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Abstract. The cosmological constant problem arises because the magnitude of
vacuum energy density predicted by quantum field theory is about 120 orders of
magnitude larger than the value implied by cosmological observations of accelerating
cosmic expansion. We pointed out that the fractal nature of the quantum space-time
with negative Hausdorff- Colombeau dimensions can resolve this tension. The canonical
Quantum Field Theory is widely believed to break down at some fundamental
high-energy cutoff �� and therefore the quantum fluctuations in the vacuum can be
treated classically seriously only up to this high-energy cutoff. In this paper we argue that
Quantum Field Theory in fractal space-time with negative Hausdorff-Colombeau
dimensions gives high-energy cutoff on natural way. In order to obtain disered physical
result we apply the canonical Pauli-Villars regularization up to �. It means that there exist
the ghost-driven acceleration of the univers hidden in cosmological constant.
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I.Introduction

I.1.The formulation of the cosmological constant problem.
The cosmological constant problem arises at the intersection between general

relativity and quantum field theory, and is regarded as a fundamental unsolved problem
in modern physics. Remind that a peculiar and truly quantum mechanical feature of the
quantum fields is that they exhibit zero-point fluctuations everywhere in space, even in
regions which are otherwise ‘empty’ (i.e.devoid of matter and radiation).This vacuum
energy density is believed to act as a contribution to the cosmological constant �
appearing in Einstein’s field equations from 1917,

R�� � 1
2

g��R � 8�G
c4 T��

� �1. 1. 1�

where R�� and R refer to the curvature of space-time, g�� is the metric, T��
� the energy-

momentum tensor,

T��
� � T�� � c4�

8�G

1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 1

�1. 1. 2�

where T�� is the energy- momentum tensor of matter. Thus T00
� � T00 � ��,

T��
� � T�� � ���P�, where

�� � �P� � c4�/8�G. �1. 1. 3�

Remind that under Lorentz transformations ���,P�� � ��� , ���,P�� � P�
� the quantities

�� and P� are changes by law

��� �
�� � �2P�

1 � �2 ,P�
� �

P� � �2��
1 � �2 . �1. 1. 4�

Thus for the quantities �� and P� Lorentz invariance holds by Eq(1.1.3) [1].
In modern cosmology it is assumed that the observable universe was initially

vacuumlike, i.e., the cosmological medium was non-singular and Lorentz invariant. In
the earlier, non-singular Friedmann cosmology the Friedmann universe comes into
being during the phase transition of an initial vacuumlike state to the state of ‘ordinary’
matter [2],[3].

The Friedmann equations start with the simplifying assumption that the universe is
spatially homogeneous and isotropic, i.e. the cosmological principle; empirically, this is
justified on scales larger than ~100 Mpc. The cosmological principle implies that the
metric of the universe must be of the form Robertson-Walker metric [2].



Robertson-Walker metric reads

ds2 � dt2 � a2�t� dr2

1 � kr2 � r 2�d�2 � sin2�d	2� . �1. 1. 5�

For such a metric, the Ricci curvature scalar is R � �6k and it is said that space has the
curvature k.The scaling factor a�t� rescales this curvature for a given time t, producing a
curvature k�t� � k/a�t�.The scaling factor a�t� is given by two independent Friedmann
equations for modeling a homogeneous, isotropic universe reads

a� 2 � G
3
�a2 � k,ä � � G

6
�� � 3p� �1. 1. 6�

and the equation of state

p � p���, �1. 1. 7�

where p is pressure and � is a density of the cosmological medium. For the case of the
vacuumlike cosmological medium equation of state reads [2],[3],[4]:

p � ��. �1. 1. 8�

By virtue of Friedman’s equations (1.1.6) in the universe filled with a vacuum-like
medium, the density of the medium is preserved, i.e. � � const, but the scale factor a�t�
grows exponentially. By virtue of continuity, it can be assumed that the admixture of a
substance does not change the nature of the growth of the latter, and the density of the
medium hardly changes. This growth, interpreted by analogy with the Friedmann models
as an expansion of the universe, but almost without changing the density of the medium!
- was named inflation. The idea of inflation is the basis of inflation scenarios [2].

Non-singular cosmology [2],[4] suggests that the initial state of the observable
universe was vacuum-like, but unstable with respect to the phase transition to the
ordinary non-Lorentz-invariant medium. This, for example, takes place if, by virtue of the
equations of state of the medium, a fluctuation decrease in its density d violates the
condition of vacuum-like degeneration, p � �� or, which is the same, 3p � � � �2� � 0,
replacing it with

� 2� � 3p � � � 0. �1. 1. 9�

According to Friedman’s equations, it corresponds to an accelerated expansion of the
cosmological medium, accompanied by a drop in its density, which makes the process
irreversible [2]. The impulse for expansion in this scenario, the vacuum-like environment,
is not reported to itself (bloating), but to the emerging Friedmann environment.

In review [5], Weinberg indicates that the first published discussion of the contribution
of quantum fluctuations to the cosmological constant was a 1967 paper by Zel’dovich
[6].In his article [1] Zel’dovich emphasizes that zeropoint energies of particle physics
theories cannot be ignored when gravitation is taken into account, and since he explicitly
discusses the discrepancy between estimates of vacuum energy and observations, he is
clearly pointing to a cosmological constant problem. As well known zeropoint energy
density of scalar quantum field,etc.is divergent

��m� � 2�c
�2���3 �0

�
p2 � m2c2 p2dp � �. �1. 1. 10�

In order avoid difficultnes mentioned above in article [3] Zel’dovich has applied
Pauli-Villars regularization [7],[8] and obtain an finite result (his formulas (VIII.12-VIII.13)
p.228)



�vac � �pvac � 1
8 �

0

�

f����4�ln��d� � c4�
8�G

, �1. 1. 11�

where

�
0

�

f���d� � �
0

�

f����2d� � �
0

�

f����4d� � 0. �1. 1. 12�

Remark 1.1.1.Unfortunately the Eq(1.1.11)-Eq(1.1.12) gives nothing in order to obtain
disered numerical values of the zero-point energy density �.

In his paper [3], Zel’dovich arrives at a zero-point energy (his formula (IX.1))

�vac � m mc
�

3
� 1017g/cm3,� � 10�10cm�2, �1. 1. 13�

where m (the ultra-violet cut-of ) is taken equal to the proton mass. Zel’dovich notes that
since this estimate exceeds observational bounds by 46 orders of magnitude it is clear
that "...such an estimate has nothing in common with reality".

In his paper [3], Zel’dovich wroted:" Recently A.D. Sakharov proposed a theory of
gravitation, or, more precisely, a justification GR equations based on consideration of
vacuum fluctuations.In this theory, the essential assumption is that there is some
elementary length L or the corresponding limiting momentum p0 � �/L. Shorter lengths
or for large impulses theory is not applicable. Sakharov gets the expression of
gravitational constant G through L or p0 (his formula (IX.6))

G � c3L2

�
� �c3

p0
2 . �1. 1. 14�

This expression has been known since the days of Planck, but it was read "from right
to left": gravity determines the length L and the momentum p0. According to Sakharov, L
and p0 are primary. Substitute (IX. 6) in the expression (IX. 4), we get


� � m6c5

p0
2�3

,�vac � m6c7

p0
2�3

. �1. 1. 15�

That is expressions that the first members (in the formulas (VIII.10), (VIII. 11)) which are
vanishes (with p0 � �).Thus, we can suggest the following interpretation of the
cosmological constant: there is a theory of elementary particles, which would give
(according to the mechanism that has not been revealed at the present time) identically
zero vacuum energy, if this theory were applicable infinitely, up to arbitrarily large
momentum; there is a momentum p0, beyond which the theory is nont aplicable; along
with other implications, modifying the theory gives different from zero vacuum energy;
general considerations make it likely that the effect is portional p0

�2.Clarification of the
question of the existence and magnitude of the cosmological constant will also be of
fundamental importance for the theory of elementary particles".

In contrast with Zel’dovich paper [3] we assume that Poincaré group is deformed at
some fundamental high-energy cutoff �� [9],[10],[11] in accordance on the basis of the
following deformed Poisson brackets

�x�,x�� � ��1�x��0� � x���0�,�p�,p�� � 0,

�x�,p�� � ���� � ��1��0p�
�1. 1. 16�

where μ,�,� 0, 1, 2, 3, ��� � ��1,�1,�1,�1� and is a parameter identified as the ratio



between the high-energy cutoff �� and the light speed. The corresponding to (1.1.16)
momentum transformation reads [11]

p0
� �

�p0 � upx�
1 � �c���1�� � 1�p0 � upx�

,px
� �

�px � up0/c2�

1 � �c���1�� � 1�p0 � upx�
,

py
� �

py

1 � �c���1�� � 1�p0 � upx�
,pz

� �
pz

1 � �c���1�� � 1�p0 � upx�
,

�1. 1. 17�

and coordinate transformation reads [11]

t � �
�t � ux/c2�

1 � �c���1�� � 1�p0 � upx�
,x� �

�x � ut�
1 � �c���1�� � 1�p0 � upx�

,

y� �
y

1 � �c���1�� � 1�p0 � upx�
,z� � z

1 � �c���1�� � 1�p0 � upx�
,

�1. 1. 18�

where  � 1 � u2/c2 It is easy to check that the energy E � c� , identified as the
high-energy cutoff ��, is an invariant as it is also the case for the fundamental length
l�� � �c/E � �/�.

Remark 1.1.2. Note that the transformation (1.1.17) defined in p-space and the
transformation (1.1.18) defined in x-space becomes Lorentz for small energies and
momenta and defines a large invariant energy l��

�1 .The high-energy cutoff �� is
preserved by the modified action of the Lorentz group [9],[10].

This meant that the canonical concept of metric as quadratic invariant collapses at
high energies, being replaced by the non-quadratic invariant [9]:

	p	2 �
�abpapb

�1 � l��p0�
, �1. 1. 19�

or by the non-quadratic invariant

	p	2 �
�abpapb

�1 � l��p0�
, �1. 1. 20�

where l�� � ��
�1,a,b � 0, 1, 2, 3.

Remark 1.1.3.Note that:
(i) the invariant (1.1.16) is infinite for the new negative invariant energy scale of the
theory �� � �l��

�1 , and it’s not quadratic for energies close or above and
(ii) the invariant (1.1.17) is infinite for the new positive invariant energy scale of the
theory �� � l��

�1 .
Remark 1.1.4.It is also clear from Eq.(1.1.16) and Eq.(1.1.17) that the symmetry of
positive and negative values of the energy is broken.The two theories with the two

signs of l� obviously are physically distinct; and we know of no theoretical argument
which fixes

the sign of l�
The massive particles have a positive invariant 	p	2 
 0 which can be identified with

the square of the mass 	p	2 � m2, (c � 1).Thus in the case of the invariant (1.1.16) we

obtain

p0
2 � p2

�1 � l��p0�2 � m2,p0 � ��l��
�1 ,�� �1. 1. 21�

From Eq.(1.1.18) we obtain



p0 �
m2l��

1 � m2l��
2 � 1

1 � m2l��
2

m4l��
2

1 � m2l��
2 � �p2 � m2� . �1. 1. 22�

In the case of the invariant (1.1.17) we obtain

p0
2 � p2

�1 � l��p0�2 � m2,p0 � ���, l��
�1 �. �1. 1. 23�

From Eq.(1.1.20) we obtain

p0 � � m2l��

1 � m2l��
2 � 1

1 � m2l��
2

m4l��
2

1 � m2l��
2 � �p2 � m2� �1. 1. 24�

The action for a scalar field 	 must be invariant under the deformed Lorentz
transformations.The invariant action reads [10]

S � 1
2 � d4x

�ab��a	���b	�
�1 � l���0	�

� m2

2
	2. �1. 1. 25�

Thus there is no linear field equation.

I.2. Zel’dovich approuch by using Pauli-Villars
regularization revisited.Ghosts as physical dark matter.

Remind that vacuum energy density for free scalar quantum field is

���� � 1
2

c
�2���3 �0

�
4� p2 � �2 p2dp � K �

0

�
p2 � �2 p2dp � KI���, �1. 2. 1�

where � � m0c.From Eq.(1.2.1) one obtains [1]

p��� � K
3 �

0

� p4dp

p2 � �2
� KF���. �1. 2. 2�

For fermionic quantum field one obtains

���� � KI���,p��� � �4KF���. �1. 2. 3�

Thus free vacuum energy density � and corresponding pressure p is

� � � i
Ci I�� i �,P � � i

CiF�� i �. �1. 2. 4�

Eq.(1.2.4) by using Pauli-Willars regularization [7],[8] in general case one obtains [3]

� � � f���I���d�,P � � f���F���d�. �1. 2. 5�

Let us evaluate now the follwing quantities

I��,p0� � �
0

p0

p2 p2 � �2 dp � �
0

p�

p2 p2 � �2 dp� �
p�

p0

p2 p2 � �2 dp �

� �
0

p�

p2 p2 � �2 dp � �
p�

p�

p3 1 �
�2

p2 dp� �
p�

p0

p3 1 �
�2

p2 dp

�1. 2. 6�

and



F��,p0� � 1
3 �

0

p0

p4dp

p2 � �2
� 1

3 �
0

p�

p4dp

p2 � �2
� 1

3 �
p�

p0

p4dp

p2 � �2
�

1
3 �

0

p�

p4dp

p2 � �2
� 1

3 �
p�

p0

p3dp

1 �
�2

p2

,

�1. 2. 7�

where p� � r�, r 
 1,�/p � 1/r � 1.Note that

1 �
�2

p2 � 1 � 1
2

�2

p2 � 1
8

�4

p4 � 1
16

�6

p6 �. . . .

p2 p2 � �2 � p3 1 �
�2

p2 � p3 � 1
2
�2p � 1

8
�4

p � 1
16

�6

p3 �. . . .

�1. 2. 8�

By inserting Eq.(1.2.8) into Eqs.(1.2.6) one obtains

I��,p0� � C1�4 � 1
4

p0
4 � 1

4
�2p0

2 � 1
8
�4 ln

p0
� � 1

32
�6

p0
2 � p0

�5O��8�, �1. 2. 9�

where C1�4 � �
0

p�

p2 p2 � �2 dp.Note that

1 �
�2

p2

�1

� 1 � 1
2

�2

p2 � 3
8

�4

p4 � 5
16

�6

p6 �. . . . �1. 2. 10�

By inserting Eq.(1.2.10) into Eq.(1.2.7) one obtains

F��,p0� � C2�4 � 1
12

p0
4 � 1

12
�2p0

2 � 1
8
�4 ln

p0
� � 5

32
�6

p0
2 � p0

�5O��8�. �1. 2. 11�

By inserting Eq.(1.2.9) and Eq.(1.2.11) into Eqs.(1.2.5) one obtains

� � 1
4

p0
4 �

0

�eff

f���d� � 1
4

p0
2 �

0

�eff

f����2d� � C1 � 1
8

lnp0 �
0

�eff

f����4d� �

� 1
8 �

0

�eff

f����4�ln��d� � 1
p0

2
1

32 �
0

�eff

f����6d� � O �
0

�eff

f����8 p0
�5,

p � 1
12

p0
4 �

0

�eff

f���d� � 1
12

p0
2 �

0

�eff

f����2d� � C2 � 1
8

lnp0 �
0

�eff

f����4d� �

� 1
8 �

0

�eff

f����4�ln��d� � 5
p0

2
1

32 �
0

�eff

f����6d� � O �
0

�eff

f����8 p0
�5.

