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1 Abstract

Legendre's conjecture, states that there is a prime number between n2 and
(n+ 1)2 for every positive integer n. In this paper, an equation was derived
that determines the number of prime numbers less than n for large values
of n. Then it is proven by mathematical induction that there is at least one
prime number between n2 and (n+1)2 for all positive integers n thus proving
Legendre's conjecture.

2 Functions

Before we get into the proof, let me de�ne a few functions that are necessary.
Let the function l(x) represent the largest prime number less than x. For

example, l(10.5) = 7, l(20) = 19 and l(19) = 17.
Let the function λ(x) represent the largest prime number less than or

equal to x. For example, λ(10.5) = 7, λ(20) = 19 and λ(23) = 23.
Let the function k(n) represent the number of composite numbers in

the set of odd numbers less than or equal to n excluding 1. For example,
k(15) = 2 since there are two composite numbers 9 and 15 that are less than
or equal to 15.

Let the function π(n) represent the number of prime numbers in the set
of odd numbers less than or equal to n. For example, π(15) = 5 since there
are 5 prime numbers {3,5,7,11,13} that are less than 15.

Let capital P represent the number of all the odd integers less than n
excluding 1.

Therefore π(n) = P − k(n).
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3 Methodology

Legendre's conjecture, proposed by Adrien-Marie Legendre, states that there
is a prime number between n2 and (n+ 1)2 for every positive integer n. The
conjecture is one of Landau's problems (1912) on prime numbers. In this
paper, an equation is derived to determine the number of prime numbers
less than n2. Then by mathematical induction, it is shown that there is at
least one prime number between n2 and (n+ 1)2 thus proving the Legendre
conjecture is true.

To derive an equation to determine the number of prime numbers less
than n, we start with the set of all odd numbers less than n. Then all the
composite numbers in the set that are evenly divisible by 3 are identi�ed.
Then all the composite numbers evenly divisible by 5, 7, 11 ... λ(

√
n) are

identi�ed where λ(
√
n is the largest prime number less than or equal to n.

We only have to go up to λ(
√
n) because there are no prime numbers greater

than
√
n that evenly divide n that are not evenly divisible by a lower prime

number. By summing up the number of composite numbers in the set of
odd numbers less than n and subtracting this from the total number of odd
numbers less than n, gives us the number of prime numbers less than n.

Let us start with the set of all odd integers less than integer n excluding
1 as shown below.
{3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,. . . n}
There are P = (n-1)/2 elements in the list.
Looking at those elements in the set that are divisible by 3, we notice that
every third element after 3 (highlighted in yellow) beginning with 9, is divis-
ible by 3.
{3,5,7, 9 ,11,13, 15 ,17,19, 21 ,23,25, 27 ,29,31, 33 ,35,37,. . . n}
Thus, as n → ∞, the number of elements evenly divisible by 3, approaches
the following equation:

Number of elements divisible by 3 limn→∞ = P/3

Looking at those elements in the set that are divisible by 5, we notice
that every �fth element after 5 (highlighted in yellow) beginning with 15, is
divisible by 5.
{3,5,7,9,11,13, 15 ,17,19,21,23, 25 ,27,29,31,33, 35 ,37,. . . ,n}
But notice that, of the set of elements divisible by 5, every third element is
also divisible by 3.
{ 15 ,25,35, 45 ,55,65, 75 ,85,95, 105 ,. . . ,n}
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So to avoid double counting, we must multiply the number of elements evenly
divisible by 5 by (2/3) giving the following equation:

Number of elements divisible by 5 and not 3 limn→∞ = P (2/3)(1/5)

Looking at those elements in the set that are divisible by 7, we notice
that every seventh element after 7 (highlighted in yellow) beginning with 21,
is divisible by 7.
But notice that every 3rd element (yellow) is also divisible by 3 and every
5th element (green) is divisible by 5.
{ 21 ,35,49, 63 ,77,91, 105 ,119,133, 147 ,161,175. . . n}
{21, 35 ,49,63,77,91, 105 ,119,133,147,161, 175 . . . n}
So to avoid double counting, we must multiply the number of elements evenly
divisible by 7 by (2/3) and (4/5) giving the following equation:

Number of elements divisible by 7 and not 5 or
3 limn→∞ = P (2/3)(4/5)(1/7)

The general formula for the number of elements in the set of odd numbers
less than n that are evenly divisible by prime number p and no lower prime
number as n→∞ is as follows:

Number of elements divisible only by
p limn→∞ = P (2/3)(4/5)(6/7)(10/11). . . ((l(p)− 1)/l(p))(1/p)

or
Number of elements divisible only by p limn→∞ = P (1/p)

