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Definitive Prove of Legendre's conjecture 

By Kenneth Watanabe, PhD 

Abstract 

Legendre's conjecture, states that there is a prime number between n2 and (n + 1)2 for every 

positive integer n. In this paper, an equation was derived that determines the number of prime 

numbers less than n for large values of n. Then by mathematical induction, it is proven that there 

is at least 1 prime number between n2 and (n + 1)2 for all positive integers n thus proving 

Legendre’s conjecture. 

Introduction 

Legendre's conjecture, proposed by Adrien-Marie Legendre, states that there is a prime number 

between n2 and (n + 1)2 for every positive integer n. The conjecture is one of Landau's problems 

(1912) on prime numbers. In this paper, an equation is derived to determine the number of prime 

numbers less than n2. Then by mathematical induction, it is shown that there is at least 1 prime 

between n2 and (n+1)2 thus proving the Legendre conjecture is true. 

Functions 

Before we get into the proof, let me define a few functions that are necessary. 

Let the function l(x) represent the largest prime number less than x. For example, l(10.5) = 7, 

l(20) = 19 and l(19) = 17. 

Let the function λ(x) represent the largest prime number less than or equal to x. For example, 

λ(10.5) = 7, λ(20) = 19 and λ(23) = 23. 

https://en.wikipedia.org/wiki/Prime_number
https://en.wikipedia.org/wiki/Positive_integer
https://en.wikipedia.org/wiki/Adrien-Marie_Legendre
https://en.wikipedia.org/wiki/Prime_number
https://en.wikipedia.org/wiki/Positive_integer
https://en.wikipedia.org/wiki/Conjecture
https://en.wikipedia.org/wiki/Landau%27s_problems
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Let the function κ(n) represent the number of composite numbers in the set of odd numbers less 

than or equal to n excluding 1. For example, κ(15) = 2 since there are two composite numbers 9 

and 15 that are less than ot equal to 15. 

Let the function π(n) represent the number of prime numbers in the set of odd numbers less than 

or equal to n. For example, for n = 15, π(n) = 5 since there are 5 prime numbers {3,5,7,11,13} 

less than 15.  

Let capital P represent all the odd integers less than n excluding 1. 

Methodology for Proving Legendre’s Conjecture 

To prove Legendre’s conjecture, we will start out with the set of odd integers greater than 1 and 

less than or equal to n. Then we will eliminate the composite (non-prime) numbers leaving just 

the prime numbers. We start by identifying all numbers divisible by 3 but not equal to 3. Then 

we identify all numbers divisible by 5 but not divisible by 3. Then we identify all numbers 

divisible by 7 but not divisible by 5 or 3, etc. This is continued up to λ(√n), the largest prime 

number less than or equal to √n, since there are no prime numbers greater than √n that will 

evenly divide n that are not already divisible by a lower prime. The remaining numbers in the set 

will be the prime numbers less than or equal to n. 

 

Let us start with the list all odd numbers less than n excluding 1 as shown below. 

{3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,…n} 

There are P = (n-1)/2 numbers in the list. 

Excluding 3, every third number (highlighted in yellow) beginning with 9 is divisible by 3. 
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{3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,…n} 

Number of numbers divisible by 3 limit n-> ∞ = P/3 

 

Excluding 5, every fifth number beginning with 15 is divisible by 5. 

{3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,…,n} 

But notice that, of the set of numbers divisible by 5, every third number is also divisible by 3. 

{15,25,35,45,55,65,75,85,95,105,…,n} 

So to avoid double counting, we must multiply by (2/3) giving the following: 

Number of numbers divisible by 5 and not 3 limit n-> ∞ = P(2/3)(1/5) 

 

Excluding 7, every seventh number beginning with 21 is divisible by 7. 

But notice that every 3rd number (yellow) is also divisible by 3 and every 5th number (green) is 

divisible by 5. 

{21,35,49,63,77,91,105,119,133,147,161,175…n} 

{21,35,49,63,77,91,105,119,133,147,161,175…n} 

So to avoid double counting, we must multiply by (2/3) and (4/5) giving the following: 

The number of numbers divisible by 7 and not 5 or 3 limit n-> ∞ = P(2/3)(4/5)(1/7) 
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The general formula for the number of numbers divisible by prime number p but not equal to p 

as n-> ∞ is as follows: 

Number of numbers divisible only by p limit n-> ∞ = P(2/3)(4/5)(6/7)(10/11)…((l(p) – 

1)/l(p))(1/p) 

Number of numbers divisible only by p limit n-> ∞ = P(1/𝑝)∏ (𝑞 − 1)/𝑞
𝑙(𝑝)
𝑞=3  

 