�1. 2. 12�

We choose now

�
0

�eff

f���d� � �
0

�eff

f����2d� � �
0

�eff

f����4d� � 0. �1. 2. 13�

By inserting Eq.(1.2.13) into Eqs.(1.2.12) one obtains



���eff� � 1
8 �

0

�eff

f����4�ln��d� � O�p0
�2�,

p��eff� � � 1
8 �

0

�eff

f����4�ln��d� � O�p0
�2�.

�1. 2. 14�

Taking the limit p � � in Eq.(1.2.14) gives

���eff� � 1
8 �

0

�eff

f����4�ln��d�,

p��eff� � � 1
8 �

0

�eff

f����4�ln��d�.

�1. 2. 15�

Thus finally we obtain [3]

���eff� � �p��eff� � 1
8 �

0

�eff

f����4�ln��d� � c4�
8�G

. �1. 2. 16�

Remark 1.2.1. Remind that Pauli-Villars regularization consists of introducing a
fictitious mass term. For example, we would replace a propagator 1/ k2 � m0

2 � iϵ , by

the regulated propagator

��k2� � �
i�0

N ai

k2 � mi
2 � iϵ

� 1
k2 � m0

2 � iϵ
��

i�1

N ai

k2 � mi
2 � iϵ

, �1. 2. 17�

where a0 � 1 and mi , i � 1, 2, . . .N can be thought of as the mass of a fictitious heavy
particle, whose contribution is subtracted from that of an ordinary particle. Assume that
mi

2/k2 � 1, if we expand each term of this sum (1.2.16) as a power series in k2 � iϵ we get

��k2� � �
i�0

N ai

k2 � iϵ
��

i�0

N aimi
2

k2 � iϵ
2 ��

i�0

N
O 1

k2 � iϵ
3 . �1. 2. 18�

For a renormalizable theory the maximum supercriticial power of divergence of any
integral is quadratic, so that the O�1/k6� terms are ultraviolet finite. The finiteness of the
regulated integral is then guaranteed by requiring that

� i�0
N ai � 0,� i�0

N aimi
2 � 0. �1. 2. 19�

Remark 1.2.2.Note that in order to aply Pauli-Villars regularization to QFT with
Lagrangian ��	,�,��	,���� we would replace the Lagrangian ��	,�,��	,���� by
Lagrangian � 	,�,��	,��� ,where [7]:

	�x� � 	�x� ��n
bn	� n�x,�n

2�,��x� � ��x� ��n
cn�� n�x,�n

2�, �1. 2. 20�

where commutator for 	� n and anticommutator for �� n reads

�	� m�x,�m
2 �,	� n�x�,�n

2�� � �i
n��x � x�,�n
2��mn,

��� m�x,�m
2 �,�� n�x�,�n

2�� � �i�nS�x � x�,�n
2��mn.

�1. 2. 21�

From Eqs.(1.2.20)-Eqs.(1.2.21) one obtains



	�x�,	�x�� � i�n�0
N 
nbn

2��x � x�,�n
2�,

��x�,��x�� � �i�n�0
N �nсncnS�x � x�,�n

2�.
�1. 2. 22�

Assume now that

�n�0
N 
nbn

2 � 0,�n�0
N 
nbn

2�n
2 � 0,�n�0

N �nсncn � 0,�n�0
N �nсncn�n

2 � 0. �1. 2. 23�

From Eqs.(1.2.23) it follows directly that QFT with Lagrangian � 	,�,��	,��� is finite

QFT with indefinite metric [4],see Remark 1.2.1.
Remark 1.2.3.Note that "bad ghosts" represent general meaning of the word "ghost"

in theoretical physics: states of negative norm [7] or fields with the wrong sign of the
kinetic term, such as Pauli–Villars ghosts 	, whose existence allows the probabilities to
be negative thus violating unitarity.The quadratic lagrangian �	

2 for φ begins with a wrong
sign kinetic term [in (� � � �) signature]

�	
2 � � 1

2
��	��	 �. . . �1. 2. 24�

Remark 1.2.4.Note that in order to obtain Eqs.(1.2.14), the standard quantum fields
do

not need to couple directly to the ghost sector. In this paper the ghost sector is
considered

as physical mechanism which acts only on a function f��� in Eqs.(1.2.13).It means that
there exist the ghost-driven acceleration of the univers hidden in cosmological

constant �.
Remark 1.2.5.As pointed out in paper [12] even if the standard model fields have no
direct couplings to the ghost sector, they will indirectly interact with it through gravity,

and
the propagation of gravity through the ghost condensate gives rise to a fascinating
modification of gravity in the IR. However,no modifications of gravity can be seen
directly, and no cosmological experiment can distinguish the ghost-driven acceleration
from a cosmological constant.
Remark 1.2.6.In order to obtain disered physical result from Eqs.(1.2.15),i.e.,

�vac � 0. 7 � 10�29gcm�3 � 2. 8 � 10�47Gev4/�3c5 �1. 2. 25�

we assume that

f��� � fs.m.��� � fg.m.���, �1. 2. 26�

where fs.m.��� corresponds to standard matter and where fg.m.��� corresponds to a
physical

ghost matter.
Remark 1.2.7.We assume now that

|f���| �
O���n�,n 
 1 � 	 �eff

0 � 
 �eff

�1. 2. 27�

From Eq.(1.2.27) and Eqs.(1.2.15) it follows directly that

|p��eff�| � |���eff�| � 1
8 �

0

�eff

f����4�ln��d� 	 O �eff
�n�5 ln�eff . �1. 2. 28�



Remark 1.2.8.However serious problem arises from non-renormalizability of canonical
quantum gravity with Einstein-Hilbert action

SEH � 1
16�G � d4x �g R. �1. 2. 29�

For example taking �3 particles of energy a per unit volume gives the gravitational
self-energy density of order �6, i.e.,the density �� diverges as �6

�� 
 G�6, �1. 2. 30�

where � is a high-energy cutoff [5].
In order to avoid these difficulties we apply instead Einstein-Hilbert action (1.2.29) the

gravitational action which include terms quadratic in the curvature tensor

 � �� d4x �g ��R��R�� � �R2 � 2��2R�, �1. 2. 31�

Remark 1.2.8.Gravitational actions (1.2.31) which include terms quadratic in the
curvature tensor are renormalizable [13]. The requirement that the graviton propagator
behave like p�4 for large momenta makes it necessary to choose the indefinite-metric
vector space over the negative-energy states.These negative-norm states cannot be
excluded from the physical sector of the vector space without destroying the unitarity

of
the S matrix, however, for their unphysical behavior may be restricted to arbitrarily

large
energy scales �� by an appropriate limitation on the renormalized masses m2 and m0.
Remark 1.2.9.We assum that m0c � �eff,m2c � �eff.
Remark 1.2.10.The canonical Quantum Field Theory is widely believed to break down

at
some fundamental high-energy cutoff �� and therefore the quantum fluctuations in the
vacuum can be treated classically seriously only up to this high-energy cutoff, see for
example [14]. In this paper we argue that Quantum Field Theory in fractal space-time

with
negative Hausdorff-Colombeau dimensions [15] gives high-energy cutoff on natural

way.

II. Ghosts as physical dark matter.

II.1.Pauli-Villars ghosts as physical dark matter.
Before explaining the role of PV ghosts,etc. as physical dark matter remind the idea of

PV regularization as a conventional UV regularization.We consider, as an example, the
scalar field theory with the interaction �	4. Lagrangian density of this theory reads

� � 1
2
��	��	 � m0

2

2
	2 � �	4. �2. 1. 1�

This theory requires UV regularization (e.g. in (2�1) and (3�1) dimensions). Let us
show that it is sufficient to introduce N extra fields with large mass playing the role of the
regularization parameter. Lagrangian density can be rewritten as follows



� � �
i�0

N
��1� i 1

2
��	��	 � mi

2

2
	 i

2 � � : 	4 :,

	 � 	0 � 	� � � i�0
N 	 i ,	� � � i�1

N ai	 i .
�2. 1. 2�

Here the symbol ”::” means that in perturbation theory we drop Feynman diagrams with
loops containing only one vertex. The 	0 is usual field with mass m0 and the
	 i , i � 1, . . . ,N is the extra field with mass mi , i � 1, . . . ,N. It can be shown that in
(3�1)-dimensional theory the introduction of one PV field is sufficient for the ultraviolet
regularization of perturbation theory in �. One can show that momentum space
Feynman diagrams in the original theory with Lagrangian density (2.1.1) diverge no
more than quadratically [16]-[18] (beside of vacuum diagrams) shown in Fig.2.1.1.

Fig.2.1.1.One-loop massive vacuum diagram.

If we consider now Feynman diagrams in the theory with Lagrangian density (2.1.2)
we see that propagators of fields 	0 and 	� sum up in corresponding diagrams so that we
obtain the following expression which plays the role of regularized propagator

��k2� � �
j�0

N aj

k2 � mj
2 � i0

� 1
k2 � m0

2 � i0
��

j�1

N aj

k2 � mj
2 � i0

, �2. 1. 3�

where k2 � k0
2 � k1

2 � k2
2 � k3

2. Integral corresponding to vacuum diagram is

 � � d4k
�2��4 ��k

2� � � d4k
�2��4 � j�0

N aj

k2 � mj
2 � i0

. �2. 1. 4�

To do this integral, since it is convergent, we can Wick rotate. Then we get

E � i
8�2 �0

�
dkE�

j�0

N ajkE
3

kE
2 � mj

2 . �2. 1. 5�

To do this integral, since it is convergent, we can dealing with regularized integral

��,�� � i
8�2 ��

�
dkE�

j�0

N ajkE
3

kE
2 � mj

2 , �2. 1. 6�

where � � 0,� � �, i.e. ��,��  E.We assume now that Pauli-Villars conditions given
by Eqs.(1.2.18) holds.Let us consider now the quantity

� � ���,�� � i
8�2 ��

�
dkE�

j�0

N ajkE
3

kE
2 � �mj

2 , �2. 1. 7�

where � � �0, 1�,and therefore from Eq.(2.1.7) we obtain



� |��0 � i
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�
dkE�

j�0

N
ajkE � i
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N
aj �

�

�
kEdkE � 0, �2. 1. 8�

since Eqs.(1.2.18) holds.From Eq.(2.1.7) by differentiation we obtain

d
d�

� � i
8�2 ��

�
dkE�

j�0

N ajmj
2kE

3

�kE
2 � �mj

2�2 , �2. 1. 9�

and therefore from Eq.(1.2.9) we obtain
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N ajmj
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�2. 1. 10�

since Eqs.(1.2.18) holds.From Eq.(2.1.9) by differentiation we obtain

d2
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j�0

N
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N ajmj
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�2. 1. 11�

Note that

� j��� 

ia jmj

4
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ia jmj

4
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. �2. 1. 12�

Thus

d
d�

� � �
j�0

N �
0

1
� j���d� � �

j�0

N ajmj
2

16�2 ln� �2. 1. 13�

and

� � �
j�0

N ajmj
2

16�2 �� ln� � ��, �2. 1. 14�

Therefore

��,�� � � |��1 � ��
j�0

N ajmj
2

16�2 � 0, �2. 1. 15�

since Eqs.(1.2.18) holds.Thus integral (2.1.4) corresponding to vacuum diagram by
using Pauli-Villars renormalization identically equal zero,i.e.

RenPV�� � � d4k
�2��4 ��k

2� � � d4k
�2��4 � j�0

N aj

k2 � mj
2 � i0

� 0. �2. 1. 16�

Let us consider now how this method works in the case of the simplest scalar diagram
shown in Fig.2.1.2. The corresponding Feinman integral has the form



Fig.2.1.2

�p2� � 1
�2��4 � d4k

�k2 � m0
2 � i0���p2 � k2� � m0

2 � i0�
. �2. 1. 17�

Regularized Feinman integral (2.1.17) reads

reg�p2� � 1
�2��4 �� j�0

N ajd4k

�k2 � mj
2 � i0���p2 � k2� � mj

2 � i0�
, �2. 1. 18�

where N � 1.To do this integral, since it is convergent, we can Wick rotate. Then we get

reg�p2� � i
�2��4 �� j�0

N ajd4k

�k2 � mj
2���p2 � k2� � mj

2 �
. �2. 1. 19�

The integral (2.1.19) can be written as
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�2��4 �

0

1

dx��
j�0

N ajd4k

�k2 � p2x�1 � x� � mj
2 �2 �

i
8�2 �

0

1

dx��
j�0

N ajkE
3 dkE

�kE
2 � p2x�1 � x� � mj

2 �2 .

�2. 1. 20�

To do this integral, since it is convergent, we can dealing with regularized integral
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Let us consider now the quantity
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1

dx�
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N ajkE
3 dkE

�kE
2 � p2x�1 � x� � �mj

2 �2 . �2. 1. 22�

where � � �0, 1�,and therefore from Eq.(2.1.22) we obtain 0�p2,�,�� � 0,since
Eqs.(1.2.18) holds.From Eq.(2.1.22) by differentiation we obtain
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From Eq.(2.1.23) we obtain
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�2. 1. 24�

From Eq.(2.1.24) we obtain
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Note that
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�2. 1. 26�

Thus
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�2. 1. 27�

From Eq.(2.1.27) we obtain
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�2. 1. 28�

We assume now that m1
�2p2 � 1 and from Eq.(2.1.28) finally we obtain
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Remark 2.1.1. The simple renormalizable models with finite mases
mi , i � 1, . . . ,N.which we have considered in this section many years regarded only as
constructs for a study of the ultraviolet problem of QFT. The difficulties with unitarity
appear to preclude their direct acceptability as canonical physical theories in locally
Minkowski space-time. However, for their unphysical behavior may be restricted to



arbitrarily large energy scales �� mentioned above by an appropriate limitation on the
finite masses mi .

II.2.Renormalizability-of-Higher-Derivative-Quantum-Gravity
Gravitational actions which include terms quadratic in the curvature tensor are

renormalizable. The necessary Slavnov identities are derived from Becchi-Rouet-Stora
(BRS) transformations of the gravitational and Faddeev-Popov ghost fields. In general,
non-gauge-invariant divergences do arise, but they may be absorbed by nonlinear
renormalizations of the gravitational and ghost fields and of the BRS transformations
[13].The geneic expression of the action reads

I sym � �� d4x �g ��R��R�� � �R2 � 2��2R�, �2. 2. 1�

where the curvature tensor and the Ricci is defined by R���
� � �����

� and R�� � R���
�

correspondingly, �2 � 32�G.The convenient definition of the gravitational field variable in
terms of the contravariant metric density reads

�h�� � g�� �g � ���. �2. 2. 2�

Analysis of the linearized radiation shows that there are eight dynamical degrees of
freedom in the field. Two of these excitations correspond to the familiar massless spin-2
graviton. Five more correspond to a massive spin-2 particle with mass m2. The eighth
corresponds to a massive scalar particle with mass m0. Although the linearized field
energy of the massless spin-2 and massive scalar excitations is positive definite, the
linearized energy of the massive spin-2 excitations is negative definite. This feature is
characteristic of higher-derivative models, and poses the major obstacle to their physical
interpretation.

In the quantum theory, there is an alternative problem which may be substituted for
the negative energy. It is possible to recast the theory so that the massive spin-2
eigenstates of the free-fieid Hamiltonian have positive-definite energy, but also negative
norm in the state vector space.

These negative-norm states cannot be excluded from the physical sector of the vector
space without destroying the unitarity of the S matrix. The requirement that the graviton
propagator behave like p�4 for large momenta makes it necessary to choose the
indefinite-metric vector space over the negative-energy states.