∏l(p)
q=3(q − 1)/q

The total number of composite numbers in the set of odd numbers less
than or equal to n, de�ned as k(n), is thus de�ned as follows:
k(n) = P{1/3+(2/3)(1/5)+(2/3)(4/5)(1/7)+(2/3)(4/5)(6/7)(1/11)+ . . . +
(2/3)(4/5)(6/7)(10/11). . . ((l(λ(

√
n))− 1)/l(λ(

√
n)))(1/λ(

√
n))}

This can be written as

k(n) = P
∑λ(

√
n))

p=3 (1/p)
∏l(p)

q=3(q − 1)/q

Let us de�ne the function W (x) as follows:

W (x) =
∑x

p=3(1/p)
∏l(p)

q=3(q − 1)/q

where x is a prime number and the sum and products are over prime numbers
Then the equation for k(n) simpli�es to the following:
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Figure 1: The actual number of primes less than n (blue) is slightly un-
derestimated by equation 1 (orange) for values of n up to 5,000 (A). But for
values of n up to 50,000, (B) the curves are virtually indistinguishable.

k(n) = PW (λ(
√
n))

The number of primes less than or equal to n limn→∞ is:
π(n) = P − k(n)
= P − PW (λ(

√
n))

= P (1−W (λ(
√
n)))

As n approaches ∞, the value of P approaches (n/2). Substituting P with
(n/2) in the above equation gives the following equation for the number of
primes less than n as n approaches ∞.

Equation 1: π(n) = (n/2)(1−W (λ(
√
n)))

To verify that no mistakes were made in the derivation of equation 1 and
to determine at what point the equation converges to the actual number of
prime numbers less than n, the actual number of primes less than n (blue)
was plotted against equation 1 (orange) in Figure 1. Equation 1 slightly
underestimated the actual number of primes for n <= 5, 000, but for n <=
50, 000, the curves were virtually indistinguishable. The curve for the actual
number of primes less than n was made thicker so it can be viewed since it
was completely obscured by the number of primes predicted by equation 1.
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4 The Proof of Legendre's Conjecture

In order to use proof by induction, we must �rst get (1− 2W (pi+1)) in terms
of W (pi). To do this, we must look at the actual values of 2W (pi).

1−W (3) = 1− (1/3) = 2/3

1−W (5) = 1 � (1/3) − (2/3)(1/5) = (2/3)(4/5)

1−W (7) = 1 � (1/3) � (2/3)(1/5) − (2/3)(4/5)(1/7) = (2/3)(4/5)(6/7)

1−W (11) = 1 � (1/3) � (2/3)(1/5) - (2/3)(4/5)(1/7) −(2/3)(4/5)(6/7)(1/11) =

(2/3)(4/5)(6/7)(10/11)

Notice the value of 1−W (pi) (yellow) can be substituted into the green part
of 1−W (pi+1). Therefore, these equations can be simpli�ed to:

Equaton 2: 1−W (pi+1) = [(pi+1 − 1)/pi+1](1−W (pi))

Now that we have a formula for number of primes less than n, we can
calculate the number of primes between n2 and (n+ 1)2.
π(n2) = (n2/2)(1−W (λ(n)))
π((n+ 1)2) = ((n+ 1)2/2)(1−W (λ(n+ 1)))
There are two cases. The �rst case is where pi ≤ n < pi+1 − 1 in which case
λ(n) = λ(n + 1) = pi. The second case is where n = pi − 1 in which case
λ(n) = pi−1 and λ(n+ 1) = pi.

Case 1: Let us look at the case where pi ≤ n < pi+1 − 1.
Let us prove for all pi ≤ n < pi+1 − 1, there is at least 1 prime number
between n2 and (n+ 1)2. That means the di�erence between π((n+ 1)2) and
π(n2) must be greater than 1.
π(n2) = (n2/2)(1−W (λ(n)))
π((n+ 1)2) = ((n+ 1)2/2)(1−W (λ(n+ 1))) = ((n+ 1)2/2)(1−W (λ(n)))
Let ∆π(n2) be the di�erence between π((n+ 1)2) and π(n2).
∆π(n2) = π((n+ 1)2)− π(n2)
∆π(n2) = ((n+ 1)2/2)(1−W (λ(n)))− (n2/2)(1−W (λ(n)))
∆π(n2) = {((n+ 1)2/2)− (n2/2)}(1−W (λ(n)))
∆π(n2) = {((n+ 1)2 − n2)/2)}(1−W (λ(n)))
∆π(n2) = {((n2 + 2n+ 1)− n2)/2)}(1−W (λ(n)))
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Equation 3: ∆π(n2) = {((2n+ 1)/2)}(1−W (λ(n)))

To prove ∆π(n2) > 1 for all pi ≤ n < pi+1 − 1, we will use mathematical
induction.
Base case n = 3. Plugging 3 for n into equation 3 gives us the following:
∆π(n2) = {((2n+ 1)/2)}(1−W (λ(n)))
∆π(32) = ((2× 3 + 1)/2)(1−W (λ(3)))
∆π(32) = (7/2)(1− (1/3))
∆π(32) = (7/2)(2/3)
∆π(32) = (7/3) > 1

