - 1 + mP_s > frac(P_s)^2 2$ then map $P_s - 1 + mP_s$ to $0 + (n1)(P_s - 1)$ Assume the first and last terms are non-prime: $P_s - 1 + 0 \times P_s = 0 + 1(P_s - 1)$ and $P_s - 1 + (P_s - 1)P_s = 0 + (P_s + 1)(P_s - 1)$.

Applying the constriants of non-prime numbers found in actual arithmetic progression to the approximate arithmetic progression all non-prime numbers must not be divisable by an even number.

1) Therefore the estimate of times non-prime numbers generate in $P_s - 1 + mP_s$ is equal to or less then the number of intervals.

One interval is $\geq 0 + 1(P_s - 1)$ and $< 0 + 2(P_s - 1)$. Another interval is $> 0 + P_s(P_s - 1)$ and $\leq 0 + (P_s + 1)(P_s - 1)$ The intervals $> 0 + (n1+1)(P_s - 1)$ and $< 0 + (n1+3)(P_s - 1)$ when $1 \leq n1 < P_s + 1$ and n1 is odd.

Total number of times when n is odd where $1 \le n \le P_s + 1$ is $\frac{P_s + 1 + 1}{2}$

2) The interval of $\geq 0 + 1 \times (P_s - 1)$ and $< 0 + 2 \times (P_s - 1)$ and the interval of $> 0 + 2 \times (P_s - 1)$ and $< 0 + 4 \times (P_s - 1)$ can be combined into one interval reducing the total estimate of non-prime numbers generated in $P_s - 1 + mP_s$ by 1 because in $P_s - 1 + mP_s$ all numbers are not divisable by 3 when $s \geq 2$

3) The interval of $> 0 + P_s \times (P_s - 1)$ and $\le 0 + (P_s + 1) \times (P_s - 1)$ and the interval of $> 0 + (P_s - 2) \times (P_s - 1)$ and $\le 0 + (P_s - 1) \times (P_s - 1)$ can be combined into one interval reducing the total estimate of non-prime numbers generated in $P_s - 1 + mP_s$ by 1 because in $P_s - 1 + mP_s$ the only numbers divisable by $(P_s - 1)$ are $P_s - 1 + 0$ and $P_s - 1 + (P_s - 1)P_s$.

Therefore the maximum number of possible non-prime which could be

non-prime numbers in actual arithmetic progression is $\frac{P_s+1+1}{2}-2$

$$\frac{P_s + 1 + 1}{2} - 2 < \frac{P_s}{2}$$

Now consider the finite arithmetic progression $\{a + mP_s\}$, where a is in A_s and $0 \le m < P_s$ and $a \ne P_s - 1$.

The approximate arithmetic progress $0 + n(P_s - 1)$ can be adjusted to become $-(P_s - 1) + a + n(P_s - 1)$ where $1 \le n \le P_s + 1$.

For example $1 + mP_s$ has the approximate arithmetic progression $-(P_s - 1) + 1 + n(P_s - 1)$.

The value of a is relatively prime to $P_s - 1$. Therefore for all odd numbers in approximate arithmetic progression $-(P_s-1)+a+n(P_s-1)$ where $3 \le n \le P_s - 1$ to be odd non-prime numbers then for each $-(P_s-1)+a+n(P_s-1)$ must be divisable by n. But $-(P_s-1)+a+3(P_s-1)$ is not divisable by 3. But $-(P_s-1)+a+(P_s-1)(P_s-1)$ is not divisable by (P_s-1) . Therefore there are at least 2 odd numbers in $-(P_s-1)+a+n(P_s-1)$ which are prime.

Therefore the maximum number of possible non-prime generated which could be non-prime numbers in actual arithmetic progression is $\frac{P_s+1+1}{2}-2$

$$\frac{P_s + 1 + 1}{2} - 2 < \frac{P_s}{2}$$

The adjusted approximate arithmetic progression does not generate more non-prime numbers because in each of the actual arithmetic progression where $a \neq P_s - 1$ and $0 \leq m < P_s$ there is unique m1 where $a + m1P_s$ is divisable by $P_s - 1$. Therefore the count of non-prime numbers in arithmetic progression when $a = P_s - 1$ can be applied to arithmetic progressions when $a \neq P_s - 1$.

https://www.reddit.com/r/badmathematics/comments/aljw4b
/elementary_proof_to_the_twin_prime_conjecture_to/

User Leet_Noob rewrote proof structure and proof to 1.