The presence of massive quantum states of negative norm which cancel some of the
divergences due to the massless states is analogous to the Pauli-Villars regularization of
other field theories. For quantum gravity, however, the resulting improvement in the
ultraviolet behavior of the theory is sufficient only to make it renormalizable, but not
finite.

The gauge choice which we adopt in order to defining the quantum theory is the
canonical harmonic gauge: ��h�� � 0. Corresponding Green’s functions are then given
by a generating functional

Z�T��� � N� �
�	�

dh�� �dC� ��dC� ��4�F��

exp i I sym� � d4xC�F���
� D�

��C� � � � d4xT��h�� .
�2. 2. 3�



Here F� � F���
� h��,F���

� � ��
r �� � and the arrow indicates the direction in which the derivative

acts. N is an normalization constant. C� is the Faddeev-Popov ghost field, and C� is the
antighost field. Notice that both C� and C� are anticommuting quantities. D�

�� is the
operator which generates gauge transformations in h��, given an arbitrary
spacetime-dependent vector ���x� corresponding to x� �

� x� � ��� and where

D�
�����x� � ���� � ���� � ������� � ������h�� � ����h�� � ����h�� � ����h��. � �2. 2. 4�

In the functional integral (2.2.3), we have written the metric for the gravitational field as

�
�	�

dh��

without any local factors of g � det�g���. Such factors do not contribute to the
Feynman rules because their effect is to introduce terms proportional to �4�0� �d4xln��g�

into the effective action and �4�0� is set equal to zero in dimensional regularization.
In calculating the generating functional (2.2.3.) by using the loop expansion, one may

represent the � function which fixes the gauge as the limit of a Gaussian, discarding an
infinite normalization constant

�4�F�� �
��0
lim exp i 1

2 �
�1 �d4xF�F� . �2. 2. 5�

In this expression, the index � has been lowered using the flat-space metric tensor ���.
For the remainder of this paper, we shall adopt the standard approach to the covariant
quantization of gravity, in which only Lorentz tensors occur, and all raising and lowering
of indices is done with respect to flat space. The graviton propagator may be calculated
from I sym� 1

2 �
�1 �d4xF�F� in the usual fashion, letting � � 0 after inverting. The

expression 1
2 �

�1 �d4xF�F� contains only two derivatives. Consequently, there are parts

of the graviton propagator which behave like p�2 for large momenta. Specifically, the p�2

terms consist of everything but those parts of the propagator which are transverse in all
indices. These terms give rise to unpleasant infinities already at the one-loop order. For
example, the graviton self-energy diagram shown in Fig.2.2.1 has a divergent part with
the general structure ��4h�2. Such divergences do cancel when they are connected to
tree diagrams whose outermost lines are on the mass shell, as they must if the S matrix
is to be made finite without introducing counterterms for them. However, they greatIy
complicate the renormalization of Green’s functions.

Fig.2.2.1.The one-loop graviton self-energy diagram.

We may attempt to extricate ourselves from the situation described in the last
paragraph by picking a different weighting functional. Keeping in mind that we want no
part of the graviton propagator to fall off slower than p�4 for large momenta, we now



choose the weighting functional [12]

�4�e�� � exp i 1
2 �

�1 �d4xe��2e� , �2. 2. 6�

where e� is any four-vector function.The corresponding gauge-fixing term in the effective
action is

� 1
2 �

2��1 �d4xF��2F�. �2. 2. 7�

The graviton propagator resulting from the gauge-fixing term (2.2.7) is derived in [12].
For most values of the parameters � and � in I sym it satisfies the requirement that all its
leading parts fall off like p�4 for large momenta. There are, however, specific choices of
these parameters which must be avoided. If � � 0, the massive spin-2 excitations
disappear, and inspection of the graviton propagator shows that some terms then
behave like k�2. Likewise, if 3� � � � 0, the massive scalar excitation disappears, and
there are again terms in the propagator which behave like p�2. However, even if we avoid
the special cases � � 0 and 3� � � � 0, and if we use the propagator derived from
(2.2.7), we still do not obtain a clean renormalization of the Green’s functions. We now
turn to the implications of gauge invariance.Before we write down the BRS
transformations for gravity, let us first establish the commutation relation for gravitational
gauge transformations, which reveals the group structure of the theory. Take the gauge
transformation (2.2.4) of h��, generated by �� and perform a second gauge
transformation, generated by ��, on the h�� fields appearing there. Then antisymmetrize
in �� and ��.The result is

�D�
��

�h
� D�

������ � ����� � �D�

��������� � �������, �2. 2. 8�

where the repeated indices denote both summation over the discrete values of the
indices and integration over the spacetime arguments of the functions or operators
indexed.

The BRS transformations for gravity appropriate for the gauge-fixing term (2.2.6) are
[12]

�a� �BRSh�� � �D�
��C���, �b� �BRSC� � ��2��C�C���,

�c� �BRSC� � ��3��1�2F���,
�2. 2. 9�

where �� is an infinitesimal anticommuting constant parameter.The importance of these
transformations resides in the quantities which they leave invariant. Note that

�BRS���C�C�� � 0 �2. 2. 10�

and

�BRS�D�
��C�� � 0. �2. 2. 11�

As a result of Eq. (2.2.11), the only part of the ghost action which varies under the
BRS transformations is the antighost C�. Accordingly, the transformation (2.2.9c) has
been chosen to make the variation of the ghost action just cancel the variation of the
gauge-fixing term. Therefore, the entire effective action is BRS invariant:

�BRS I sim � 1
2 �

2��1F��2F� � C�F��
� D�

��C� � 0. �2. 2. 12�

Equations (2.2.9), (2.2.10), and (2.2.12) now enable us to write the Slavnov identities in
an economical way. In order to carry out the renormalization program, we will need to
have Slavnov identities for the proper vertices.



A. Slavnov identities for Green’s functions
First consider the Slavnov identities for Green’s functions.

Z�T��,��,��,K��,L�� � N� �
�	�

dh�� �dC� ��dC� �

exp i��h��,C�,C�,K��,L�,��C�� � ��C� � C��� � �T��h�� .
�2. 2. 13�

Anticommuting sources have been included for the ghost and antighost fields, and the

effective action � has been enlarged by the inclusion of BRS invariant couplings of the
ghosts and gravitons to some external fields K�� (anticommuting) and L� (commuting),

� � I sim � 1
2 �

2��1F��2F� � C�F���
� D�

��C� � �K��D�
�� � �2L���C�C�. �2. 2. 14�

� is BRS invariant by virtue of Eq.(2.2.9), Eq.(2.2.10), and Eq.(2.2.12). We may use the
new couplings to write this invariance as

��
�K��

��
�h�� � ��

�L�

��
�C� � �3��1�2F�

��
�C�

. �2. 2. 15�

In this equation, and throughout this subsection, we use left variational derivatives with
respect to anticommuting quantities: �f�C�� � �C��f/�C�. Equation (2.2.15) may be
simplified by rewriting it in terms of a reduced effective action,

� � � � 1
2 �

2��1F��2F�. �2. 2. 16�

Substitution of (2.2.16) into (2.2.15) gives
��
�K��

��
�h�� � ��

�L�

��
�C� � 0, �2. 2. 17�

where we have used the relation

��1F���
� ��

�K��
� ��

�C�
� 0. �2. 2. 18�

Note that a measure

�
�	�

dh�� �dC� ��dC� � �2. 2. 19�

is BRS invariant since for infinitesimal transformations, the Jacobian is 1, because of the
trace relations

�a� �2�
�K�����h����

� 0, �b� �2�
�C��L�

� 0, �2. 2. 20�

both of which follow from � d4x��C� � 0. The parentheses surrounding the indices in

(2.2.20a) indicate that the summation is to be carried out only for � 	 �.
Remark 2.2.1.Note that the Slavnov identity for the generating functional of Green’s

functions is obtained by performing the BRS transformations (2.2.9) on the integration
variables in the generating functional (2.2.13). This transformation does not change the
value of the generating functional and therefore we obtain



N� �
�	�

dh�� �dC� ��dC� � �

�2T��D�
�� � �2����C�C� � �3��1���2F ���h�� �

exp i � � �T��h�� � ��C� � C��� � 0.

�2. 2. 21�

Another identity which we shall need is the ghost equation of motion. To derive this
equation, we shift the antighost integration variable C� to C� � �C�, again with no
resulting change in the value of the generating functional:

N� �
�	�

dh�� �dC� ��dC� � ��
�C� � �� exp i � � �T��h�� � ��C� � C��� �2. 2. 22�

We define now the generating functional of connected Green’s functions as the
logarithm of the functional (2.2.13),

W�T��,��,��,K��,L� � � �i lnZ�T��,��,��,K��,L� �. �2. 2. 23�

and make use of the couplings to the external fields K�� and L� to rewrite (2.2.22) in
terms of W

�T��
�W
�K��

� ��
�W
�L�

� �2��1���2F ���
�W
�T��

� 0. �2. 2. 24�

Similarly, we get the ghost equation of motion:

��1F���
� �W

�K��
� �� � 0. �2. 2. 25�

B. Proper vertices
A Legendre transformation takes us from the generating functional of connected

Green’s functions (2.2.23) to the generating functional of proper vertices. First, we define
the expectation values of the gravitational, ghost, and antighost fields in the presence of
the sources T��,��, and �� and the external fields K�� and L�

�a� h���x� � �W
��T���x�

, �b� C��x� � �W
����x�

, �c� C��x� � �W
����x�

. �2. 2. 26�

We have chosen to denote the expectation values of the fields by the same symbols
which were used for the fields in the effective action (2.2.14).

The Legendre transformation can now be performed, giving us the generating
functional of proper vertices as a functional of the new variables (2.2.26) and the
external fields K�� and L�

��h��,C�,C�,K��,L� � � W�T��,��,��,K��,L� � � �T��h�� � ��C� � C���. �2. 2. 27�

In this equation, the quantities T��, ��, and �� are given implicitly in terms of
h��,C�,C�,K��, and L� by Eq.(2.2.26).The relations dual to (2.2.26) are

�a� �T���x� � � ��
�h���x�

, �b� ���x� � ��
�C��x�

, �c� ���x� � � ��
�C��x�

. �2. 2. 28�

Since the external fields K�� and L� do not participate in the Legendre transformation
(2.2.26), for them we have the relations

�a� ��
�K���x�

� �W
�K���x�

, �b� ��
�L��x�

� �W
�L��x�

. �2. 2. 29�



Finally, the Slavnov identity for the generating functional of proper vertices is obtained
by transcribing (2.2.24) using the relations (2.2.26), (2.2.28), and (2.2.29)

��
�K��

��
�h�� � ��

�L�

��
�C� � �3��1�2F ���h�� ��

�C� � 0. �2. 2. 30�

We also have the ghost equation of motion,

��1F���
� ��

�K��
� ��

�C� � 0. �2. 2. 31�

Since Eq. (2.2.30) has exactly the same form as (2.2.15), we follow the example set by
(2.2.16) and define a reduced generating functional of the proper vertices,

� � � � 1
2 �

2��1 F ���h�� �2 F�
�
� h
� . �2. 2. 32�

Substituting this into (2.2.30) and (2.2.31), the Slavnov identity becomes
��
�K��

��
�h�� � ��

�L�

��
�C� � 0. �2. 2. 33�

and the ghost equation of motion becomes

��1F���
� ��

�K��
� ��

�C�
� 0. �2. 2. 34�

Equations (2.2.33) and (2.2.34) are of exactly the same form as (5.5) and (5.6). This is
as it should be, since at the zero-loop order

��0� � �. �2. 2. 35�

C. Structure of the divergences and renormalization
equation.

The Slavnov identity (2.2.33) is quadratic in the functional �. This nonlinearity is
reflected in the fact that the renormalization of the effective action generally also
involves the renormalization of the BRS transformations which must leave the effective
action invariant.

The canonical approach uses the Slavnov identity for the generating functional of
proper vertices to derive a linear equation for the divergent parts of the proper vertices.
This equation is then solved to display the structure of the divergences. From this
structure, it can be seen how to renormalize the effective action so that it remains
invariant under a renormalized set of BRS transformations [13].

Suppose that we have successfully renormalized the reduced effective action up to
n � 1 loop order; that is, suppose we have constructed a quantum extension of � which
satisfies Eqs. (2.2.17) and (2.2.18) exactly, and which leads to finite proper vertices
when calculated up to order n � 1. We will denote this renormalized quantity by ��n�1�. In
general, it contains terms of many different orders in the loop expansion, including
orders greater than n � 1. The n � 1 loop part of the reduced generating functional of
proper vertices will be denoted by ��n�1�.

When we proceed to calculate ��n�, we find that it contains divergences. Some of
these come from n-loop Feynman integrals. Since all the subintegrals of an n-loop
Feynman integral contain less than w loops, they are finite by assumption. Therefore,
the divergences which arise from w-Ioop Feynman integrals come only from the overall
divergences of the integrals, so the corresponding parts of ��n� are local in structure. In



the dimensional regularization procedure, these divergences are of order ��1 � �d � 4��1,
where d is the dimensionality of spacetime in the Feynman integrals.

There may also be divergent parts of ��n� which do not arise from loop integrals, and
which contain higher-order poles in the regulating parameter �. Such divergences comes
from n-loop order parts of ��n�1� which are necessary to ensure that (2.2.17) is satisfied.
Consequently, they too have a local structure. We may separate the divergent and finite
parts of ��n�:

��n� � �div
�n� � �finite

�n� . �2. 2. 36�

If we insert this breakup into Eq. (5.20), and keep only the terms of the equation which
are of n-loop order, we get

��div
�n�

�K��

���0�

�h�� � ���0�

�K��

��div
�n�

�h�� �
��div

�n�

�L�

���0�

�C� � ���0�

�L�

��div
�n�

�C� �

��
i�0

n ��finite
�n�i �

�K��

��finite
�i �

�h�� �
��finite

�n�i �

�L�

��finite
�i �

�C� .

