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Kotlářská 2, 611 37 Brno, Czech Republic
e-mail:pamir@physics.muni.cz

January 21, 2019

Abstract

We determine the nonlinear group of transformations between coordinate systems which
are mutually in a constant symmetrical uniform acceleration. The maximal acceleration limit
is a constant which follows from the logical necessity and the kinematical necessity of the
system motion and it is an analogue of the maximal velocity in special relativity. The Pardy
acceleration constant is not the same as the Caianiello acceleration constant in quantum
mechanics and Lambiase acceleration constant in the Riemann space-time and this situation
forms the serious puzzle in physics after the theta-tau puzzle in particle physics and Hawking
black hole puzzle in cosmology. The author transformations of the accelerated systems is
related to the Orlov transformations. The DIRAC experiment in CERN with pionium in the
strong electrical field is discussed.

1 Introduction

The maximal acceleration constant by Pardy and Caianiello can be considered as the integral
part of the theory of physical constants in classical physics and particle physics. The term of
fundamental physical constant is reserved for physical quantities which, according to the current
state of knowledge, are regarded as immutable and as non-derivable from more fundamental
principles. Notable examples are the speed of light c, and the gravitational constant G. The
maximal acceleration constant can be determined by appropriate experiments. One of such
experiment is the Dirac experiment in CERN with pionoum.

The pionium atom A2π is a hydrogen-like bound state of a π+ and a π− meson. This
atom decays predominantely strongly into two uncharged π0π0. The transition matrix of this
decay is directly proportional to the difference of the two S-wave ππ-scattering lengths with
isospin 0 and 2: a0 - a2. The pionium lifetime τ is inversely proportional to the squared
scattering length difference. In the framework of chiral perturbation theory (ChPT), the
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scattering length difference has been precisely calculated. The DIRAC experiment enables to
determine the lifetime of pionium and hence the difference in the two scattering lengths to
provide the possibility to check the ChPT predictions in a model independent way (Schuetz,
2003). However, after inserting the pionium atoms into the strong electrical field we get the
pion accelerated systems and we are prepared to measure the maximal constant acceleration
defined by Pardy and by Caianiello, or, by Lambiase.

2 Lorentz transformation

To be pedagogically clear let us remind, at first, some ingredients of the special theory of
relativity velocity and acceleration. The Lorentz transformation between two inertial coordinate
systems S(0, x, y, z) and S′(0′, x′, y′, z′) (where system S′ moves in such a way that x-axes
converge, while y and z-axes run parallel and at time t = t′ = 0 for the origin of the systems O
and O′ it is O ≡ O′) is as follows:

x′ = γ(v)(x− vt), y′ = y, z′ = z′, t′ = γ(v)

(
t− v

c2
x

)
, (1)

where

γ(v) =

(
1− v2

c2

)−1/2

. (2)

The infinitesimal form of this transformation is evidently given by differentiation of the every
equation. Or,

dx′ = γ(v)(dx− vdt), dy′ = dy, dz′ = dz, dt′ = γ(v)

(
dt− v

c2
dx

)
. (3)

It follows from eqs. (3) that if v1 is velocity of the inertial system 1 with regard to S and
v2 is the velocity of the inertial systems 2 with regard to 1, then the relativistic sum of the two
velocities is

v1 ⊕ v2 =
v1 + v2
1 + v1v2

c2
. (4)

The infinitesimal form of Lorentz transformation (3) evidently gives the Lorentz length
contraction and time dilation. Namely, if we put dt = 0 in the first equation of system (3),
then the Lorentz length contraction follows in the infinitesimal form dx′ = γ(v)dx. Or, in other
words, if in the system S′ the infinitesimal length is dx′, then the relative length with regard to
the system S is γ−1dx′. Similarly, from the last equation of (3) it follows the time dilatation for
dx = 0. Historical view on this effect is in the Selleri article (Selleri, 1997).

3 Uniformly accelerated frames with space-time symmetry

Let us take two systems S(0, x, y, z) and S′(0′, x′, y′, z′), where system S′ moves in such a way
that x-axes converge, while y and z-axes run parallel and at time t = t′ = 0 for the beginning of
the systems O and O′ it is O ≡ O′. Let us suppose that system S′ moves relative to some basic
system B with acceleration a/2 and system S′ moves relative to system B with acceleration
−a/2. It means that both systems moves one another with acceleration a and are equivalent
because in every system it is possibly to observe the force caused by the acceleration a/2. In
other words no system is inertial. The physical realization of such two accelerated frames is the
frames connected with the charge Q and -Q acceleratd by the homogenous electric field (Orlov,
2014a; 2014b; 2014c).
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Now, let us consider the formal transformation equations between two systems. At this
moment we give to this transform only formal meaning because at this time, the physical meaning
of such transformation is not known. On the other hand, the consequences of the transformation
will be shown very interesting. The first published derivation of such transformation by the
standard way was given by author (Pardy, 2003; 2004; 2005), and the same transformations
were submitted some decades ago (Pardy, 1969; 1974). The old results can be obtained if we
perform transformation

t→ t2, t′ → t′2, v → 1

2
a, c→ 1

2
α (5)

in the original Lorentz transformation (1). We get:

x′ = Γ(a)(x− 1

2
at2), y′ = y, z′ = z, t′2 = Γ(a)

(
t2 − 2a

α2
x

)
(6)

with

Γ(a) =
1√

1− a2

α2

. (7)

We used practically new denotation of variables in order to get the transformation (6)
between accelerated systems.

