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1 Abstract

Legendre's conjecture, states that there is a prime number between n2 and
(n+ 1)2 for every positive integer n. In this paper, an equation was derived
that accurately determines the number of prime numbers less than n for large
values of n. Then, using this equation, it was proven by induction that there
is at least one prime number between n2 and (n+ 1)2 for all positive integers
n thus proving Legendre's conjecture for su�ciently large values n. The error
between the derived equation and the actual number of prime numbers less
than n was empirically proven to be very small (0.291% at n = 50,000), and
it was proven that the size of the error declines as n increases, thus validating
the proof.

2 Functions

Before we get into the proof, let me de�ne a few functions that are necessary.
Let the function l(x) represent the largest prime number less than x. For

example, l(10.5) = 7, l(20) = 19 and l(19) = 17.
Let the function λ(x) represent the largest prime number less than or

equal to x. For example, λ(10.5) = 7, λ(20) = 19 and λ(23) = 23.
Let the function zp(n) equal the number of odd integers less than or

equal to n that are evenly divisible by p and not equal to p, and not evenly
divisible by another prime number less than p. For example z5(25) = 1 since,
excluding 5, there are only 2 odd integers {15, 25} less than or equal to 25
that are evenly divisible by 5 and only one of them 25 is not divisible by a
prime lower than 5.
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Let the function k(n) represent the number of composite numbers in the
set of odd integers less than or equal to n excluding 1. For example, k(15) = 2
since there are two composite numbers 9 and 15 that are less than or equal
to 15.

Therefore, if there are P elements in the set of odd integers less than n,
then π(n) = P − k(n) where π is the number of prime numbers less than n,
i.e. the prime counting function.

3 Introduction

Legendre's conjecture, proposed by Adrien-Marie Legendre (1752-1833), states
that there is a prime number between n2 and (n + 1)2 for every positive in-
teger n. The conjecture is one of Landau's four problems (1912) on prime
numbers. The Legendre conjecture is the simplest of the Landau problems,
and because all the Landau problems are related, a proof of Legendre's con-
jecture may lead to proofs of the other problems. As of this paper, all of
Landau's problems are unproven.

A graph of the prime numbers between n2 and (n+ 1)2 (Figure 1) shows
that the di�erence between n2 and (n + 1)2 increases at a rate of 2n + 1
and the number of primes between n2 and (n + 1)2 steadily increase with
increasing n. In order for Legendre's conjecture to be false, there must be
a prime gap g larger than 2n + 1 starting at prime p, such that p < n2 and
p + g > (n + 1)2. For example, if n = 100, the distance between n2 and
(n + 1)2 is 201. The �rst prime gap over 201 occurs at p = 20, 831, 323 [1]
which is well beyond n2 or 10,000. For n = 500, the distance is 1001, and the
�rst prime gap greater than 1001 occurs at p = 1, 693, 182, 318, 746, 371 [1]
which is even further beyond n2 or 250,000. It appears that the prime gaps
of size n start at a p >> n2, indicating that Legendre's conjecture is almost
certainly true.

A heuristic proof can be performed with the prime number theorem which

states that n/ln(n) limn→∞ = π(n). It can easily be proven that (n+1)2

ln((n+1)2)
−

n2

ln(n2)
> 1 for all n > 2. Therefore at a su�ciently large value of n, Legendre's

Conjecture is true. However, the error between n/ln(n) and π(n) is quite
large even when n is large (>10% error for n = 50, 000) . So the question
arises, what value of n is su�ciently large? Also, even if the error for a given
value of n is small, it is di�cult to prove that the error will not spike to
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Figure 1: The number of primes between n2 and (n+ 1)2 steadily increases
with increasing n.

>100% at some greater value of n? These reasons make it di�cult to accept
a proof of Legendre's conjecture based on the prime number theorem.