�2. 2. 37�

Since each term on the right-hand side of (2.2.37) remains finite as � � 0, while each
term on the left-hand side contains a factor with at least a simple pole in e, each side of
the equation must vanish separately. Remembering the Eq.(2.2.35), we can write the
following equation, called the renormalization equation:

��div
�n� � 0, �2. 2. 38�

where

� � ��
�h��

�
�K��

� ��
�C�

�
�L�

� ��
�K��

�
�h�� � ��

�L�

�
�C� . �2. 2. 39�

Similarly by collecting the n-loop order divergences in the ghost equation of motion
(2.2.34) we get

��1F���
� ��div

�n�

�K��
� ��div

�n�

�C�
� 0. �2. 2. 40�

In order to construct local solutions to Eqs. (2.2.38) and (2.2.40) remind that the operator
� defined in (2.2.39) is nilpotent [13]:

�2 � 0. �2. 2. 41�

Equation (2.2.41) gives us the local solutions to Eq.(2.2.38) of the form

�div
�n� � �h��� � ��X�h��,C�,C�,K��,L���, �2. 2. 42�

where  is an arbitrary gauge-invariant local functional of h�� and its derivatives, and X is
an arbitrary local functional of h��,C�,C�,K�� and L� and their derivatives. In order to
satisfy the ghost equation of motion (2.2.40) we require that

�div
�n� � �div

�n� h��,C�,K�� � ��1C�F���
� ,L� . �2. 2. 43�

D. Ghost number and power counting
Structure of the effective action (2.2.14) shows that we may define the following

conserved quantity, called ghost number [13]:



Nghost�h�� � � 0,Nghost�C� � � �1,Nghost�C� � � �1,

Nghost�K�� � � �1,Nghost�L� � � �2.
�2. 2. 44�

From Eqs.(2.2.44) follows that

Nghost��� � Nghost��� � 0. �2. 2. 45�

Since

Nghost��� � �1, �2. 2. 46�

we require of the functional X��� that

Nghost�X� � �1. �2. 2. 47�

In order to complete analysis of the structure of �div
�n�, we must supplement the symmetry

equations (2.2.42), (2.2.43), and (2.2.47) with the constraints on the divergences which
arise from power counting. Accordingly, we introduce the following notations:

nE � number of graviton vertices with two derivatives,
nG � number of antighost-graviton-ghost vertices,
nK � number of K-graviton-ghost vertices,
nL � number of L-ghost-ghost vertices,
IG � number of internal-ghost propagators,
EC�number of external ghosts,
EC�number of external antighosts.
Since graviton propagators behave like p�4, and ghost propagators like p�2, we are led

by standard power counting to the degree of divergence of an arbitrary diagram,

D � 4 � 2nE � 2IG � 2nG � 3nL � 3nK � EC. �2. 2. 48�

The last term in (2.2.48) arises because each external antighost line carries with it a
factor of external momentum. We can make use of the topological relation

2IG � 2nG � 2nL � nK � EC � EC �2. 2. 49�

Fig.2.2.2.The three types of divergent diagram

which involve external ghost lines. Arbitrarily

many gravitons may emerge from each of the

central regions,(a) Ghost action type,(b) K type,

(c) L type.

to write the degree of divergence as



D � 4 � 2nE � nL � 2nK � EC � 2EC. �2. 2. 50�

Together with conservation of ghost number,Eq. (2.2.50) enables us to catalog three
different types of divergent structures involving ghosts. These are illustrated in Fig.2.2.2.
Each of the three types has degree of divergence D � 1 � 2nE. Consequently, all the
divergences which involve ghosts have nE � 0.Since the degree of divergence is then
1, the associated divergent structures in �div

�n� have an extra derivative appearing on one
of the fields. Diagrams whose external lines are all gravitons have degree of divergence
D � 4 � 2nE. Combining (2.2.50) with (2.2.47), (2.2.43), and (2.2.42), we can finally write
the most general expression for �div

�n� which satisfies all the constraints of symmetries and
power counting:

�div
�n� � �h��� � � K�� � ��1C�F���

� P���h��� � L�Q�
��h���C� , �2. 2. 51�

where P���h��� and Q�
��h��� are arbitrary Lorentz-covariant functions of the gravitational

field h��, but not of its derivatives, at a single spacetime point. �h��� is a local
gauge-invariant functional of h�� containing terms with four, two, and zero
derivatives.Expanding (2.2.51), we obtain an array of possible divergent structures:

�div
�n� � �h��� �

�I sym

�h�� P�� � �K
� � C�F�
�
� �D�


�

�h�� C� P�� �

� �K
� � C�F�
�
� �P
�

�h�� D�
��C� � �K�� � C�F���

� D�
���Q�

�C�� � �2L����Q�
�C��C�

��2L���C�Q�
�C� � �L�

�Q�
�

�h�� C�D�
��C� � �2L�Q�

���C�C�.

�2. 2. 52�

The breakup between the gauge-invariant divergences S and the rest of (2.2.52) is
determined only up to a term of the form [13]

� d4x���� � �h���
�I sym

��h�� , �2. 2. 53�

which can be generated by adding to P�� a term proportional to ��� � �h�� � g g��.The

profusion of divergences allowed by (2.2.52) appears to make the task of renormalizing
the effective action rather complicated. Although the many divergent structures do pose
a considerable nuisance for practical calculations, the situation is still reminiscent in
principle of the renormalization of Yang-Mills theories. There, the non-gauge-invariant
divergences may be eliminated by a number of field renormalizations. We shall find the
same to be true here, but because the gravitational field h�� carries no weight in the
power counting, there is nothing to prevent the field renormalizations from being
nonlinear, or from mixing the gravitational and ghost fields. The corresponding
renormalizations procedure considered in [13].

Remark 2.2.2.We assume now that:
(i) The local Poincaré group of momentum space is deformed at some fundamental
high-energy cutoff �� [9],[10].
(ii) The canonical quadratic invariant 	p	2 � �abpapb collapses at high-energy cutoff ��

and being replaced by the non-quadratic invariant:

	p	2 �
�abpapb

�1 � l��p0�
. �2. 2. 1�

(iii) The canonical concept of Minkowski space-time collapses at a small distances



l�� � ��
�1 to fractal space-time with Hausdorff-Colombeau negative dimension and

therefore the canonical Lebesgue measure d4x being replaced by the
Colombeau-Stieltjes

measure

�d��x,���� � �v��s�x��d4x��, �5. 1. 2�

where

�v��s�x���� � |s�x�||D
� | � �

�1

�
,

s�x� � x�x� ,
�5. 1. 3�

see subsection IV.2.
(iv) The canonical concept of local momentum space collapses at fundamental

high-energy cutoff �� to fractal momentum space with Hausdorff-Colombeau negative
dimension and therefore the canonical Lebesgue measure d3k,where k ��kx,ky,kz� being
replaced by the Hausdorff-Colombeau measure

dD�,D�k � ��D��dD�k
|k||D

� | � �
�

�
��D����D��pD��1dp

�p|D� | � ���
, �5. 1. 4�

see subsection III.3-III.4. Note that the integral over measure dD�,D�k is given by formula
(3.3.16).

Remark 2.2.3.(I)The renormalizable models which we have considered in this section
many years regarded only as constructs for a study of the ultraviolet problem of
quantum gravity. The difficulties with unitarity appear to preclude their direct acceptability
as canonical physical theories in locally Minkowski space-time. In canonical case they do
have only some promise as phenomenological models.

(II) However, for their unphysical behavior may be restricted to arbitrarily large energy
scales �� mentioned above by an appropriate limitation on the renormalized masses m2

and m0. Actually, it is only the massive spin-two excitations of the field which give the
trouble with unitarity and thus require a very large mass. The limit on the mass m0 is
determined only by the observational constraints on the static field.

III. Hausdorff-Colombeau measure and associated
negative Hausdorff-Colombeau dimension.

III.1.Fractional Integration in negative dimensions.
Let �H

D� be a Hausdorff measure [19] and X � �n is measurable set. Let s�x� be a
function s : X � � such that is symmetric with respect to some centre x0 � X, i.e. s�x� �
constant for all x satisfying d�x,x0� � r for arbitrary values of r.Then the integral in

respect to Hausdorff measure over n-dimensional metric space X is then given by [19]:

�
X

s�x�d�H
D� � 2�D�/2

��D�/2�
�

0

�
s�r�rD��1dr. �3. 1. 1�

The integral in RHS of the Eq.(3.1.1) is known in the theory of the Weyl fractional
calculus where, the Weyl fractional integral WDf�x�, is given by



WDf�x� � 1
��D�

�
0

�
�t � x�D�1f�t�dt. �3. 1. 2�

Remark 3.1.1. In order to extend the Weyl fractional integral (3.1.1) in negative
dimensions we apply the Colombeau generalized functions [20] and Colombeau
generalized numbers [21].
Recall that Colombeau algebras G��� of the Colombeau generalized functions defined

as follows.Let � be an open subset of �n. Throughout this paper, for elements of the
space C�����0,1� of sequences of smooth functions indexed by � � �0, 1� we shall use the
canonical notations ����x��� and �u��� so u� � C����, � � �0, 1�.

Definition 3.1.1.We set G��� � EM���/N���, where

EM��� � �u��� � C�����0,1� �K �� �,�� � �n�p � � with

supx�K|u��x�| � O���p� as � � 0 ,

N��� � �u��� � C�����0,1� �K �� �,�� � �n�q � �

supx�K|u��x�| � O��q� as � � 0 .

�3. 1. 3�

Notice that G��� is a differential algebra.Equivalence classes of sequences �u��� will
be denoted by cl��u��� �. is a differential algebra containing D���� as a linear subspace
and C���� as subalgebra.

Definition 3.1.1. Weyl fractional integral W�
D

��
f�x�

�
in negative dimensions D� � 0,

D� � 0,�1, . . . ,�n, . . . ,n � � is given by

WD�
f�x� � 1

��D��
�
�

�
�t � x�D��1f�t�dt

�

or

W�
D�

�
f�x�

�
� 1

��D��
�

0

� 1
� � �t � x� |D� |�1

f�t�dt
�

,

�3. 1. 4�

where � � �0, 1� and �
0

�
|f�t�dt| � �.Note that �W�

D��
f�x��� � G���.Thus in order to obtain

apropriate extension of the Weyl fractional integral WD�
f�x� on the negative dimensions

D� � 0 the notion of the Colombeau generalized functions is essentially importent.
Remark 3.1.2.Thus in negative dimensions from Eq.(3.1.1) we formally obtain

�
X

s�x�d�HC,�
D��

�
� 2�D�/2

��D�/2�
�

0

� s�r�
� � r |D� |�1

dr
�
� �I �D� ��, �3. 1. 5�

where � � �0, 1� and D� � 0,�2, . . . ,�2n, . . . ,n � � and where ��HC,�
D�

�� is apropriate
generalized Colombeau outer measure.Namely Hausdorff-Colombeau outer measure.

Remark 3.1.3. Note that: if s�0� � 0 the quantity �I �D
�,D�

�� takes infinite large value in
sense of Colombeau generalized numbers ,i.e., �I �D

�,D�
�� �

�
� , see Definition 3.3.2 and

Definition 3.3.3.
Remark 3.1.4.We apply throught this paper more general definition then (3.1.4):

�
X

s�x�d�HC,�
D�,D�

�
� 4�D�/2�D�/2

��D�/2���D�/2�
�

0

� rD��1s�r�
� � r |D� |

dr
�

� �I �D
�,D� ��, �3. 1. 5�

where � � �0, 1� and D� � 1, D� � 0,�2, . . . ,�2n, . . . ,n � � and where �HC,�
D�,D�

�
is

apropriate generalized Colombeau outer measure.Namely Hausdorff-Colombeau outer



measure. In subsection 3.3 we pointed out that there exist Colombeau generalized
measure d�HC,�

D�,D�

�
and therefore Eq.(3.1.4) gives apropriate extension of the

Eq.(3.1.1) on the negative Hausdorff-Colombeau dimensions.

III.2.Hausdorff measure and associated positive Hausdorff
dimension.

Recall that the classical Hausdorff measure [19],[22] originate in Caratheodory’s
construction, which is defined as follows: for each metric space X, each set F � �Ei� i��

of subsets Ei of X, and each positive function ���E�, such that 0 	 ���Ei � 	 � whenever
Ei � F, a preliminary measure ��

��E� can be constructed corresponding to 0 � � 	 �� ,
and then a final measure ���E�, as follows: for every subset E � X, the preliminary
measure ��

��E� is defined by

��
��E� �

�Ei � i��

inf � i�� �
��Ei �|E � 	 i�� Ei ,diam�Ei � 	 � . �3. 2. 5�

Since ��1
� �E� � ��2

� �E� for 0 � �1 � �2 	 ��, the limit

���E� �
��0�

lim ��
��E� �

�
0

sup ��
��E� �3. 2. 6�

exists for all E � X. In this context, ���E� can be called the result of Caratheodory’s
construction from ���E� on F. ��

��E� can be referred to as the size � approximating
positive measure. Let ���Ei ,d�� be for example

���Ei ,d�� � ��d���diam�Ei ��d�
, 0 � ��d��, �3. 2. 7�

for non-empty subsets Ei , i � � of X. Where ��d�� is some geometrical factor,depends
on the geometry of the sets Ei , used for covering. When F is the set of all non-empty
subsets of X, the resulting measure �H

� �E,d�� is called the d�-dimensional Hausdorff
measure over X; in particular, when F is the set of all (closed or open) balls in X,

��d�� � ��d�� � �
d�

2 �2�d�
�� 1 � d�

2
. �3. 2. 8�

Consider a measurable metric space �X,�H�d��,X � �n,d � ���,���.The elements of
X are denoted by x,y,z, . . . , and represented by n-tuples of real numbers
x � �x1,x2, . . . ,xn�

The metric d�x,y� is a function d : X � X � R� is defined in n dimensions by

d�x,y� � � ij �� ij �yi � xi ��yj � xj ��
1/2 �3. 2. 9�

and the diameter of a subset E � X is defined by

diam�E� � sup�d�x,y�|x,y � E�. �3. 2. 10�

Definition 3.2.1. The Hausdorff measure �H
� �E,D�� of a subset E � X with the

associated Hausdorff positive dimension D� � �� is defined by canonical way

�H
� �E,D�� �

��0
lim

�Ei � i��

inf � i�� �
��Ei ,D��|E � 	 i Ei ,�i�diam�Ei � � �� ,

D��E� � sup�d� � ��|d� 
 0,�H
� �E,d�� � ���.

�3. 2. 11�

Definition 3.2.2. Remind that a function f : X � � defined in a measurable space



�X,�,��, is called a simple function if there is a finite disjoint set of sets �E1, , . . . ,En� of
measurable sets and a finite set ��1, , . . . ,�n� of real numbers such that f�x� � � i if x � Ei

and f�x� � 0 if x � Ei .Thus f�x� � � i�1
n � i�Ei �x�,where �Ei �x� is the characteristic

function of Ei . A simple function f on a measurable space �X,�,�� is integrable if
��Ei � � � for every index i for which � i � 0. The Lebesgue-Stieltjes integral of f is
defined by

� fd� � � i�1
n � i��Ei �. �3. 2. 12�

A continuous function is a function for which limx�y f�x� � f�y� whenever limx�y d�x,y� � 0.
The Lebesgue-Stieltjes integral over continuous functions can be defined as the limit

of infinitesimal covering diameter: when �Ei� i�� is a disjoined covering and xi � Ei by
definition (3.2.12) one obtains

�
X

f�x�d�H
� �x,D�� �

diam�Ei ��0
lim ��Ei�X

f�xi �
�Eij � with � j Eij�Ei

inf � j
���Eij ,D��Eij �� .

�3. 2. 13�

From now on, X is assumed metrically unbounded, i.e. for every x � X and r 
 0 there
exists a point y such that d�x,y� 
 r. The standard assumption that D� is uniquely
defined in all subsets E of X requires X to be regular (homogeneous, uniform) with
respect to the measure,i.e. �H

� �Br�x�,D�� � �H
� �Br�y�,D�� for all elements x,y � X and

(convex) balls Br�x� and Br�y� of the form Br
0�x� � �z|d�x,z� 	 r;x,z � X�. In the limit
diam�Ei � � 0, the infimum is satisfied by the requirement that the variation over all
coverings �Eij � ij�� is replaced by one single covering Ei , such that

� j Eij � Ei � xi .Hence

�
X

f�x�d�H
� �x,D�� �

diam�Ei ��0
lim ��Ei�X

f�xi ����Ei ,D��. �3. 2. 14�

The range of integration X may be parametrised by polar coordinates with r � d�x, 0�
and angle �.�Er i ,� i � i�� can be thought of as spherically symmetric covering around a
centre at the origin. In the limit, the function ���Er,�,D�� defined by Eq.(3.2.7) is given by

d�H
� �x,D�� �

diam�Er,� ��0
lim ���Er,�,D�� � d�D��1rD��1dr. �3. 2. 15�

Let us assume now for simplification that f�x� � f�	x	� � f�r� and.
r��
lim f�r� � 0. The

integral over a D�-dimensional metric space X is then given by

�
X

f�x�d�H
� �x,D�� � �

X
f�x�dD�

x � 2�
D�

2

� 1 � D�

2

�
0

�
f�r�rD��1dr. �3. 2. 16�

The integral defined in (3.2.14) satisfies the following conditions.
(i) Linearity:

�
X
�a1f1�x� � a2f2�x��d�H

� �x,D�� � a1 �
X

f1�x�d�H
� �x,D�� � a2 �

X
f2�x�d�H

� �x,D��. �3. 2. 17�

(ii) Translational invariance:

�
X

f�x � x0�d�H
� �x,D�� � �

X
f�x�d�H

� �x,D�� �3. 2. 18�

since d�H
� �x � x0,D�� � d�H

� �x,D��.
(iii) Scaling property:



�
X

f�ax�d�H
� �x,D�� � a�D� �

X
f�x�d�H

� �x,D�� �3. 2. 19�

since d�H
� �x/a,D�� � a�D�

d�H
� �x,D��.