The transformations (6) form the one-parametric group with the parameter a. The proof of
this mathematical statement can be easy performed if we perform the transformation T1 from
S to S′, transformation T2 from S′ to S′′ and transformation T3 from S to S′′. Or,

x′ = x′(x, t; a1), t′ = t′(x, t; a1), (8)

x′′ = x′′(x′, t′; a2), t′′ = t′′(x′, t′; a2). (9)

After insertion of transformations (8) into (9), we get

x′′ = x′′(x, t; a3), t′′ = t′′(x, t; a3), (10)

where parameter a3 is equal to

a3 =
a1 + a2
1 + a1a2

α2

. (11)

The inverse parameter is −a and parameter for identity is a = 0. It may be easy to verify
that the final relation for the definition of the continuous group transformation is valid for our
transformation. Namely (Eisenhart, 1943):

(T3T2)T1 = T3 (T2T1) . (12)

The physical interpretation of this nonlinear transformations is the same as in the case of the
Lorentz transformation only the physical interpretation of the invariant function x = (1/2)αt2 is
different. Namely it can be expressed by the statement: if there is a physical signal in the system
S with the law x = (1/2)αt2, then in the system S′ the law of the process is x′ = (1/2)αt′2,
where α is the constant of maximal acceleration. It is new constant and cannot be constructed
from the known physical constants.

Let us remark, that it follows from history of physics, that Lorentz transformation was taken
first as physically meaningless mathematical object by Larmor, Voigt and Lorentz and later only
Einstein decided to put the physical meaning to this transformation and to the invariant function
x = ct. We hope that the derived transformation will appear as physically meaningful.
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Using relations t ← t2, t′ ← t′2, v ← 1
2a, c ← 1

2α, the nonlinear transformation
is expressed as the Lorentz transformation forming the one-parametric group. This proof is
equivalent to the proof by the above direct calculation. The integral part of the group properties
is the so called addition theorem for acceleration.

a3 = a1 ⊕ a2 =
a1 + a2
1 + a1a2

α2

. (13)

where a1 is the acceleration of the S′ with regard to the system S, a2 is the acceleration of the
system S′′ with regard to the system S′ and a3 is the acceleration of the system S′′ with regard
to the system S. The relation (13), expresses the law of acceleration addition theorem on the
understanding that the events are marked according to the relation (6).

If a1 = a2 = a3 = .... + ai = a, for i-th accelerated carts which rolls in such a way that the
first cart rolls on the basic cart, the second rolls on the first cart and so on, then we get for the
sum of i accelerated carts the following formula

asum =
1−

(
1−a/α
1+a/α

)i
1 +

(
1−a/α
1+a/α

)i , (14)

which is an analogue of the formula for the inertial systems (Lightman et al., 1975).

4 Discussion

In formula (14) as well as in the transformation equation (6) appears constant α which cannot
be calculated from the theoretical considerations, or, constructed from the known physical
constants (in analogy with the velocity of light). What is its magnitude can be established
only by experiments. The notion maximal acceleration was introduced some decades ago by
author (Pardy, 1974). Caianiello (1981) introduced it as some consequence as some consequence
of of quantum mechanics and Landau theory of fluctuations. Revisiting view on the maximal
acceleration was given by Papini (2003). At present time it was argued by Lambiase et al. (1999)
that maximal acceleration determines the upper limit of the Higgs boson and that it gives also
the relation which links the mass of W -boson with the mass of the Higgs boson. The LHC and
HERA experiments presented different answer to this problem.

The maximal acceleration constant which was derived here is kinematic one and it differs
from the Caianiello (1981) definition following from quantum mechanics. Our constant cannot be
determined by the system of other physical constants. It is an analogue of the numeric velocity of
light which cannot be composed from others physical constants, or, the Heisenberg fundamental
length in particle physics. The nonlinear transformations (13) changes the Minkowski metric

ds2 = c2dt2 − dx2 − dy2 − dz2 (15)

to the new metric with the Riemann form. Namely:

ds2 = α2t2dt2 − dx2 − dy2 − dz2 (16)

and it can be investigated by the methods of differential geometry. So, equations (13) can form
the preamble to investigation of accelerated systems. It was shown by Orlov that the nonlinear
group of transformations by author are related to the Orlov transformations for accelerated
frames (Orlov, 2014a; 2014b; 2014c).

If some experiment will confirm the existence of kinematical maximal acceleration α, then it
will have certainly crucial consequences for Einstein theory of gravity because this theory does
not involve this factor. Also the cosmological theories constructed on the basis of the original
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Einstein equations will require modifications. The so called Hubble constant will be changed
and the scenario of the accelerating universe modified.

Also the standard model of particle physics and supersymmetry theory will require gener-
alization because they does not involve the maximal acceleration constant. It is not excluded
that also the theory of parity nonconservation will be modified by the maximal acceleration
constant. In such a way the particle laboratories have perspective applications involving the
physics with maximal acceleration. Many new results can be obtained from the old relativistic
results having the form of the mathematical objects involving function f(v/c). The derived
formulas with uniform acceleration can be applied and verified in case of the uniform equivalent
gravity according to the principle of equivalence.

The prestige problem in the modern theoretical physics - the theory of the Unruh effect,
or, the existence of thermal radiation detected by accelerated observer - is in the development
(Fedotov et al., 2002) and the serious statement, or comment to the relation of this effect to the
maximal acceleration must be elaborated. The analogical statement is valid for the Hawking
effect in the theory of black holes. Maximal acceleration, determines the maximal black hole
mass where the mass of the black hole is restricted by maximal acceleration of a body falling in
the gravity field of the black hole.

It is not excluded that the maximal acceleration constant α will be confirmed by the DIRAC
experiment in CERN, or by International Linear Collider (ILC).

Let us remark in conclusion that it is possible to extend and modify quantum field theory
by maximal acceleration. It is not excluded that the kinematic maximal acceleration constant
will enable to reformulate the theory of renormalization.
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