4 Methodology

To calculate the number of primes between n2 and (n + 1)2, we need a for-
mula that accurately predicts the number of primes less than n. Although the
prime number theorem states that n/ln(n) limn→∞ = π(n), this equation dif-
fers signi�cantly from π(n) even for very large values of n. At n = 1, 000, 000,
the value of n/ln(n) underestimates π(n) by 7.8%. Even at n = 100, 000, 000,
the value of n/ln(n) underestimates π(n) by 5.8%. Because the error is so
large and it is di�cult to calculate the precise error for a given value of n, a
better equation for π(n) is necessary.

In this paper, an equation is derived that more precisely determines the
number of prime numbers less than n, and as n increases, the accuracy of
the equation increases very rapidly. Then, using this equation, it is proven
by induction that there is at least one prime number between n2 and (n+1)2

thus proving the Legendre conjecture is true.
To derive an equation to determine the number of prime numbers less

than n, we start with the set of all odd numbers less than n. Then all the
composite numbers in the set that are evenly divisible by 3 are identi�ed.
Then all the composite numbers evenly divisible by 5, 7, 11 ... λ(

√
n) are
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identi�ed where λ(
√
n is the largest prime number less than or equal to

√
n.

We only have to go up to λ(
√
n) because there are no prime numbers greater

than
√
n that evenly divide n that are not evenly divisible by a lower prime

number. By summing up the number of composite numbers in the set of
odd numbers less than n and subtracting this from the total number of odd
numbers less than n, gives us the number of prime numbers less than n.

Let us start with the set of all odd integers less than or equal to integer
n excluding 1 as shown below.

O = {3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,. . . n}
If n is odd, there are (n − 1)/2 elements in the list. If n is even, there

are (n− 2)/2 elements in the list with n− 1 as the largest element. In either
case, as n→∞, the number of elements in the list approaches n/2.

Looking at those elements in O that are evenly divisible by 3 but not
including 3, we notice that every third element after 3 (highlighted in yellow)
beginning with 9, is divisible by 3.

{3,5,7, 9 ,11,13, 15 ,17,19, 21 ,23,25, 27 ,29,31, 33 ,35,37,. . . n}
Let the function z3(n) equal the number of odd integers less than or equal

to n that are evenly divisible by 3 excluding 3. As n→∞, z3(n) approaches
the following equation:

z3(n) limn→∞ = (n/2)(1/3)

Looking at those elements in O that are evenly divisible by 5 but not
including 5, we notice that every �fth element after 5 (highlighted in yellow)
beginning with 15, is divisible by 5.

{3,5,7,9,11,13, 15 ,17,19,21,23, 25 ,27,29,31,33, 35 ,37,. . . ,n}
But notice that, of the set of elements divisible by 5, every third element

is also divisible by 3.
{ 15 ,25,35, 45 ,55,65, 75 ,85,95, 105 ,. . . ,n}
So to avoid double counting, we must multiply the number of elements

evenly divisible by 5 by (2/3). Let the function z5(n) equal the number of
odd integers less than or equal to n that are evenly divisible by 5 excluding
5, but not evenly divisible by 3. As n→∞, z5(n) approaches the following
equation:

z5(n) limn→∞ = (n/2)(2/3)(1/5)

Looking at those elements in O that are evenly divisible by 7, we notice
that every seventh element after 7 beginning with 21, is divisible by 7.
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But notice that every 3rd element (yellow) is also divisible by 3 and every
5th element (green) is divisible by 5.

{ 21 ,35,49, 63 ,77,91, 105 ,119,133, 147 ,161,175. . . n}
{21, 35 ,49,63,77,91, 105 ,119,133,147,161, 175 . . . n}

So to avoid double counting, we must multiply the number of elements
evenly divisible by 7 by (2/3) and (4/5). Let the function z7(n) equal the
number of odd integers less than or equal to n that are evenly divisible by 7
excluding 7, but not evenly divisible by 5 or 3. As n→∞, z7(n) approaches
the following equation:

z7(n) limn→∞ = (n/2)(2/3)(4/5)(1/7)