(iv) The generalised �D�
�x� function:

The generalised �D�
�x� function for sets with non-integer Hausdorff dimension

exists and can be defined by formula

�
X

f�x��D�
�x � x0�d�H

� �x,D�� � f�x0�. �3. 2. 20�

III.3.Hausdorff-Colombeau measure and associated
negative Hausdorff-Colombeau dimensions.

During last 20 years the notion of negative dimension in geometry was many
developed, see [15],[23]-[27].

Remind that canonical difenitions of noninteger positive dimension alwais equipped
with an measure. Hausdorff–Besicovich dimension equipped with Hausdorff measure
d�H

� �x,D��.
Let us consider example of a space of noninteger positive dimension equipped with

the Haar measure.On the closed interval 0 	 x 	 1 there is a scale 0 	 � 	 1 of Cantor
dust with the Haar measure equal to x� for any interval �0,x� similar to the entire given
set of the Cantor dust. The direct product of this scale by the Euclidean cube of
dimension k � 1 gives the entire scale k � �, where k � � and � � �0, 1� [24].

In this subsection we define generalized Hausdorff-Colombeau measure.In subsection
III.4 we will prove that negative dimensions of fractal equipped with the
Hausdorff-Colombeau measure in natural way.

Let � be an open subset of �n, let X be metric space X � �n and let F be a set
F � �Ei� i�� of subsets Ei of X. Let ��E,x,x� � be a function � : F � � � � � �.Let CF

����
be a set of the all functions ��E,x� such that ��E,x� � C���� whenever
E � F.Throughout this paper, for elements of the space CF

�����0,1� of sequences of
smooth functions indexed by � � �0, 1� we shall use the canonical notations ����E,x���
and ����� so �� � CF

����, � � �0, 1�.
Definition 3.3.1.We set GF��� � EM�F,��/N�F,��, where

EM�F,�� � ����� � CF
�����0,1� �K �� �,�� � �n�p � � with

supE�F;x�K|���E,x�| � O���p� as � � 0 ,

N�F,�� � ����� � CF
�����0,1� �K �� �,�� � �n�q � �

supE�F;x�K|���E,x�| � O��q� as � � 0 .

�3. 3. 1�

Notice that GF��� is a differential algebra.Equivalence classes of sequences ����� will
be denoted by cl������ � or simply ������ �.

Definition 3.3.2.We denote by � the ring of real,Colombeau generalized numbers.

Recall that by definition � � EM���/N��� [21], where



EM��� � ��x��� � ��0,1� |��� � �����0 � �0, 1���� 	 �0�|x� | 	 �� ��,

N��� � ��x��� � ��0,1� |��� � �����0 � �0, 1���� 	 �0�|x� | 	 �� ��.
�3. 3. 2�

Notice that the ring � arises naturally as the ring of constants of the Colombeau

algebras G���.Recall that there exists natural embedding 
r : � � � such that for all
r � �,
r � �r ��� where r � � r for all � � �0, 1�.We say that r is standard number and

abbreviate r � � for short. The ring � can be endowed with the structure of a partially

ordered ring: for r,s � � � � ��,� 	 1 we abbreviate r 	
�,�

s or simply r 	
�

s if and only if

there are representatives �r ��� and �s��� with r � 	 s� for all � � �0,��.Colombeau

generalized number r � � with representative �r ��� we abbreviate cl��r ��� �.

Definition 3.3.3. (i) Let � � �. We say that � is infinite small Colombeau generalized
number and abbreviate � 

�



0 if there exists representative ����� and some q � � such

that |�� | � O��q� as � � 0. (ii) Let � � �. We say that � is infinite large Colombeau
generalized number and abbreviate � �

�
� if �

�

�1 
�



0. (iii) Let �� be � � ��� We say

that � � �� is infinite Colombeau generalized number and abbreviate � �
�
�

�
if there

exists representative ����� where �� � � for all � � �0, 1�.Here we set EM���� �

EM��� � �������, N���� � N��� and �� � EM����/N����.
Definition 3.3.4.The singular Hausdorff-Colombeau measure originate in Colombeau

generalization of canonical Caratheodory’s construction, which is defined as follows: for
each metric space X, each set F � �Ei� i�� of subsets Ei of X, and each Colombeau
generalized function ����E,x,x� ���, such that: (i) 0 	 ����E,x,x� ��� , (ii) ����E,x�,x� ��� ��

�,

whenever E � F, a preliminary Colombeau measure ����E,x,x�,���� can be constructed
corresponding to 0 � � 	 �� , and then a final Colombeau measure ����E,x,x� ���, as
follows: for every subset E � X, the preliminary Colombeau measure ����E,x,x�,���� is
defined by

���E,x,x�,�� �
�Ei � i��

sup � i�� ���Ei ,x,x� �|E � 	 i�� Ei ,diam�Ei � 	 � . �3. 3. 3�

Since for all � � �0, 1� : ��1
� �E,x,x�,�� � ��2

� �E,x,x�,�� for 0 � �1 � �2 	 ��, the limit

���E,x,x�,���� �
��0�

lim ���E,x,x�,��
�

�
�
0

inf ���E,x,x�,��
�

�3. 3. 4�

exists for all E � X. In this context, ���E,x,x�,���� can be called the result of
Caratheodory’s construction from ����E,x,x� ��� on F and ����E,x,x�,���� can be referred to
as the size � approximating Colombeau measure.

Definition 3.2.5. Let ����Ei ,D�,D�,x,x� ��� be

����Ei ,D�,D�,x,x� ��� �

�1�D���2�D���diam�Ei ��D�

�d�x,x��� |D� | � � �

if x � Ei

0 if x � Ei

�3. 3. 5�

where � � �0, 1�,�1�D��,�2�D�� 
 0. In particular, when F is the set of all (closed or

open)
balls in X,



�1�D�� � 2�D�
�

D�

2

� 1 � D�

2

�3. 3. 6�

and

�2�D�� � 2�D�
�

D�
2

� 1 � D�

2

,

D� � �2,�4,�6, . . . ,�2�n � 1�, . . .

�3. 3. 7�

Definition 3.2.6. The Hausdorff-Colombeau singular measure ��H�E,D�,D�,x,x�,����
of a subset E � X with the associated Hausdorff-Colombeau dimension
D� ��D�� � ��,D� � ��, is defined by

��HC�E,D� �,D�,x,x�,���
�
�

��0
lim

�Ei � i��

sup � i������Ei ,D� �,D�,x,x� ��
�
|E � 	 i Ei ,�i�diam�Ei � � ��

�

,

D� � � sup D� 
 0|��HC�E,D�,D�,x,x�,���� � �
�

,

�3. 3. 8�

The Colombeau-Lebesgue-Stieltjes integral over continuous functions f : X � � can be
evaluated similarly as in subsection III.3,(but using the limit in sense of Colombeau
generalized functions) of infinitesimal covering diameter when �Ei� i�� is a disjoined
covering and xi � Ei :

�
X

f�x�d�HC�E,D�,D�,x,x�,��
�
�

diam�Ei ��0
lim ��Ei�X

f�xi �
�Eij � with � j Eij�Ei

inf � j
���Ei ,D�,D�,xi ,x� �

�

.
�3. 3. 9�

We assume now that X is metrically unbounded, i.e. for every x � X and r 
 0 there
exists a point y such that d�x,y� 
 r. The standard assumption that D� � and D� � is uniquely
defined in all subsets E of X requires X to be regular (homogeneous, uniform) with
respect to the measure,i.e. ��HC

� �Br�x� �,D� �,D� �,x,x�,���
�
� ��HC

� �Br�y� �,D� �,D� �,x�,y�,���
�
,

where d�x,x�� � d�x�,y�� for all elements x�,y�,x,x� � X and convex balls Br�x�� and Br�y�� of
the form Br�x�� � �z|d�x�,z� 	 r;x�,z � X� and Br�y�� � �z|d�y�,z� 	 r;y�,z � X�. In the limit
diam�Ei � � 0, the infimum is satisfied by the requirement that the variation over all
coverings �Eij � ij�� is replaced by one single covering Ei , such that

� j Eij � Ei � xi .Therefore

�
X

f�x�d�HC�E,D� �,D� �,x,x�,��
�
�

diam�Ei ��0
lim ��Ei�X

f�xi ����Ei ,D� �,D� �,xi ,x� �
�

.
�3. 3. 10�

Assume that f�x� � f�r�, r � 	r	.The range of integration X may be parametrised by
polar coordinates with r � d�x, 0� and angle �.�Er i ,� i � can be thought of as spherically



symmetric covering around a centre at the origin. Thus

�
X

f�r�d�HC�E,D� �,D� �,x,x�,��
�
�

diam�Ei ��0
lim ��Ei�X

f�r i ����Ei ,D� �,D� �,xi ,x� �
�

.
�3. 3. 11�

Notice that the metric set X � �n can be tesselated into regular polyhedra; in
particular it is always possible to divide �n into parallelepipeds of the form

� i 1,...,i n � �x � �x1, . . . ,xn� � X|xj � �i j � 1��xj �  j , 0 	  j 	 �xj , j � 1, . . . ,n�. �3. 3. 12�

For n � 2 the polyhedra � i 1,i 2 is shown in figure 3.3.1.Since X is uniform

�d�HC�x,D� �,D� �,x,x�,���
�
�

diam � i1,...,in

lim ���� i 1,...,i n,D� �,D� �,x,x� �
�

�

diam � i1,...,in

lim �
j�1

n �xj

|xj � x� j |
D� �

� �

D� �
n

�

�

� �
j�1

n d
D� �
n xj

|xj � x� j |
D� �

� �
D� �
n

�

.

�3. 3. 13�

Fig.3.3.1. The polyhedra covering for n � 2.

Notice that the range of integration X may also be parametrised by polar coordinates
with

r � d�x, 0� and angle �. Er,� can be thought of as spherically symmetric covering
around a centre at the origin (see figure 3.3.2 for the two-dimensional case). In the

limit,
the Colombeau generaliza function ����Er,�,D� �,D� �, r, 0��

�
is given by

�d�HC�r,�,D� �,D� �,���
�
�

diam � i1,...,in

lim ���Er,�,D� �,D� �,�r,��, 0�
�

� d�D� ��1rD� ��1dr
r D� �

� �
�

�3. 3. 14�



Fig.3.3.2.The spherical covering Er,�.

When f�x� is symmetric with respect to some centre x� � X, i.e. f�x� � constant for all x
satisfying d�x,x�� � r for arbitrary values of r, then chainge of the variable

x � z � x � x� �3. 3. 15�

can be performed to shift the centre of symmetry to the origin (since X is not a linear
space, (3.3.15) need not be a map of X onto itself and (3.3.15) is measure preseming).
The integral over metric space X is then given by formula

�
X

f�x�d�HC�E,D� �,D� �,x,x�,��
�
� 4�D�/2�D�/2

��D�/2���D�/2�
�

0

� rD��1f�r�
� � r |D� |

dr
�

. �3. 3. 16�

III.4.Main properties of the Hausdorff-Colombeau metric
measures with associated negative Hausdorff-Colombeau
dimensions.

Definition 3.4.1. An outer Colombeau metric measure on a set X � �n is a
Colombeau

generalized function �����E��� � � GF��� (see Definition 3.3.1) defined on all

subsets of X satisfies the following properties:.
(i) Null empty set:The empty set has zero Colombeau outer measure

��������� � � 0. �3. 4. 1�

(ii) Monotonicity: For any two subsets A and B of X

A � B � �����A��� � 	�
�����B��� �. �3. 4. 2�

(iii) Countable subadditivity: For any sequence �Aj� of subsets of X pairwise disjoint or
not

����� j�1
� Aj ��� 	

�
� j�1

� ���Aj �
�

. �3. 4. 3�

(iv) Whenever d�A,B� � inf�dn�x,y�|x � A,y � B� 
 0

�����A � B��� � � �����A��� � � �����B��� �, �3. 4. 4�

where dn�x,y� is the usual Euclidean metric:dn�x,y� � ��xi � yi �2 .

Definition 3.4.2. We say that outer Colombeau metric measure �μ���,� � �0, 1� is a
Colombeau measure on σ-algebra of subests of X � �n if �μ��� satisfies the following



property:

����� j�1
� Aj ��� � � j�1

� ���Aj �
�

. �3. 4. 5�

Definition 3.4.3.If U is any non-empty subset of n-dimensional Euclidean space, �n,
the

diamater |U| of U is defined as

|U| � sup�d�x,y�|x,y � U� �3. 4. 6�

If F � �n, and a collection �U i� i�� satisfies the following conditions:
(i) |U i | � � for all i � �, (ii) F � � i�� U i , then we say the collection �U i� i��is a δ-cover of

F.
Definition 3.4.4.If F � �n and s,q,δ 
 0, we define Hausdorff-Colombeau content:

�H�
s,q�F,���� � inf � i�1

� |U i |s

	xi	
q � � �

�3. 4. 7�

where the infimum is taken over all δ-covers of F and where xi � �xi,1, . . .xi,n� � U i for

all i � � and 	x	 is the usual Euclidean norm:	x	 � � j�1
n xj

2 .

Note that for 0 � δ1 � δ2 � 1,� � �0, 1� we have

H�1

s,q�F,�� � H�2

s,q�F,�� �3. 4. 8�

since any δ1 cover of F is also a δ2 cover of F,i.e. H�1

s,q�F,�� is increasing as δ
decreases.

Definition 3.4.4.We define the �s,q�-dimensional Hausdorff-Colombeau (outer)
measure

as:

�Hs,q�F,���� �
��0
lim H�

s,q�F,��
�

. �3. 4. 9�

Theorem 3.4.1.For any δ-cover,�U i� i��of F, and for any � � �0, 1�, t 
 s :

Ht,q�F,�� 	 �t�sHs,q�F,��. �3. 4. 10�

Proof. Consider any δ-cover �U i� i��of F.Then each |U i |t�s 	 �t�s since |U i | 	 �, so:

|U i |t � |U i |t�s|U i |s 	 �t�s|U i |s. �3. 4. 11�

From (3.4.11) follows that

|U i |t

	xi	
q � �

	 �t�s|U i |s

	xi	
q � �

�3. 4. 12�

and summing (3.4.11) over all i � � we obtain

� i�1
� |U i |t

	xi	
q � �

	 �t�s� i�1
� |U i |s

	xi	
q � �

. �3. 4. 13�

Thus (3.4.10) follows by taking the infimum.
Theorem 3.4.2. (1) If �Hs,q�F,���� �

�
�

�
, and if t 
 s, then �Ht,q�F,���� � 0

�
.