The total number of composite numbers in the set of odd numbers less than or equal to n, defined 

as κ(n), is thus defined as follows: 

κ(n) = P{1/3 + (2/3)(1/5) + (2/3)(4/5)(1/7) + (2/3)(4/5)(6/7)(1/11) + … + 

(2/3)(4/5)(6/7)(10/11)…((l(λ(√n)) – 1)/l(λ(√n)))(1/ λ(√n))} 

This can be written as 

κ(n) = P∑ (
1

𝑝
)∏ (𝑞 − 1)/𝑞

𝑙(𝑝)
𝑞=3

𝜆(√𝑛)
𝑝=3  

Let us define the function W(x) = ∑ (
1

𝑝
)∏ (𝑞 − 1)/𝑞

𝑙(𝑝)
𝑞=3

𝑥
𝑝=3  

where x is a prime number and the sum and products are over prime numbers 

Then the equation for κ(n) simplifies to the following: 

κ(n) = PW(λ(√n)) 

 

The number of primes less than or equal to n limit n-> ∞ is 

π(n) = P - κ(n) 
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= P – PW(λ(√n)) 

= P(1-W(λ(√n))) 

As n approaches ∞, the value of P approaches (n/2). Substituting P with (n/2) in the above 

equation gives the following equation for the number of primes less than n as n approaches ∞. 

π(n) = (n/2)(1-W(λ(√n)))       Equation 1 

To verify that no mistakes were made in the derivation of equation 1, I plotted the actual number 

of primes less than n (blue) against equation 1 (orange) in Figure 1. Equation 1 slightly 

underestimated the actual number of primes for n <= 5,000, but for n <= 50,000, the curves were 

virtually indistinguishable.  

 

Figure 1. The actual number of primes less than n (blue) is slightly underestimated by equation 1 

(orange) for values of n up to 5,000 (A). But for values of n up to 50,000, (B) the curves are 

virtually indistinguishable. 

Since I will be using mathematical induction, I must get the expression 1-W(pi+1) in terms of 

W(pi). To do this, we must look at the actual values of W(p). 

1-W(3) = 1 – (1/3) = 2/3 
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1-W(5) = 1 – (1/3) – (2/3)(1/5) = (2/3)(4/5) 

1-W(7) = 1 – (1/3) – (2/3)(1/5) – (2/3)(4/5)(1/7) = (2/3)(4/5)(6/7) 

Notice the value of 1 - W(pi) (yellow) can be substituted into the green part of 1 - W(pi+1). 

Therefore, these equations can be simplified to: 

1-W(pi+1) = (1-W(pi))(pi+1 - 1)/pi+1      Equation 2 

 

Now that we have a formula for number of primes less than n, we can calculate the number of 

primes between n2 and (n+1)2. 

π(n2) = (n2/2)(1-W(λ(n))) 

π((n+1)2) = ((n+1)2/2)(1-W(λ(n+1))) 

There are two cases. The first case is λ(n) = λ(n+1). This is the case where n ≠ pi – 1. The second 

case is where n = pi – 1 in which case λ(n) = pi-1 and λ(n+1) = pi.  

Case 1: Let us look at the first case where n ≠ p - 1. 

Let us prove for all n ≠ p - 1, there is at least 1 prime number between n2 and (n+1)2. That means 

the difference between π((n+1)2) and π(n2) must be greater than 1. 

π(n2) = (n2/2)(1-W(λ(n))) 

π((n+1)2) = ((n+1)2/2)(1-W(λ(n+1))) = ((n+1)2/2)(1-W(λ(n))) 

Let Δπ(n2) be the difference between π((n+1)2) and π(n2). 

Δπ(n2) = π((n+1)2) - π(n2) 
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Δπ(n2) = ((n+1)2/2)(1-W(λ(n))) - (n2/2)(1-W(λ(n))) 

Δπ(n2) = {((n+1)2/2) - (n2/2)}(1-W(λ(n))) 

Δπ(n2) = {((n+1)2 - n2)/2)}(1-W(λ(n))) 

Δπ(n2) = {((n2 +2n + 1) - n2)/2)}(1-W(λ(n))) 

Δπ(n2) = {((2n + 1)/2)}(1-W(λ(n)))      Equation 3 

To prove Δπ(n2) > 1 for all n ≠ p - 1, we will use mathematical induction. 