The general formula for the number of elements in N that are evenly
divisible by prime number p excluding p, and not evenly divisible by a prime
number less than p is as follows:

zp(n) limn→∞ = (n/2)(2/3)(4/5)(6/7)(10/11). . . ((l(p)− 1)/l(p))(1/p)
or

zp(n) lim
n→∞

= (
n

2
)(

1

p
)

l(p)∏
q=3

q prime

(q − 1)/q

The total number of composite numbers in the set of odd numbers less
than or equal to n, de�ned as k(n), is thus de�ned as follows:

k(n) limn→∞ = z3(n) + z5(n) + z7(n) + z11(n) + ...+ zλ(√n)(n)

This can be written as

k(n) = (
n

2
)

λ(
√
n)∑

p=3
p prime

(
1

p
)

l(p)∏
q=3

q prime

(q − 1)

q


Let us de�ne the function W (x), which represents the fraction of the odd

numbers less than n that are composite numbers:

W (x) =
x∑
p=3

p prime

(
1

p
)

l(p)∏
q=3

q prime

(q − 1)

q
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where x is a prime number and the sum and products are over prime numbers.
Then the equation for k(n) simpli�es to the following:

k(n) = (n
2
)W (λ(

√
n))

Thus, the number of primes less than or equal to n limn→∞ is the total
number of odd numbers less than n minus k(n):
π∗(n) = (n/2)− k(n)
π∗(n) = (n/2)− (n/2)W (λ(

√
n))

π∗(n) = (n/2)(1−W (λ(
√
n)))

where π∗(n) is the predicted number of prime numbers less than n.
The equation for the number of primes less than n as n→∞ is:

Equation 1: π∗(n) = (n
2
)(1−W (λ(

√
n)))

To verify that no mistakes were made in the derivation of equation 1 and
to determine at what point the equation converges to the actual number of
prime numbers less than n, the actual number of primes less than n (blue)
was plotted against equation 1 (orange) in Figure 2A. Equation 1 slightly
underestimated the actual number of primes for n <= 5, 000, but for n <=
50, 000 in Figure 2B, the curves were virtually indistinguishable. The curve
for the actual number of primes less than n (blue) was made thicker so it
can be viewed since it was completely obscured by the number of primes
predicted by equation 1 (orange). The curve for the prime number theorem
n/ln(n) (gray) was also included for comparison and grossly underestimates
the actual number of prime numbers less than n.

A graph of the absolute di�erence between equation 1 and the actual
number of primes less than n for n = 20 to 50,000, shows that as n in-
creases, the error decreases (Figure 3). As n increases, the di�erence be-
tween equation 1 and the actual number of primes decreases down to 0.291%
at n = 50, 000 (blue line). The di�erence between the prime number the-
orem n/ln(n) and the actual number of primes decreases at a much slower
rate and at n = 50, 000, the percent di�erence is 10% (orange line). More
will be discussed about the error later in this paper.

5 The Proof of Legendre's Conjecture

Now that we have an equation that accurately determines the number of
primes less than n for large values of n, we can prove Legendre's conjecture
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Figure 2: The actual number of primes less than n (blue) is slightly un-
derestimated by equation 1 (orange) for values of n up to 5,000 (A). But for
values of n up to 50,000, (B) the curves are virtually indistinguishable. The
curve for n/ln(n) (gray) was also included for comparison.

Figure 3: Comparison of equation 1 and n/ln(n) to the actual number of
primes less than n. As n increases, the di�erence between equation 1 and
the actual number of primes rapidly decreases (blue line). The di�erence
between n/ln(n) and the actual number of primes decreases at a much slower
rate (orange line).
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by induction. However, to perform proof by induction, we must �rst get
(1 − W (pi+1)) in terms of W (pi). To do this, we must look at the actual
values of (1−W (pi)).