(2) If 0
�
�
�
�Hs,q�F,����, and if t � s, then �Ht,q�F,���� � �

�
.

Proof.(1) The result follows from (3.4.10) after taking limits, since �� � �0, 1� by
definitions follows that Hs,q�F,�� � �.
(2) From (3.4.10) �� � �0, 1�,�� 
 0 follows that



1
�s�t Hs,q�F,�� 	 Ht,q�F,��. �3. 4. 14�

After taking limit � � 0, we obtain Ht,q�F,�� � �,since lim��0��s�t��1 � � and
lim��0 H�

s,q�F,�� � Hs,q�F,�� 
 0.
Definition 3.4.5.We define now the Hausdorff-Colombeau dimension dimHC�F,q� of a

set F (relative to q 
 0) as

dimHC�F,q� �

sup s � s�q�|�Hs,q�F,���� � �
�

� inf s � s�q�|�Hs,q�F,���� � 0
�

.
�3. 4. 15�

Remark 3.4.1.From theorem 3.4.2 follows that for any fixed q � q� :
�Hs,q��F,���� � 0

�
or �Hs,q��F,���� � �

�
everywhere except at a unique value s, where

this
value may be finite. As a function of s,Hs,q��F,�� is decreasing function. Therefore, the
graph of Hs,q��F,�� will have a unique value where it jumps from � to 0.
Remark 3.4.2.Note that the graph of �Hs,q��F,���� for a fixed q � q� is

�Hs,q��F,���� �

�
�

if s � dimHC�F,q� �

0
�

if s 
 dimHC�F,q� �

undetermined if s � dimHC�F,q� �

�3. 4. 16�

Definition 3.4.6.We say that fractal � � �n has a negative dimension relative to q 
 0
if dimHC�F,q� � q � 0.

IV. Scalar quantum field theory in spacetime with
Hausdorff- Colombeau negative dimensions.

IV.1.Equation of motion and Hamiltonian.
Scalar quantum field theory and quantum gravity in spacetime with noninteger positive

Hausdorff dimensions developed in papers [29]-[32].Quantum mechanics in negative
dimensions developed in papers [33],[34] Scalar quantum field theory and quantum
gravity in spacetime with Hausdorff-Colombeau negative dimensions originally
developed in paper [15].In this section only free scalar quantum field in spacetime with
negative dimensions briefly is considered.

A negative-dimensional spacetime structures is a desirable feature of
superrenormalizable spacetime models of quantum gravity, and the most simply way to
obtain it is to let the effective dimensionality of the multifractal universe to change at
different scales. A simple realization of this feature is via suitable extended fractional
calculus and the definition of a fractional action. Note that below we use canonical
isotropic scaling such that:

�x� � � �1,� � 0, 1, . . . ,Dt � 1 �4. 1. 1�

while replacing the standard measure with a nontrivial Colombeau-Stieltjes measure,

dDtx � dDfx � �d��x,����,

��� � Dt � �,� � �1,���.
�4. 1. 2�



Here Dt is the topological (positive integer) dimension of embedding spacetime and � is
a parameter.Any Colombeau integrals on net multifractals can be approximated by the
left-sided Colombeau-Riemann–Liouville complex milti-fractional integral of a function
��t� :

�
0

t�
d��x,����t�

�
� I t�,�

�zi�t���

�
� �

i�1

m �
�

t� ��t� � t� � i��zi�t���1

��zi�t���
��t�dt

�

,

���t,���� �
t� zi�t�� � ��t� � t� � i��zi�t��

��zi�t�� � 1�
�

,

�4. 1. 3�

where � � �0, 1�, t� is fixed and the order z�t�� is (related to) the complex
Hausdorff-Colombeau dimensions of the set. In particular if zi � �, i � 1, 2, . . . ,m is a
complex parameters an integrals on net multifractals can be approximated by finite sum
of the left-sided Colombeau-Riemann–Liouville complex fractional integral of a function
��t�

�
0

t�
d��x,����t�

�
� I t�,�

�zi � i�1
m

�
�

� i�1
m �I t�,�

zi �
�
� � i�1

m 1
��zi �

�
�

t�
d��t� � t� � i��zi�1��t�

�
,

���t,���� � � i�1
m t� zi � ��t� � t� � i��zi

��zi � 1�
�

.

�4. 1. 4�

Note that a change of variables t � t� � t trasforms Eq. (4.1.4) into the form

�
0

t�
d��x,����t�

�
� � i�1

m �
0

t�
dt

�t � i��zi�1

��z�t���
��t� � t�

�

. �4. 1. 5�

The Colombeau-Riemann–Liouville multifractional integral (5.1.5) can be mapped onto
a Colombeau-Weyl multifractional integral in the formal limit t� � ��.We assume
otherwise,so that there exists lim t���� z�t�� and lim t������t� � t� � ��q�t�,q� �t��. In particular if

z � � is a complex parameter a change of variables t � t� � t trasforms eq. (5.1.5) into
the form

� i�1
m �I t�,�

zi �
�
� � i�1

m �
�

t�
dt

�t � i��zi�1

��zi �
��q�t�,q� �t��

�

. �4. 1. 6�

This form will be the most convenient for defining a Colombeau-Stieltjes field theory
action.In Dt dimensions, we consider now the action

�S��� � �
M

d��x,����	��x�,��	��x��
�
, �4. 1. 7�

where ��	,��	� is the Lagrangian density of the scalar field �	��x��� and where

�d��x,���� � � i�1
m ���0

Dt�1 f�,i�x,��
�
dx�, f�,i�x,��

�
: M � �, �4. 1. 8�

is some Colombeau–Stieltjes measure. We denote with pair �M, �d��x,����� the metric
spacetime M equipped with Colombeau-Stieltjes measure �d��x,����. The former can be
taken to be the canonical scalar field Lagrangian,

���	��x�,��	��x���� � � 1
2
���	���	��� � �V�	����, �4. 1. 9�



where V�	� is a potential and contraction of Lorentz indices is done via the Minkowski
metric ��� � ��,�, . . .����.As for the Colombeau-Stieltjes measure, we make the

multifractal spacetime isotropic choice

f��,i �,�
�
� �f i,���,� � 1, . . . ,Dt � 1; i � 1, . . . ,m. �4. 1. 10�

Hence the scalar field action (4.1.7) reads

�S��� � �
M

d��x,����	��x�,��	��x��
�
�

�
j�1

m � dDtxv�,j�x� 1
2
��	���	� � V�	��

�
,

�4. 1. 11�

where �v��x��� is a coordinate-dependent Lorentz scalar

�v�,j�x��� � 1
�sj�x��

Dt�|��1|� � � �

. �4. 1. 12�

We define now the Dirac distribution as Colombeau generalized function by equation

�
j�1

m � d� j�x,����vj �
�Df,j ��x,��

�
� m. �4. 1. 13�

In particular for for the case m � 1

� d��x,����v�
�Df ��x,��

�
� 1. �4. 1. 14�

Invariance of the action under the infinitesimal shift 	�x� � 	�x� � �	�x� gives the
equation of motion for a generic weight �vi,���, i � 1, . . . ,m :

��
�	� �

��
i�1

m ��vi,�
vi,�

� d
dx�

��
����	�� �

� 0. �4. 1. 15�

In particular for for the case m � 1 we obtain

��
�	� �

�
��v�
v�

� d
dx�

��
����	�� �

� 0. �4. 1. 16�

From Eq.(4.1.11) and Eq.(4.1.15) we obtain

��	��� �� i�1

m ��vi,�
vi,�

��	�
�

� d
d	�

V�	��
�
� 0. �4. 1. 17�

where � � ����. In particular for for the case m � 1 we obtain

��	��� �
��v�
v�

��	�
�
� d

d	�
V�	��

�
� 0. �4. 1. 18�

IV.2.Propagator in configuration space with
negative-dimensions.

We define the canonical vacuum-to-vacuum amplitude by

�Z�J,���� � �D	� exp i� j�1
m �d� j,��� � 	�J�

�
, �4. 2. 1�

where J is a source. Integration by parts in the exponent leads to the Lagrangian density
for a free field as



����� � 1
2

	� � �� j�1
m ��vj,�

vj,�
�� � m2 	�

�
� 1

2
�	��	���, �4. 2. 2�

where

� � � �� j�1
m ��vj,�

vj,�
�� � m2; j � 1, . . . ,m. �4. 2. 3�

In particular for for the case m � 1 we obtain

� � � �
��v�
v�

�� � m2. �4. 2. 4�

The propagator is the Green function �G��x��� solving the equation

��G��x��� � ��v
D�
�x,����, �4. 2. 5�

where D� � Dt�� � 1� � 0.By virtue of Lorentz covariance, the Green function G��x�
must depend only on the Lorentz interval s2 � x�x� � xixi � t2,where x0 � t and
i � 1, . . . ,Dt � 1. In particular, �v��� � �v��s�x���� with the correct scaling property is

�v��s�x���� � |s�x�||D
� | � �

�1

�
,s�x� � x�x� . �4. 2. 6�

Note that

�� �
x�

�s� ���
�s,� � �s

2 � Dt � 1
�s� ���

�s. �4. 2. 7�

Hence the inhomogeneous equation (4.2.5) reads

�s
2 � Dt� � 1

�s� ���
�s � m2 �G��x��� � ��v

D�
�x,����. �4. 2. 8�

We first consider the Euclidean propagator and denote with r � xixi � t2 the
Wick-rotated Lorentz invariant. In the massless case, the solution of the homogeneous
equations for any � � 0 is

�G��r��� � Cr2�,� � 2�Dt |� |
2 . �4. 2. 9�

Let us now consider the massive case.The solution of the homogeneous equation
��G��r��� � 0 for any � � 0 is

�G��r��� � r
m

2�Dt�|� |
2

C1K� 2�Dt�|� |
2

�mr� � C2I� 2�Dt�|� |
2

�mr� , �4. 2. 10�

where C1,C2 are constants and K� and I� are the modified Bessel functions. The
function I��z� is

I��z� � �
k�0

� �z/2���2k

k!��� � k � 1�
. �4. 2. 11�

Formula (4.2.11) is valid providing � � �1,�2,�3, . . . .

I�|� |�z� � �
k�0

� �z/2��|� |�2k

k!���|�| � k � 1�
�4. 2. 12�

Formula (4.2.12) is obtained by replacing � in (4.2.13) with a ��.

K�|� |�z� � � �
2 sin|�|�

�I |� |�z� � I�|� |�z��. �4. 2. 13�

The modified Bessel functions I�|� |�z� and K�|� |�z� have the following asymptotic forms
for z � 0 :



K�|� |�z� 
 1
2
���|�|� 2

z
�|� |

, I�|� |�z� 
 1
���|�| � 1�

z
2

�|� |
,

� � �1,�2,�3, . . . .
�4. 2. 14�

Since for small m 
 0 the solution must agree with the massless case (4.2.9), we can set
C2 � 0.To find the solution of the inhomogeneous equation, one exploits the fact that the
mass term does not contribute near the origin. Expanding Eq. (4.2.10) at mr 
 0 when
� � 0 (C2 � 0), we find

�G��r��� � C12� 4�Dt� � i
2 � � 2�Dt�|� i |

2 �r 2�
2�Dt� � i

2 �4. 2. 15�

which must coincide with Eq.(5.3.17). This gives the coefficient C1 and the propagator
reads

G�r� � � 1
2�

Dt
2

� Dt

2

� � Dt |� |
2

m
2r

�
2�D

t,i
� � i

2 K� 2�Dt |� |
2

�mr�. �4. 2. 16�

V.The solution cosmological constant problem

V.1.Einstein-Gliner-Zel’dovich vacuum with tiny Lorentz
invariance violation.

We assume now that:
(i) Poincaré group of momentum space is deformed at some fundamental high-energy
cutoff �� [9],[10].
(ii) The canonical quadratic invariant 	p	2 � �abpapb collapses at high-energy cutoff ��

and being replaced by the non-quadratic invariant:

	p	2 �
�abpapb

�1 � l��p0�
. �5. 1. 1�

(iii) The canonical concept of Minkowski space-time collapses at a small distances
l�� � ��

�1 to fractal space-time with Hausdorff-Colombeau negative dimension and
therefore the canonical Lebesgue measure d4x being replaced by the

Colombeau-Stieltjes
measure

�d��x,���� � �v��s�x��d4x��, �5. 1. 2�

where

�v��s�x���� � |s�x�||D
� | � �

�1

�
,

s�x� � x�x� ,
�5. 1. 3�

see subsection IV.2.
(iv) The canonical concept of momentum space collapses at fundamental high-energy

cutoff �� to fractal momentum space with Hausdorff-Colombeau negative dimension
and therefore the canonical Lebesgue measure d3k,where k ��kx,ky,kz� being replaced
by the Hausdorff-Colombeau measure



dD�,D�k � ��D��dD�k
|k||D

� | � �
�

�
��D����D��pD��1dp

�p|D� | � ���
, �5. 1. 4�

where ��D�� � 2�D�/2

��D�/2�
and p � |k| � kx � ky � kz .

Remark 5.1.1.Note that the integral over measure dD�,D�k is given by formula(3.3.16).
Thus vacuum energy density ��D�,D�,�eff,p�� for free quantum fields is

��D�,D�,�eff,p�� � ���eff� � ���eff,p�� � ���D�,D�,�eff,p��. �5. 1. 5�

Here the quantity ���eff� is given by formula

���eff� � 1
2�2���3 �0

�eff

d�f��� �
	k		 �

k2 � �2 d3k �

K �
0

�eff

d�f��� �
p 	 �

p2 � �2 p2dp � K �
0

�eff

d�f��� �
0

�

p2 � �2 p2dp

�5. 1. 6�

where K � 2�
�2���3 ,c � 1. The quantity ���eff,p�� is given by formula

���eff,p�� � 1
2�2���3 �0

�eff

d�f��� �
��	k	�p�

k2 � �2 d3k �

K �
0

�eff

d�f��� �
��	k	�p�

p2 � �2 p2dp.
�5. 1. 7�

The quantity ���D�,D�,�eff,p�� (since Eq.(1.1.18) holds) is given by formula

���D�,D�,�eff,p�� �

K� �
0

�eff

d�f��� �
	k	�p�

�2l��

1 � �2l��
2 � 1

1 � �2l��
2

�4l��
2

1 � �2l��
2 � �|k|2 � �2� dD�,D�k,

�5. 1. 8�

where K� � 1
2�2���3 ,c � 1.

Remark 5.1.2. We assume now that �2l��
2 � 1,�4l��

2 � 1 and therefore from
Eq.(5.1.8)

we obtain

��D�,D�,�eff,p�� �

K�l� �
0

�eff

f����2d� �
	k	�p�

d3,D�k � K� �
0

�eff

d�f��� �
	k	�p�

k2 � �2 dD�,D�k. �5. 1. 9�

From Eq.(5.1.9) and Eq.(5.1.4) we obtain



��D�,D�,�eff,p�� �

K�l� �
0

�eff

f����2d� �
	k	�p�

dD�,D�k � K� �
0

�eff

d�f��� �
	k	�p�

k2 � �2 dD�,D�k �

K�l���D����D�� �
0

�eff

fd�����2 �
p�

� pD��1dp
�p|D� | � ���

�

�K���D����D�� �
0

�eff

d�f��� �
p�

� p2 � �2 pD��1dp

�p|D� | � ���
�

K�l���D����D�� �
0

�eff

f����2d� �
p�

�
pD��D��1dp�

�K���D����D�� �
0

�eff

d�f��� �
p�

�
p2 � �2 pD��D��1dp.