Let's assume ∆π(n2) = ((2n+ 1)/2)(1 −W (λ(n))) > 1 for all pi ≤ n <
pi+1 − 1
Prove that ∆π((n+ 1)2) > 1
Plugging n+ 1 for n in equation 3 gives the following:
∆π(n2) = ((2n+ 1)/2)(1−W (λ(n)))
∆π((n+ 1)2) = ((2(n+ 1) + 1)/2)(1−W (λ(n+ 1)))
∆π((n+ 1)2) = ((2n+ 3)/2)(1−W (λ(n)))
Taking the ratio of ∆π((n+ 1)2)/∆π(n2) gives
∆π((n+1)2)/∆π(n2) = ((2n+ 3)/2)(1−W (λ(n)))/((2n+ 1)/2)(1−W (λ(n)))
∆π((n+ 1)2)/∆π(n2) = ((2n+ 3)/2)/((2n+ 1)/2)
∆π((n+ 1)2)/∆π(n2) = (2n+ 3)/(2n+ 1) > 1
This proves that for all pi ≤ n < pi+1 − 1 where p is a prime number, there
is at least 1 prime number between n2 and (n+ 1)2.

Case 2: Let us look at the case where n = p− 1.
π(n2) = (n2/2)(1−W (λ(n)))
π((n+ 1)2) = ((n+ 1)2/2)(1−W (λ(n+ 1)))
Suppose n = pi+1 − 1, then λ(n) = pi and λ(n+ 1) = pi+1.
Substituting pi for λ(n) and substituting pi+1 for λ(n+1) gives the following:
π(n2) = (n2/2)(1−W (pi))
π((n+ 1)2) = ((n+ 1)2/2)(1−W (pi+1))
π((n+ 1)2) = ((n+ 1)2/2)[(pi+1 − 1)/pi+1](1−W (pi)) using equation 2
The di�erence between π(n2) and π((n+ 1)2) gives:
∆π(n2) = π((n+ 1)2)− π(n2)
∆π(n2) = ((n+ 1)2/2)[(pi+1 − 1)/pi+1](1−W (pi))− [n2/2](1−W (pi))
= {((n+ 1)2)(pi+1 − 1)/pi+1 − n2}(1−W (pi))/2
Substituting n with pi+1 − 1 gives the following:
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= {p2i+1(pi+1 − 1)/pi+1 − (pi+1 − 1)2}(1−W (pi))/2
= {p2i+1 − pi+1 − (p2i+1 − 2pi+1 + 1)}(1−W (pi))/2
= {p2i+1 − pi+1 − p2i+1 + 2pi+1 − 1)}(1−W (pi))/2
= {pi+1 − 1}(1−W (pi))/2

Equation 4: ∆π(n2) = {pi+1 − 1}(1−W (pi))/2

To prove ∆π(n2) > 1 for all n = pi+1 − 1, we will use mathematical
induction.
Base case pi+1 = 5, pi = 3 and n = pi+1 − 1 = 4.
Plugging 4 for n, and 5 for pi+1 and 3 for pi into equation 4 gives:
∆π(42) = (5− 1)(1−W (3))/2
∆π(42) = 4(1− (1/3))/2
∆π(42) = 4(2/3)/2
∆π(42) = 4/3 > 1

Assume ∆π(n2) > 1 for all n = pi+1 − 1
Prove ∆π(n2) > 1 for all n = pi+2 − 1
∆π((pi+2 − 1)2) = (pi+2 − 1)(1−W (pi+1))/2
∆π((pi+2− 1)2) = (pi+2− 1)((pi+1− 1)/pi+1)(1−W (pi))/2 Using equation 2
∆π((pi+2 − 1)2) = {(pi+2 − 1)/pi+1}{(pi+1 − 1)(1−W (pi))/2}
Since we know (pi+2−1)/pi+1 > 1 and we assumed (pi+1−1)(1−W (pi))/2 > 1,
the product must be greater than 1. This proves that for all n = p−1 where p
is a prime number, there is at least 1 prime number between n2 and (n+ 1)2.

5 Summary

In summary, I derived the following equation for the number of prime num-
bers less than n for large values of n.

π(n) = (n/2)(1−W (λ(
√
n)))

where λ(
√
n) is the largest prime number less than or equal to

√
n and W (x)

is de�ned as follows:

W (x) =
∑x

p=3(1/p)
∏l(p))

q=3 (q − 1)/q
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where x is a prime number and the sum and products are over prime numbers.
It was then proven by mathematical induction, that the number of prime
numbers between n2 and (n + 1)2 is greater than 1 for all positive integers
n, thus con�rming the Legendre Conjecture.
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