1−W (3) = 1− (1
3
) = 2

3

1−W (5) = 1 - (1
3
) − (2

3
)(1

5
) = (2

3
)(4

5
)

1−W (7) = 1 - (1
3
)− (2

3
)(1

5
) − (2

3
)(4

5
)(1

7
) = (2

3
)(4

5
)(6

7
)

1−W (11) = 1 - (1
3
)− (2

3
)(1

5
)− (2

3
)(4

5
)(1

7
) − (2

3
)(4

5
)(6

7
)( 1

11
) = (2

3
)(4

5
)(6

7
)(10

11
)

Notice the value of 1−W (pi) (yellow) can be substituted into the green part
of 1 − W (pi+1). Therefore, these equations for 1 − W (pi) can recursively
de�ned as:

Equation 2:

1−W (pi+1) =

(
(pi+1 − 1)

pi+1

)
(1−W (pi))

Using equation 1 to determine the number of primes less than n, we can
calculate the number of primes between n2 and (n+ 1)2.
π∗(n2) = (n2/2)(1−W (λ(n)))
π∗((n+ 1)2) = ((n+ 1)2/2)(1−W (λ(n+ 1)))
There are two cases. The �rst case is where pi ≤ n < pi+1 − 1 in which case
λ(n) = λ(n + 1) = pi. The second case is where n = pi − 1 in which case
λ(n) = pi−1 and λ(n+ 1) = pi.

Case 1: Let us look at the case where pi ≤ n < pi+1 − 1.
Let us prove for all pi ≤ n < pi+1 − 1, there is at least 1 prime number
between n2 and (n + 1)2. That means the di�erence between π∗((n + 1)2)
and π∗(n2) must be greater than 1.
π∗(n2) = (n2/2)(1−W (λ(n)))
π∗((n+ 1)2) = ((n+ 1)2/2)(1−W (λ(n+ 1))) = ((n+ 1)2/2)(1−W (λ(n)))
Let ∆π(n2) be the di�erence between π((n+ 1)2) and π(n2).
∆π(n2) = π∗((n+ 1)2)− π∗(n2)
∆π(n2) = ((n+ 1)2/2)(1−W (λ(n)))− (n2/2)(1−W (λ(n)))
∆π(n2) = {((n+ 1)2/2)− (n2/2)}(1−W (λ(n)))
∆π(n2) = {((n+ 1)2 − n2)/2)}(1−W (λ(n)))
∆π(n2) = {((n2 + 2n+ 1)− n2)/2)}(1−W (λ(n)))
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Equation 3:

∆π(n2) =

(
(2n+ 1)

2

)
(1−W (λ(n)))

To prove ∆π(n2) > 1 for all pi ≤ n < pi+1 − 1, we will use induction.
Base case n = 3. Plugging 3 for n into equation 3 gives us the following:
∆π(n2) = {((2n+ 1)/2)}(1−W (λ(n)))
∆π(32) = ((2× 3 + 1)/2)(1−W (λ(3)))
∆π(32) = (7/2)(1− (1/3))
∆π(32) = (7/2)(2/3)
∆π(32) = (7/3) > 1

Assuming ∆π(n2) = ((2n+ 1)/2)(1 − W (λ(n))) > 1 for all pi ≤ n <
pi+1 − 1 we must prove that ∆π((n+ 1)2) > 1.
Plugging n+ 1 for n in equation 3 gives the following:
∆π(n2) = ((2n+ 1)/2)(1−W (λ(n)))
∆π((n+ 1)2) = ((2(n+ 1) + 1)/2)(1−W (λ(n+ 1)))
∆π((n+ 1)2) = ((2n+ 3)/2)(1−W (λ(n)))
Taking the ratio of ∆π((n+ 1)2)/∆π(n2) gives
∆π((n+1)2)/∆π(n2) = ((2n+ 3)/2)(1−W (λ(n)))/((2n+ 1)/2)(1−W (λ(n)))
∆π((n+ 1)2)/∆π(n2) = ((2n+ 3)/2)/((2n+ 1)/2)
∆π((n+ 1)2)/∆π(n2) = (2n+ 3)/(2n+ 1) > 1
This proves that for all pi ≤ n < pi+1 − 1 where p is a prime number,
there is at least 1 prime number between n2 and (n + 1)2. In fact, since
∆π((n + 1)2) > ∆π(n2), this proves that the number of primes between n2

and (n + 1)2 increases with increasing n, which is corroborated by the data
in Figure 1.