Base case n=3. Plugging values into equation 3 gives us the following: 

Δπ(n2) = {((6 + 1)/2)}(1-W(λ(3))) 

Δπ(n2) = (7/2)(1-(1/3)) 

Δπ(n2) = (7/2)(2/3) 

Δπ(n2) = (7/3) > 1 

 

Let’s assume Δπ(n2) = {((2n + 1)/2)}(1-W(λ(n))) > 1 for all n ≠ p – 1 

Prove that Δπ((n+1)2) > 1 

Plugging n+1 for n in equation 3 gives the following: 

Δπ((n+1)2) = {((2(n+1) + 1)/2)}(1-W(λ(n+1))) 

Δπ((n+1)2) = {((2n + 3)/2)}(1-W(λ(n))) 

Taking the ratio of Δπ((n+1)2)/Δπ(n2) gives 
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Δπ((n+1)2)/Δπ(n2) = {((2n + 3)/2)}(1-W(λ(n))) / {((2n + 1)/2)}(1-W(λ(n))) 

Δπ((n+1)2)/Δπ(n2) = {((2n + 3)/2)} / {((2n + 1)/2)} 

Δπ((n+1)2)/Δπ(n2) = (2n + 3)/(2n + 1) > 1 

This proves that for all n ≠ p – 1 where p is a prime number, there is at least 1 prime number 

between n2 and (n+1)2. 

 

Case 2: Let us look at the first case where n = p - 1. 

π(n2) = (n2/2)(1-W(λ(n))) 

π((n+1)2) = ((n+1)2/2)(1-W(λ(n+1))) 

Suppose n = pi+1 – 1, then λ(n) = pi and λ (n+1) = pi+1.  

Substituting pi for λ(n) and substituting pi+1 for λ(n+1) gives the following: 

π(n2) = (n2/2)(1-W(pi)) 

π((n+1)2) = ((n+1)2/2)(1-W(pi+1)) 

π((n+1)2) = ((n+1)2/2)(1-W(pi))(pi+1 - 1)/pi+1   using equation 2 

The difference between π(n2) and π((n+1)2) gives 

Δπ(n2) = π((n+1)2) - π(n2) 

Δπ(n2) = ((n + 1) 2/2)(1-W(pi))(pi+1 - 1)/pi+1 – [n2/2] (1-W(pi)) 

= {((n + 1) 2)(pi+1 - 1)/pi+1 – n2} (1-W(pi))/2 

= {pi+1
2(pi+1 - 1)/pi+1 - (pi+1 – 1)2} (1-W(pi)) /2  substituting n with pi+1 - 1 
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= {pi+1
2 - pi+1 - (pi+1

2 – 2pi+1 + 1)} (1-W(pi))/2 

= {pi+1
2 - pi+1 -  pi+1

2 + 2pi+1 - 1)} (1-W(pi))/2 

= { pi+1 - 1} (1-W(pi))/2 

To prove Δπ(n2) > 1 for all n = pi+1 - 1, we will use mathematical induction. 

Base case pi+1 = 5, pi = 3 and n = pi+1 - 1 = 4. 

Plugging 4 for n, and 5 for pi+1 and 3 for pi gives: 

Δπ(42) = (5-1)(1-W(3))/2 

Δπ(42) = 4(1- (1/3))/2 

Δπ(42) = 4(2/3)/2 

Δπ(42) = 4/3 > 1 

 

Assume Δπ(n2) > 1 for all n = pi+1 - 1 

Prove Δπ(n2) > 1 for all n = pi+2 - 1 

Δπ(n2) = (pi+1 – 1) (1-W(pi))/2  

Δπ(n2) = {(pi+2 – 1)(1-W(pi))(pi+1 - 1)/pi+1}/2    Using equation 2 

Δπ(n2) = {(pi+2 – 1)/ pi+1}{(pi+1 – 1) (1-W(pi))/2} 

Since we know (pi+2 – 1)/ pi+1 > 1 and we assumed (pi+1 – 1) (1-W(pi))/2 > 1, the product must be 

greater than 1. 
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This proves that for all n = p – 1 where p is a prime number, there is at least 1 prime number 

between n2 and (n+1)2. 

Summary 

In summary, I derived the following equation for the number of prime numbers less than n for 

large values of n. 

π(n) = (n/2)(1-W(λ(√n))) 

where λ(√n) is the largest prime number less than or equal to √n and W(x) is defined as follows: 

W(x) = ∑ (
1

𝑝
)∏ (𝑞 − 1)/𝑞

𝑙(𝑝)
𝑞=3

𝑥
𝑝=3  

where x is a prime number and the sum and products are over prime numbers. 

I have proven by mathematical induction, that the number of prime numbers between n2 and 

(n+1)2 is greater than 1 for all positive integers n, thus confirming the Legendre Conjecture. 

 

 

  

 

 

 