�5. 1. 10�

Remark 5.1.2.We assume now that:

D� � D� � 2 	 �6. �5. 1. 11�

Note that

�
0

�eff

d�f��� �
p�

�
p2 � �2 pD��D��1dp � �

0

�eff

d�f��� �
p�

�
1 �

�2

p2 pD��D�
dp �

�
0

�eff

f���d� �
p�

�
pD��D�

dp� 1
2 �0

�eff

f����2d� �
p�

�
pD��D��1dp�

� 1
8 �0

�eff

f����4d� �
p�

�
pD��D��3dp� O�p�

D��D��4� �

p�
D��D��1

D� � D� � 1 �0

�eff

f���d� �
p�

D��D�

2�D� � D��
�

0

�eff

f����2d� �

� p�
D��D��1

8�D� � D� � 1�
�

0

�eff

f����4d� � O�p�
D��D��4�.

�5. 1. 12�

Thus finally we obtain

��D�,D�,�eff,p�� �

K�p�
D��D��1

D� � D� � 1 �0

�eff

f���d� � �K�l���D����D�� � 0. 5� �
0

�eff

f����2d�
p�

D��D�

D� � D� �

� K�p�
D��D��2

8�D� � D� � 1�
�

0

�eff

f����4d� � O�p�
D��D��4�.

�5. 1. 13�

Remark 5.1.3.Note that (see Eqs.(1.2.12)):


���eff,p�� � ���eff� � ���eff,p�� �

1
4

p�
4 �

0

�eff

f���d� � 1
4

p�
2 �

0

�eff

f����2d� � C1 � 1
8

lnp� �
0

�eff

f����4d� �

� 1
8 �

0

�eff

f����4�ln��d� � 1
p�

2
1

32 �
0

�eff

f����6d� � O �
0

�eff

f����8 p�
�5.

�5. 1. 14�

From Eq.(5.1.5),Eq.(5.1.13) and Eq.(5.1.14) finally we obtain



��D�,D�,�eff,p�� � ���eff� � ���eff,p�� � ���D�,D�,�eff,p�� �

1
4

p�
4 �

0

�eff

f���d� � 1
4

p�
2 �

0

�eff

f����2d� � C1 � 1
8

lnp� �
0

�eff

f����4d� �

� 1
8 �

0

�eff

f����4�ln��d� � 1
p�

2
1

32 �
0

�eff

f����6d� � O �
0

�eff

f����8 p�
�5 �

�O�p�
D��D��2�.

�5. 1. 15�

The pressure p�D�,D�,�eff,p�� for free scalar quantum field is

p�D�,D�,�eff,p�� � p��eff� � p��eff,p�� � p��D�,D�,�eff,p��. �5. 1. 16�

Here the quantity p��eff� is given by formula

p��eff� � K
3 �

0

�eff

d�f��� �
	p	��

p4

p2 � �2
dp. �5. 1. 17�

The quantity p��eff,p�� is given by formula

p��eff,p�� � K
3 �

0

�eff

d�f��� �
�		p		p�

p4

p2 � �2
dp. �5. 1. 18�

The quantity p��D�,D�,�eff,p�� is given by formula

p��D�,D�,�eff,p�� 
 K�

3 �
0

�eff

d� �
	p	
p�

f���
p4

p2 � �2
dp, �5. 1. 19�

where K� � 1
2�2���3 ,c � 1.

Remark 5.1.4.Note that (see Eqs.(1.2.12)):


p��eff,p�� � p��eff� � p��eff,p�� �

1
12

p�
4 �

0

�eff

f���d� � 1
12

p�
2 �

0

�eff

f����2d� � C2 � 1
8

lnp� �
0

�eff

f����4d� �

� 1
8 �

0

�eff

f����4�ln��d� � 5
p�

2
1

32 �
0

�eff

f����6d� � O �
0

�eff

f����8 p�
�5.

�5. 1. 20�

From Eq.(5.1.15),Eq.(5.1.19) and Eq.(5.1.20) similarly as above finally we get

p�D�,D�,�eff,p�� �

1
12

p�
4 �

0

�eff

f���d� � 1
12

p�
2 �

0

�eff

f����2d� � C2 � 1
8

lnp� �
0

�eff

f����4d� �

� 1
8 �

0

�eff

f����4�ln��d� � 5
p�

2
1

32 �
0

�eff

f����6d� � O �
0

�eff

f����8 p�
�5 �

�O�p�
D��D��2�.

�5. 1. 21�

Remark 5.1.5.We assume now that:



�
0

�eff

f���d� � �
0

�eff

f����2d� � �
0

�eff

f����4d� � 0. �5. 1. 22�

From Eq.(5.1.15),Eq.(5.1.21) and Eq.(5.1.22) finally we get

� � ��D�,D�,�eff,p�� � 1
8 �

0

�eff

f����4�ln��d� � O�p�
�2�,

p � �D�,D�,�eff,p�� � � 1
8 �

0

�eff

f����4�ln��d� � O�p�
�2�.

�5. 1. 23�

Remark 5.1.5. Note that the Eq.(5.1.23) can be obtained without fine-tuning

(5.1.22) which was ussumed in Zel’dovich paper [1].
In order to obtain Eq.(5.1.23) ander strictly weaker conditions we assume now that:
(i)

|f���| � |fs.m.��� � fg.m.���| � �eff
�n, �5. 1. 24�

where n 
 0 is an parametr, fs.m.��� corresponds to standard matter and where fg.m.���
corresponds to physical ghost matter,see Eq.(1.2.2).

(ii)

I 1 � p�
4 �

0

�eff

f���d�  0, I 2 � p�
2 �

0

�eff

f����2d�  0, I 3 � lnp� �
0

�eff

f����4d�  0 �5. 1. 25�

(iii)

I 1 � I 2 � I 3 � �
0

�eff

f����4�ln��d� . �5. 1. 26�

V.2. Zeropoint energy density corresponding to a
non-singular Gliner cosmology.

We assume now that

�
0

�eff

f���d� � 0, �
0

�eff

f����4d� � 0, �
0

�eff

f����2d� 
 0,

p� � �eff.

�5. 2. 1�

From Eq.(5.1.15),Eq.(5.1.21) and (5.2.1) we obtain



� � ��D�,D�,�eff,p�� �

1
4

p�
2 �

0

�eff

f����2d� � C1 � 1
8

lnp� �
0

�eff

f����4d� �

� 1
8 �

0

�eff

f����4�ln��d� � 1
p�

2
1

32 �
0

�eff

f����6d� � O �
0

�eff

f����8 p�
�5 �

�O�p�
D��D��2�,

�5. 2. 2�

and

p � p�D�,D�,�eff,p�� �

� 1
12

p�
2 �

0

�eff

f����2d� � C2 � 1
8

lnp� �
0

�eff

f����4d� �

� 1
8 �

0

�eff

f����4�ln��d� � 5
p�

2
1

32 �
0

�eff

f����6d� � O �
0

�eff

f����8 p�
�5 �

�O�p�
D��D��2�

�5. 2. 3�

correspondingly.From Eq.(5.2.2) and Eq.(5.2.3) we obtain

3p � � �

� 1
4

p�
2 �

0

�eff

f����2d� � 3C2 � 3
8

lnp� �
0

�eff

f����4d� �

� 3
8 �

0

�eff

f����4�ln��d� � 5
p�

2
3

32 �
0

�eff

f����6d� �

1
4

p�
2 �

0

�eff

f����2d� � C1 � 1
8

lnp� �
0

�eff

f����4d� �

� 1
8 �

0

�eff

f����4�ln��d� � 1
p�

2
1

32 �
0

�eff

f����6d� �

� 1
4

lnp� �
0

�eff

f����4d� � �3C2 � C1� �
0

�eff

f����4d� � 1
4 �

0

�eff

f����4�ln��d� �

� 5
p�

2
1

16 �
0

�eff

f����6d� � 0.

�5. 2. 4�

Therefore under conditions (5.2.1) the inequality

� 2� � 3p � � � 0 �5. 2. 5�

corresponding to Gliner non-singular cosmology [2],[4] is satisfied.

V.3. Zeropoint energy density in models with supermassive



physical ghost fields.
We assume now that:
(i) ghost fields corresponding to massive spin-2 particle with mass m2 and to massive

scalar particle with mass m0 appears (see subsection II.2) as real physical fields in
action ()

Remark 5.3.1.Note that their unphysical behavior may be restricted to arbitrarily
high-energy cutoff � by an appropriate limitation on the renormalized masses m2 and

m0.
Actually, it is only the massive spin-two excitations of the field which give the problem

with
unitarity and thus require a very large mass (see subsection II.2).
(ii) Poincaré group is deformed at some fundamental high-energy cutoff ��

�� � ���m0,m2� � m0c2 � m2c2. �5. 3. 1�

The canonical quadratic invariant 	p	2 � �abpapb collapses at high-energy cutoff ��

and
being replaced by the non-quadratic invariant:

	p	2 �
�abpapb

�1 � l��p0�
. �5. 3. 2�

(iii) The canonical concept of Minkowski space-time collapses at a small distances to
fractal space-time with Hausdorff-Colombeau negative dimension and
therefore the canonical Lebesgue measure d4x being replaced by the

Colombeau-Stieltjes
measure

�d��x,���� � �v��s�x��d4x��, �5. 3. 3�

where

�v��s�x���� � |s�x�||D
� | � �

�1

�
,s�x� � x�x� , �5. 3. 4�

(iv) we assume that

f��� � fs.m.��� � fg.m.���, �5. 3. 5�

where fs.m.��� corresponds to standard matter and where fg.m.��� corresponds to
physical

ghost matter.
Remark 5.3.2.We assume now that

|f���| �
O���n�,n 
 1 m0c � �eff

1 	 � 	 �eff
2 � m2c

0 �eff
1 
 � 
 �eff

2
�5. 3. 6�

Thus vacuum energy density � D�,D�,�eff
1 ,�eff

2 for free quantum fields is

� D�,D�,�eff
1 ,�eff

2 � � �eff
1 ,�eff

2 , � �� D�,D�,�eff
1 ,�eff

2 . �5. 3. 7�

Here the quantity � �eff
1 ,�eff

2 , is given by formula



� �eff
1 ,�eff

2 � 1
2�2���3 ��eff

1

�eff
2

d�f��� �
	k		 �

k2 � �2 d3k �

� K �
�eff

1

�eff
2

d�f��� �
p 	 �

p2 � �2 p2dp,
�5. 3. 8�

where K � 2�
�2���3 ,c � 1. The quantity �� D�,D�,�eff

1 ,�eff
2 is given by formula

�� D�,D�,�eff
1 ,�eff

2 �

K� �
�eff

1

�eff
2

d�f��� �
	k	
 �

�2l�
1 � �2l�

2 � 1
1 � �2l��

2

�4l��
2

1 � �2l��
2 � �|k|2 � �2� dD�,D�k,

�5. 3. 9�

where K� � 1
2�2���3 ,c � 1.

Remark 5.3.2. We assume now that �2l��
2 � 1,and therefore from Eq.(5.3.9) we

obtain

� D�,D�,�eff
1 ,�eff

2 


K�l� �
�eff

1

�eff
2

d�f����2 �
	k	
 �

d3,D�k � K� �
�eff

1

�eff
2

d�f��� �
	k	
 �

k2 � �2 dD�,D�k. �5. 3. 10�

From Eq.(5.3.10) and Eq.(5.1.4) we obtain

� D�,D�,�eff
1 ,�eff

2 


K�l� �
�eff

1

�eff
2

d�f����2 �
	k	
 �

dD�,D�k � K� �
�eff

1

�eff
2

d�f��� �
	k	
 �

k2 � �2 dD�,D�k �

K���D����D��l� �
�eff

1

�eff
2

d�f����2 �
�

� pD��1dp
�p|D� | � ���

�

�K���D����D�� �
�eff

1

�eff
2

d�f��� �
�

� p2 � �2 pD��1dp

�p|D� | � ���
�

K���D����D��l� �
�eff

1

�eff
2

d�f����2 �
�

�
pD��D��1dp �

�K���D����D�� �
�eff

1

�eff
2

d�f��� �
�

�
p2 � �2 pD��D��1dp .

�5. 3. 11�

Note that

p2 � �2 � � 1 �
p2

�2 � � 1 � 1
2

p2

�2 � 1
8

p4

�4 � 1
16

p6

�6 �. . . . �

� � � 1
2

p2

� � 1
8

p4

�3 � 1
16

p6

�5 �. . . .

�5. 3. 12�

By inserting the Eq.(5.3.12) into the Eq.(5.3.8) we get



� �eff
1 ,�eff

2 �

K �
�eff

1

�eff
2

d�f��� �
p 	 �

� � 1
2

p2

� � 1
8

p4

�3 � 1
16

p6

�5 �. . . . p2dp �

K �
�eff

1

�eff
2

d�f��� �
0

�

�p2 � 1
2

p4

� � 1
8

p6

�3 � 1
16

p8

�5 �. . . . dp �

K �
�eff

1

�eff
2

d�f��� �
p3

3
� 1

2
p5

5�
� 1

8
p7

7�3 � 1
16

p9

9�5 �. . . .
0

�

�

K �
�eff

1

�eff
2

d�f��� �
�

3
2

3
� 1

2
�

5
2

5�
� 1

8
�

1
2

7�3 � 1
16

�
9
2

9�5 �. . . . �

K �
�eff

1

�eff
2

f���d� 1
3
�

5
2 � 1

10
�

3
2 � 1

56
�

1
2 � 1

144
�� 1

2 �. . . . �

K �
�eff

1

�eff
2

f���d� 1
3
�

5
2 � 1

10
�

3
2 � 1

56
�

1
2 � 1

144
�� 1

2 � o �eff
1 �n�1/2

.

�5. 3. 13�

The pressure p D�,D�,�eff
1 ,�eff

2 for free quantum fields is

p D�,D�,�eff
1 ,�eff

2 � p �eff
1 ,�eff

2 , � p� D�,D�,�eff
1 ,�eff

2 . �5. 3. 14�

Here the quantity p �eff
1 ,�eff

2 , is given by formula

p �eff
1 ,�eff

2 � 1
2�2���3 ��eff

1

�eff
2

d�f��� �
	k		 �

	k	2

k2 � �2
d3k �

� K
3 �

�eff
1

�eff
2

d�f��� �
p 	 �

p4

p2 � �2
dp.

�5. 3. 15�

The quantity p� D�,D�,�eff
1 ,�eff

2 is given by formula

p� D�,D�,�eff
1 ,�eff

2 
 K�

3 �
�eff

1

�eff
2

d�f��� �
	p	
 �

	k	2

k2 � �2
dD�,D�k, �5. 3. 16�

where K� � 1
2�2���3 ,c � 1.Note that

1
p2 � �2

� ��1 1 �
p2

�2

�1

�

��1 1 � 1
2

p2

�2 � 3
8

p4

�4 � 5
16

p6

�6 �. . . . �

� 1
� � 1

2
p2

�3 � 3
8

p4

�5 � 5
16

p6

�7 �. . . .