Case 2: Let us look at the case where n = p− 1.
π∗(n2) = (n2/2)(1−W (λ(n)))
π∗((n+ 1)2) = ((n+ 1)2/2)(1−W (λ(n+ 1)))
Suppose n = pi+1 − 1, then λ(n) = pi and λ(n+ 1) = pi+1.
Substituting pi for λ(n) and substituting pi+1 for λ(n+1) gives the following:
π∗(n2) = (n2/2)(1−W (pi))
π∗((n+ 1)2) = ((n+ 1)2/2)(1−W (pi+1))
π∗((n+ 1)2) = ((n+ 1)2/2)[(pi+1 − 1)/pi+1](1−W (pi)) using equation 2
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The di�erence between π∗(n2) and π∗((n+ 1)2) gives:
∆π(n2) = π∗((n+ 1)2)− π∗(n2)
∆π(n2) = ((n+ 1)2/2)[(pi+1 − 1)/pi+1](1−W (pi))− [n2/2](1−W (pi))
= {((n+ 1)2)(pi+1 − 1)/pi+1 − n2}(1−W (pi))/2
Substituting n with pi+1 − 1 gives the following:
= {p2i+1(pi+1 − 1)/pi+1 − (pi+1 − 1)2}(1−W (pi))/2
= {p2i+1 − pi+1 − (p2i+1 − 2pi+1 + 1)}(1−W (pi))/2
= {p2i+1 − pi+1 − p2i+1 + 2pi+1 − 1)}(1−W (pi))/2
= {pi+1 − 1}(1−W (pi))/2

Equation 4: ∆π(n2) = (pi+1 − 1)(1−W (pi))/2

To prove ∆π(n2) > 1 for all n = pi+1 − 1, we will use induction.
Base case pi+1 = 5, pi = 3 and n = pi+1 − 1 = 4.
Plugging 4 for n, and 5 for pi+1 and 3 for pi into equation 4 gives:
∆π(42) = (5− 1)(1−W (3))/2
∆π(42) = 4(1− (1/3))/2
∆π(42) = 4(2/3)/2
∆π(42) = 4/3 > 1

Assuming ∆π(n2) > 1 for all n = pi+1 − 1
we must prove ∆π(n2) > 1 for all n = pi+2 − 1
∆π((pi+2 − 1)2) = (pi+2 − 1)(1−W (pi+1))/2
∆π((pi+2 − 1)2) = (pi+2 − 1)((pi+1 − 1)/pi+1)(1−W (pi))/2 using equation 2
∆π((pi+2 − 1)2) = {(pi+2 − 1)/pi+1}{(pi+1 − 1)(1−W (pi))/2}
Since we know (pi+2−1)/pi+1 > 1 and we assumed (pi+1−1)(1−W (pi))/2 > 1,
the product must be greater than 1. This proves that for all n = p− 1 where
p is a prime number, there is at least 1 prime number between n2 and (n+1)2

and that the number of prime numbers between n2 and (n+1)2 also increases
with increasing n.

6 Error Analysis

Unlike the prime number theorem, equation 1 is very accurate (0.291% error
at n = 50, 000) and the limits on the error can be precisely determined.
Figure 3 shows that the relative di�erence between the actual number of
primes and the number of primes predicted by equation 1, decreases as n
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increases. This is expected since the limit n → ∞ was used to estimate
number of composite numbers less than n. However, a �gure does not make
a proof. To prove the error does decreases as n increases, we have to look at
each source of error in the derivation of equation 1.

We start by calculating the errors associated with the derivation of the
W (x) function. Expanding the W(x) function of equation 1, we get the fol-
lowing equation:

W (λ(
√
n)) = 1

3
+(1

5
)(2

3
)+(1

7
)(2

3
)(4

5
)+...+( 1

λ(
√
n)

)(2
3
)(4

5
)(6

7
)(10

11
)...( (l(λ(

√
n))−1)

l(λ(
√
n))

).

The �rst fraction of the W(x) function is 1/3. This is an estimate for the
number of elements in the set of odd integers less than or equal to n that are
evenly divisible by 3. This error depends on n. A graph of di�erence between
the actual fraction of elements evenly divisible by 3 excluding 3, versus 1/3
(Figure 4A) shows that the di�erence decreases as n gets large. Only odd
values of n were plotted since even values of n have the same number of odd
integers as n− 1 and does not add additional information. The graph starts
at n = 9 since W (λ(

√
n)) is not de�ned for values of n less than 9.

For example, for n = 9, there are 4 odd integers less than or equal to n, 1 of
which {9} is evenly divisible by 3. So the di�erence is (1/3)−(1/4) = 0.08333.
For n = 11, there are 5 odd integers less than or equal to n, 1 of which {9}
is evenly divisible by 3. So the di�erence is (1/3)− (1/5) = 0.13333.
For n = 13, there are 6 odd integers less than or equal to n, 1 of which {9}
is evenly divisible by 3. So the di�erence is (1/3)− (1/6)) = 0.16667.
For n = 15, there are 7 odd integers less than or equal to n, 2 of which {9,15}
are evenly divisible by 3. So the di�erence is (1/3)− (2/7) = 0.04762.

Though it is obvious that Figure 4A is a declining curve, to be rigorous,
we must prove that the curve declines. Notice that in Figure 4A, the local
maxima occur at ni = 7 + 6i where i is an integer greater than or equal to
0. The value of i also corresponds to the number of composite integers less
than n that are evenly divisible by 3. Let ε3(n) represent the error between
1/3 and actual fraction of odd integers less than n that are divisible by 3.
Examining the values of ε3(n) at the local maxima gives the following:
ε3(13) = 1/3− 1/6
ε3(19) = 1/3− 2/9
ε3(25) = 1/3− 3/12
ε3(31) = 1/3− 4/15
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Figure 4: Graph of the error from estimating the fraction of elements evenly
divisible by 3 as 1/3 (A) and the fraction of elements evenly divisible by 3,
5, 7 and 11 as 1/3, 1/5, 1/7 and 1/11 respectively (B).

Let ε∗3(n) represent the upper bound on the value of ε3(n). In other words,
for all values of n, ε3(n) <= ε∗3(n). By �tting a curve through the local max-
ima, we can derive ε∗3(n) as follows:
ε∗3(n) = 1/3− (n− 7)/3(n− 1)
ε∗3(n) = (1/3)(6/(n− 1))

Since n is in the denominator and a constant is in the numerator, this
proves that the error approaches 0 as n lim→∞.

The next set of fractions in the W(x) function is (1/5)(2/3). The fraction
1/5, is an estimate for the number of elements in the set of odd integers less
than or equal to n that are evenly divisible by 5. As can be seen in Figure 4B,
this curve also appears to be declining with local maxima at ni = 13 + 10i.
Fitting a curve to the local maxima gives us the following equation:
ε∗5(n) = 1/5− (n− 13)/5(n− 1)
ε∗5(n) = (1/5)(12/(n− 1))

Since n is in the denominator and a constant is in the numerator, this
proves that this error also approaches 0 as n increases.

The general formula for the maximum error for all prime numbers p less
than λ(

√
n) is

ε∗p(n) = 1/p− ((n− (3p− 2))/(p(n− 1)))
ε∗p(n) = (1/(n− 1))(3p− 3)/p
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Figure 5: Graph of the error from estimating the fraction of elements di-
visible by 5 that are not evenly divisible by 3 as 2/3 (A) and the fraction of
elements divisible by 5, 7, 11 and 13 that are not evenly divisible by 3 (B).

Also note that in Figure 4B, every successive prime number, the initial
error is decreasing.
ε∗3(9) > ε∗5(25) > ε∗7(49) > ε11

∗(121)...
The fraction 2/3 in the term (1/5)(2/3) represents the number of elements

in the set of odd integers less than or equal to n that are divisible by 5 but
not evenly divisible by 3. Let ε2/3,5(n) represent the di�erence between 2/3
and the fraction of elements less than n that are evenly divisible by 5 and
not evenly divisible by 3 (Figure 5A). The local maxima occur at n= 45, 75,
105, ... 45+30i ...
ε2/3,5(45) = 2/3− 2/4
ε2/3,5(75) = 2/3− 4/7
ε2/3,5(105) = 2/3− 6/10
ε2/3,5(135) = 2/3− 8/13
Fitting a curve through the local maxima gives the following equation:
ε∗2/3,5(n) = (2/3) ∗ (10/(n− 5))