�5. 3. 17�

By inserting Eq.(5.3.17) into Eq.(5.3.15) we get



p �eff
1 ,�eff

2 �

K
3 �

�eff
1

�eff
2

d�f��� �
p 	 �

1
� � 1

2
p2

�3 � 3
8

p4

�5 � 5
16

p6

�7 �. . . . p4dp �

K
3 �

�eff
1

�eff
2

d�f��� �
p 	 �

p4

� � 1
2

p6

�3 � 3
8

p8

�5 � 5
16

p10

�7 �. . . . dp �

K
3 �

�eff
1

�eff
2

d�f���
p5

5�
� 1

2
p7

7�3 � 3
8

p9

9�5 � 5
16

p11

10�7 �. . . .
0

�

�

K
3 �

�eff
1

�eff
2

d�f���
�

5
2

5�
� 1

2
�

7
2

7�3 � 3
8

�
9
2

9�5 � 5
16

�
11
2

10�7 �. . . . �

K
3 �

�eff
1

�eff
2

d�f��� 1
5
�

3
2 � 1

14
�

1
2 � 1

24
�� 1

2 � 1
32

�� 3
2 �. . . . �

K
3 �

�eff
1

�eff
2

d�f��� 1
5
�

3
2 � 1

14
�

1
2 � 1

24
�� 1

2 � 1
32

�� 3
2 � o �eff

1 �n�1/2
.
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VI.Discussion and conclusion
We will now briefly review the canonical assumptions that are made in the usual

formulation of the cosmological constant problem.

The canonical assumptions:
1.The physical dark matter.
Dark matter is a hypothetical form of matter that is thought to account for

approximately
85% of the matter in the universe, and about a quarter of its total energy density. The
majority of dark matter is thought to be non-baryonic in nature, possibly being

composed
of some as-yet undiscovered subatomic particles.Its presence is implied in a variety of
astrophysical observations, including gravitational effects that cannot be explained

unless
more matter is present than can be seen. For this reason, most experts think dark

matter
to be ubiquitous in the universe and to have had a strong influence on its structure and
evolution. The name dark matter refers to the fact that it does not appear to interact

with
observable electromagnetic radiation, such as light, and is thus invisible (or ’dark’) to

the
entire electromagnetic spectrum, making it extremely difficult to detect using usual
astronomical equipment.Because dark matter has not yet been observed directly, it

must
barely interact with ordinary baryonic matter and radiation. The primary candidate for

dark
matter is some new kind of elementary particle that has not yet been discovered, in



particular, weakly-interacting massive particles (WIMPs), or gravitationally-interacting
massive particles (GIMPs).Many experiments to directly detect and study dark matter
particles are being actively undertaken, but none has yet succeeded.
2.The total effective cosmological constant �eff is on at least the order of magnitude of

the
vacuum energy density generated by zero-point fluctuations of the standard particle

fields.
3.Canonical QFT is an effective field theory description of a more fundamental
theory, which becomes significant at some high-energy scale ��.
4.The vacuum energy-momentum tensor is Lorentz invariant.
5.The Moller-Rosenfeld approach [35],[36] to semiclassical gravity by using an

expectation
value for the energy-momentum tensor is sound.
6.The Einstein equations for the homogeneous Friedmann-Robertson-Walker metric
accurately describes the large-scale evolution of the Universe.
Remark 6.1.1.Note that obviously there is a strong inconsistency between

Assumptions
2 and 3: the vacuum state cannot be Lorentz invariant if modes are ignored above

some
high-energy cutoff ��, because a mode that is high energy in one reference frame will

be
low energy in another appropriately boosted frame. In this paper Assumption 3 is not

used
and this contradiction is avoided.
Remark 6.1.2.Note that also, Assumptions 1, 3,4 and 5 is modifed, which we denote

as
Assumptions 4 and 5 respectively

Modified assumptions
1�.The physical dark matter.
2�.The total effective cosmological constant �eff is on at least the order |�eff |

�n�5 ln|�eff |
of

magnitude of therenormalized vacuum energy density generated by zero-point
fluctuations of standard particle fields and ghost particle fields,see subsection I.2.
4�.The vacuum energy-momentum tensor is not Lorentz invariant.

VI.1.The physical ghost matter and dark matter nature

In the contemporary quantum field theory, a ghost field, or gauge ghost is an
unphysical state in a gauge theory. Ghosts are necessary to keep gauge invariance in
theories where the local fields exceed a number of physical degrees of freedom.For
example in quantum electrodynamics, in order to maintain manifest Lorentz invariance,



one uses a four component vector potential Aμ�x�, whereas the photon has only two
polarizations. Thus, one needs a suitable mechanism in order to get rid of the unphysical
degrees of freedom. Introducing fictitious fields, the ghosts, is one way of achieving this
goal. Faddeev-Popov ghosts are extraneous fields which are introduced to maintain the
consistency of the path integral formulation. Faddeev-Popov ghosts are sometimes
referred to as "good ghosts".

"Bad ghosts" represent another, more general meaning of the word "ghost" in
theoretical physics: states of negative norm,or fields with the wrong sign of the kinetic
term, such as Pauli-Villars ghosts, whose existence allows the probabilities to be
negative thus violating unitarity.

(VI.1) In contrary with standard Assumption1 in the case of the new approach
introduced

in this paper we assume that:
(VI.1.1.a) The ghosts fields and ghosts particles with masses at a scale less then an

fixed
scale meff really exist in the universe and formed dark matter sector of the universe,in
particular:
(VI.1.1.b) these ghosts fields gives additive contribution to a full zero-point fluctuation

(i.e.
also to effective cosmological constant �eff [5],see subsection I.2).
(VI.1.1.c) Pauli-Villars renormalization of zero-point fluctuations (see subsection I.2) is

no
longer considered as an intermediate mathematical construct but obviously has

rigorous
physical meaning supported by assumption (I.a-b).
(VI.1.2) The physical dark matter formed by ghosts particles;
(VI.1.3) The standard model fields do not to couple directly to the ghost sector in the
ultraviolet region of energy at a scale less then an fixed large energy scale ��,in
particular:
(VI.1.3.a) The "bad" ghosts fields with masses at a scale less then an fixed scale meff,
where meffc2 � ��,cannot appear in any effective physycal lagrangian which contain

also
the standard particles fields.
In additional though not necessary we assume that:
(VI.1.4) The "bad" ghosts fields with masses at a scale m�,where m�c2 � ��can

appear
in any effective physycal lagrangian which contain also the standard particles fields,in
particular:
(VI.1.4.a) Pauli-Villars finite renormalization with masses of ghosts fields at a scale m�

of
the S-matrix in QFT (see subsection II.I-2) is no longer considered as an intermediate
mathematical construct but obviously has rigorous physical meaning supported by
assumption (IV).
(VI.1.4.b) If the "bad" ghosts fields coupled to matter directly, it gives rise to small and
controlable violetion of the unitarity condition.
Remark VI.1.3.We emphazize that in universe standard matter coupled with a



physical
ghost matter has the equation of state [3]:

�vac��eff� � �p��eff� � 1
8 �

0

�eff

f����4�ln��d� � c4�vac

8�G
, �6. 1. 1�

where

|f���| �
O���n�,n 
 1 � 	 �eff

0 � 
 �eff

�6. 1. 2�

and where �eff � meffc (see subsection I.2,Eq.(1.2.16)) and therefore gives rise to a de
Sitter phase of the universe even if bare cosmological constant � � 0.

VI.2.Different contributions to �eff

The total effective cosmological constant �eff is on at least the order of magnitude of
the vacuum energy density generated by zero-point fluctuations of standard particle
fields.

Assumption 2 is well justified in the case of the traditional approach, because the
contribution from zero-point fluctuations is on the order of 1 in Planck units and no other
known contributions are as large thus, assuming no significant cancellation of terms
(e.g. fine tuning of the bare cosmological constant �), the total �eff should be at least on
the order of the largest contribution [14].

(VI.2) In contrary with standard Assumption1 in the case of the new approach
introduced

in this paper we assume that:
(VI.2.1) For simplisity though not necessary bare cosmological constant � � 0.
(VI.2.2) The total effective cosmological constant �eff depend only on mass distribution
f��� and constant �eff � meffc but cannot depend on large energy scale � ��

Remark VI.2.1.Note that in subsection we pointed out that under Assumption VI.1 if
bare

cosmological constant � � 0 the total cosmological constant �vac is on at least the
order

|�eff |
�n�5 of magnitude of the renormalized vacuum energy density

generated by zero-point fluctuations of standard particle fields and ghost particle fields

�vac��eff� � 1
8 �

0

�eff

f����4�ln��d� � O���
�2�,

pvac��eff� � � 1
8 �

0

�eff

f����4�ln��d� � O���
�2�.

�6. 2. 1�

VI.3. Effective field theory and Lorentz invariance violetion



To prevent the vacuum energy density from diverging,the traditional approach also
assumes that performing a high-energy cutoff is acceptable. This type of regularization
is a common step in renormalization procedures, which aim to eventually arrive at a
physical, cutoff-independent result. However,in the case of the vacuum energy density,
the result is inherently cutoff dependent, scaling quartically with the cutoff ��.

Remark VI.3.1. By restricting to modes with particle energy a certain cutoff energy
�k 	 ��a finite, regularized result for the energy density can be obtained. The result is
proportional to ��

4 .Any other fields will contribute similarly, so that if there are nb

bosonic
fields and nf fermionic fields, the density scales with �nb � 4nf� ��

4 . Typically, the cutoff
is

taken to be near � 1 in Planck units (i.e.the Planck energy), so the vacuum energy
gives a

contribution to the cosmological constant on the order of at least unity according to
Eq. (6.2.4). Thus we see the extreme ne-tuning problem: the original cosmological
constant � must cancel this large vacuum energy density �vac 
 1 to a precision of 1 in
10120 -but not completely- to result in the observed value �eff � 10�120[5].
Remark VI.3.2. As it pointed out in this paper that a highenergy theory, i.e. QFT in

fractal space-time with Hausdorff-Colombeau negative dimension would not display the
zero-point fluctuations that are characteristic of QFT, and hence that the divergence
caused by oscillations above the corresponding cutoff frequency is unphysical. In this
case, the cutoff �� is no longer an intermediate mathematical construct, but instead a
physical scale at which the smooth,continuous behavior of QFT breaks down.

Poincaré group of the momentum space is deformed at some fundamental
high-energy cutoff ��The canonical quadratic invariant 	p	2 � �abpapb collapses at
high-energy cutoff �� and being replaced by the non-quadratic invariant:

	p	2 �
�abpapb

�1 � l��p0�
. �6. 3. 1�

Remark VI.3.3. In contrary with canonical approuch the total effective cosmological
constant �eff depend only on mass distribution f��� and constant �eff � meffc but cannot
depend on large energy scale � ��.

VI.4. Semiclassical Moller-Rosenfeld gravity

Assumption 5 means that it is valid to replace the right-hand side of the Einstein
equation T�� with its expectation �T�� . It requires that either gravity is not in fact
quantum, and the Moller-Rosenfeld approach is a complete description of reality, or at
least a valid approximation in the weak field limit.The usual argument states that the
vacuum state |0 should be locally Lorentz invariant so that observers agree on the
vacuum state. This means that the expectation value of the energy-momentum tensor
on the vacuum, �0|

�
T��|0,must be a scalar multiple of the metric tensor g�� which is the

only Lorentz invariant rank �0, 2� tensor. By using Moller-Rosenfeld approach the
Einstein field equations of general relativity, a term representing the curvature of
spacetime R�� is related to a term describing the energy-momentum of matter �0|

�
T��|0,



as well as the cosmological constant � and metric tensor g�� reads:

R�� � 1
2 R�

�g�� � �g�� � 8��0|
�
T��|0. �6. 4. 1�

The
�
T00 component is an energy density, we label �0|

�
T��|0 � �vac,so that the vacuum

contribution to the right-hand side of Eq.(6.4.1) can be written as

8��0|
�
T��|0 � 8��vacg��. �6. 4. 2�

Subtracting this from the right-hand side of Eq.(6.4.1) and grouping it with the
cosmological constant term replaces with an "effective" cosmological constant [5]:

�eff � � � 8��vac. �6. 4. 3�

Note that in flat spacetime, where g�� � diag��1,�1,�1,�1�, Eq.(6.4.2) implies
�vac � �pvac, where pvac � �0|

�
Tii |0 for any i � 1, 2, 3 is the pressure. Obviously this implies

that if the energy density is positive as is usually assumed, then the pressure must be
negative, a conclusion which extends to any metric g�� with a ��1,�1,�1,�1� signature.

Remark VI.4.1.In this paper we assume that the vacuum state |0 should be locally
invariant under modified Lorentz boost (1.1.18) but not locally Lorentz invariant.
Obviously this assumption violate the Eq.(6.4.2). However modified Lorentz boosts
(1.1.18) becomes Lorentz boosts for a sufficiently small energies and therefore in IR
region one obtain in a good aproximation

8��0|
�
T��|0  8��vacg�� �6. 4. 4�

and

�eff  � � 8��vac. �6. 4. 5�

Thus Moller-Rosenfeld approach holds in a good approximation.

VI.5. Quantum gravity at energy scale � 	 ��Controlable
violetion of the unitarity condition.

Gravitational actions which include terms quadratic in the curvature tensor are
renormalizable. The necessary Slavnov identities are derived from Becchi-Rouet-Stora
(BRS) transformations of the gravitational and Faddeev-Popov ghost fields. In general,
non-gauge-invariant divergences do arise, but they may be absorbed by nonlinear
renormalizations of the gravitational and ghost fields and of the BRS transformations
[13].The geneic expression of the action reads

I sym � �� d4x �g ��R��R�� � �R2 � 2��2R�, �6. 5. 1�

where the curvature tensor and the Ricci is defined by R���
� � �����

� and R�� � R���
�

correspondingly, �2 � 32�G.The convenient definition of the gravitational field variable in
terms of the contravariant metric density reads

�h�� � g�� �g � ���. �6. 5. 2�

Analysis of the linearized radiation shows that there are eight dynamical degrees of
freedom in the field. Two of these excitations correspond to the familiar massless spin-2
graviton. Five more correspond to a massive spin-2 particle with mass m2. The eighth
corresponds to a massive scalar particle with mass m0. Although the linearized field



energy of the massless spin-2 and massive scalar excitations is positive definite, the
linearized energy of the massive spin-2 excitations is negative definite. This feature is
characteristic of higher-derivative models, and poses the major obstacle to their physical
interpretation.

In the quantum theory, there is an alternative problem which may be substituted for
the negative energy. It is possible to recast the theory so that the massive spin-2
eigenstates of the free-fieid Hamiltonian have positive-definite energy, but also negative
norm in the state vector space.These negative-norm states cannot be excluded from the
physical sector of the vector space without destroying the unitarity of the S matrix. The
requirement that the graviton propagator behave like p�4 for large momenta makes it
necessary to choose the indefinite-metric vector space over the negative-energy
states.The presence of massive quantum states of negative norm which cancel some of
the divergences due to the massless states is analogous to the Pauli-Villars
regularization of other field theories. For quantum gravity, however, the resulting
improvement in the ultraviolet behavior of the theory is sufficient only to make it
renormalizable,but not finite.

Remark 6.5.1.(I)The renormalizable models which we have considered in this paper
many years mistakenly regarded only as constructs for a study of the ultraviolet problem
of quantum gravity. The difficulties with unitarity appear to preclude their direct
acceptability as canonical physical theories in locally Minkowski space-time. In canonical
case they do have only some promise as phenomenological models.

(II) However, for their unphysical behavior may be restricted to arbitrarily large energy
scales �� mentioned above by an appropriate limitation on the renormalized masses m2

and m0. Actually, it is only the massive spin-two excitations of the field which give the
trouble with unitarity and thus require a very large mass. The limit on the mass m0 is
determined only by the observational constraints on the static field.
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