By �tting a curve through the local maxima of all the errors for fractions
of the form (q-1)/q in the W (x) function, we get the general formula for
maximal error as follows:

ε∗(q−1)/q,p(n) = (q−1)
q

(q+1)
(q−1)

p
(n−p)

13



Since all sources of error decline as n increases, the overall error must
decline as n increases. The local maxima may align in some areas and not
align in other areas resulting in peaks in Figure 3. However, since local
maxima of all the curves in Figure 4B decline with increasing n, subsequent
alignments of local maxima will result in peaks with a lower magnitude.

7 Maximum Error

Since the curve in Figure 3 is far from smooth, and even though we know
that the error decreases as n increases, this raises a question. What if all
the peaks in all the curves in Figure 4B and 5B happen to align at some
very large value of n, is it possible that we encounter a very large error >
100%? Since we know the upper limits on the errors for each of the fractions
in W(x), we can combine all the maximal errors to determine the maximum
possible error for all values of n. Let εmax(n) represent the maximum error
of the combination of all the ε∗p(n) and ε∗(q−1)/q,p(n).

εmax(n) = ε∗3 + (1
5
)(2

3
)(ε∗5/(

1
5
) + ε∗2/3,5/(

2
3
)) + (1

7
)(2

3
)(4

5
)(ε∗7/(

1
7
) + ε∗2/3,7/(

2
3
) +

ε∗4/5,7/(
4
5
)) + ...+ [(1

p
)
∏l(p)

q=3
(q−1)
q

](ε∗p/(
1
p
) +

∑l(p)
q=3 ε

∗
(q−1)/q,p/

(q−1)
q

]

where p = λ(
√
n) and the sum an products are over prime numbers only.

Substituting the values for all the ε∗ functions gives the following equa-
tion:
Equation 5:

εmax(n) =

λ
√
n∑

p=3
p prime


(

1

p
)

l(p)∏
q=3

q prime

(q − 1)

q


(3p− 3)

(n− 1)
+

p

(n− p)
×

l(p)∑
r=3

r prime

(r + 1)

(r − 1)




Dividing equation 5 by W (λ(
√
n)) gives us the relative error. A graph

of the equation 5 relative to W (λ(
√
n)) (Figure 6) demonstrates that the

maximum error (blue) is always greater than the actual error (orange). Notice
the local maxima of εmax(n) occur where n = p2, these are the points were
a term is added to W (λ(

√
n). The largest prime p, such that p2 < 50, 000 is

p = 223 and p2 = 49, 729. The value of εmax(49, 729)/W (223) = 0.008324 or
0.8324%.

If we can prove that the εmax(n) relative to W (λ(
√
n)) declines, then

this proves that the maximal error in the W (λ(
√
n)) function cannot ex-

ceed 0.8324% for all n > 50, 000. Notice that equation 5 is very similar

14



Figure 6: Maximum relative error between W (λ(
√
n)) and the fraction

of odd composite numbers less than n. The maximum relative error of
W (λ(

√
n)) (blue line) declines with increasing n but has local maxima at

n = p2. The maximum error is always greater than the actual error (orange
line).

to the W (x) function except that every element is multiplied by [ (3p−3)
(n−1) +

p
(n−p) ×

∑l(p)
r=3

(r+1)
(r−1) ]. Every time n increases to n = p2, another term is added

to εmax(n) and another term is added to the W (x) function. This means

that the numerator of the relative error increases by [(1
p
)
∏l(p)

q=3
(q−1)
q

][ (3p−3)
(p2−1) +

( p
n−p)×

∑l(p)
q=3

(q+1)
(q−1) ] and the denominator increases by (1

p
)
∏l(p)

q=3
(q−1)
q

]. If you

let g(p) represent the ratio of these terms and you substitute n = p2, you get
Equation 6:

g(p) = (
3p− 3

p2 − 1
) + (

1

p− 1
)×

l(p)∑
q=3

q prime

q + 1

q − 1

If we can show that g(p) goes to 0 as n increases, then we know that the
local maxima of εmax(n) relative toW (λ(

√
n) also goes to 0. Let π(n) denote

the number of primes less than or equal to n, and let Hn :=
∑n

k=1
1
k
denote

15



the n-th harmonic sum. Then

l(p)∑
q=3

q prime

q + 1

q − 1
=

p−1∑
q=3

q prime

(
1 +

2

q − 1

)

= (π(p− 1)− 1) + 2

p−1∑
q=3

q prime

1

q − 1

≤ π(p− 1)− 1 + 2

p−2∑
k=2

1

k

= π(p− 1)− 1 + 2(Hp−2 − 1)

= π(p− 1) + 2Hp−1 − 3.

For all n > 1 we have the well-known upper bounds

π(n) ≤ n

ln(n)

(
1 +

3

2 log(n)

)
and Hn ≤ ln(n+ 1).

It follows that

g(p) =
3(p− 1)

p2 − 1
+

1

p− 1

p−1∑
q=3

q prime

q + 1

q − 1

≤ 3(p− 1)

p2 − 1
+

1

p− 1
(π(p− 1) + 2Hp−2 − 3)

≤ 3

p+ 1
+

1

p− 1

(
p− 1

ln(p− 1)

(
1 +

3

2 ln(p− 1)

)
+ ln(p− 1)− 3

)
=

3

p+ 1
+

1

ln(p− 1)

(
1 +

3

2 ln(p− 1)

)
+

ln(p− 1)

p− 1
− 3

p− 1
.

The term ln(p−1)
p−1 approaches 0 as p increases. All the other terms have

a constant in the numerator and p in the denominator, therefore they also
approach 0 as p increases. Therefore, g(p) approaches 0 as p increases.

This proves that even if all the peaks of ε∗p and ε
∗
(q−1)/q,p align, the error

in the W (λ(
√
n)) function cannot exceed 0.8324% for all n > 50, 000.
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8 Summary

In summary, the following equation was derived that accurately determines
the number of prime numbers less than n for large values of n.

π∗(n) = (n/2)(1−W (λ(
√
n)))

where λ(
√
n) is the largest prime number less than or equal to

√
n and W (x)

is de�ned as follows:

W (x) =
x∑
p=3

p prime

(
1

p
)

l(p)∏
q=3

q prime

(q − 1)

q


where x is a prime number, l(p) is the largest prime number less than p, and
the sum and products are over prime numbers.

It was then proven by induction, that the number of prime numbers
between n2 and (n + 1)2 is greater than 1 for all positive integers n, thus
con�rming the Legendre Conjecture.

It was also shown that the error between equation 1 and the actual number
of primes less than n is very small (ε = 0.291% for n = 50, 000) and it was
proven that, though the error in the W (λ(

√
n)) function �uctuates, the error

decreases as n increases and it cannot exceed 0.8324% for all n > 50, 000.

9 Future Directions

Future work will involve applying this technique to prove other prime number
conjectures such as the Twin Prime Conjecture and Polignac's Conjecture [2].
Polignac's Conjecture states that there is an in�nite number of prime pairs
(p1, p2) such that |p2 − p1| = 2i where i is an integer greater than 0. The
Twin Prime Conjecture is the case where i = 1.

To prove the Twin Prime conjecture, we need to �nd the number of twin
primes less than an integer n, (π2(n)) . To do this, we �rst pair odd numbers
(x, y) such that x+2 = y and y <= n. For example, (3,5),(5,7),(7,9),(9,11)...,(n-
4,n-2),(n-2,n). Then by eliminating pairs that are divisible by 3, 5, 7, 11 etc,
the remaining pairs are twin primes.
The number of twin primes less than n will approach the following equation
as n gets large:
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π2(n) = P (1− 2W (λ(
√
n)))

where

W (x) =
x∑
p=3

p prime

(1/p)

l(p)∏
q=3

q prime

(q − 2)

q
.

Using proof by induction, it can be shown that the number of twin primes
increases inde�nitely as n increases.
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