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Abstract

In this work, we show a sufficient and necessary condition for an integer

of the form
zn − yn

z − y
to be divisible by some perfect nth power pn, where p is

an odd prime. We also show how to construct such integers. A link between
the main result and Fermat’s last theorem is discussed. Other related ideas,
examples and applications are provided.
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1 Introduction

The motivation behind the current work is Fermat last theorem itself. The author
tried to come up with a complete proof of this theorem in the following way. Given
that y and z are relatively prime integers and n is an odd prime such that z − y
and n are relatively prime, The ideas was that the famous theorem can be easily

proved if we arrive to show that an integer of the form
zn − yn

z − y
, cannot be, in any

case, divisible by an nth power pn of a prime integer p. In contrast to what we had
expected, we found that almost for every odd prime integer p, there is a freedom to
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construct infinitely many pairwise relatively prime integers of the form
zn − yn

z − y
,

each of which is divisible by pn. The main tool of our analysis in this work, is
the concept of primitive root modulo integer. Given a positive integer m, we say
that r is a primitive root modulo m if r is an integer relatively prime to m and the
smallest integer a such that ra ≡ 1 (mod m) is ϕ(m), where ϕ is the Euler totient
function. Only elementary ideas about this concept are used in our analysis. For
the readers who may need a review of some elementary facts about primitive roots
modulo integers, we refer to some textbooks such as [1], [3], [4], [5], [6] and [9].
Throughout the paper, we use the following notation.

1. The Euler totient function is denoted by ϕ. For every positive integer n, ϕ(n)
is the number of positive integers strictly less than n and relatively prime to
it.

2. The greatest common divisor of two integers a and b is denoted gcd(a, b).

2 Main result

We start this section by stating, as a lemma, an idea about primitive roots
modulo integers.

Lemma 2.1. Let p be and odd prime and let n be a positive integer with n ≥ 2. If
the integer r is a primitive root modulo pn, then r is also a primitive root modulo
pn−1, pn−2, . . . , p.

Proof. First, recall that for every perfect nth power pn, n = 1, 2, . . . , of some odd
prime integer p, there is a primitive root modulo pn [4, Theorem 8.14]. Let t be an
integer relatively prime to p. Hence t is relatively prime to pn for n = 2, 3, . . .
Suppose that t is not a primitive root modulo pn. Then there exists a positive inte-
ger k strictly less than ϕ(pn) = (p− 1)pn−1 such that tk ≡ 1 (mod pn). Let’s
show that t is not a primitive root modulo pn+1. If tk ≡ 1 (mod pn+1), then, ob-
viously, t is not a primitive root modulo pn+1. Suppose that tk ̸≡ 1 (mod pn+1).
Then

tkp − 1 = (tk − 1)

p−1∑
j=0

tjk

= (tk − 1)

p−1∑
j=0

(tjk − 1 + 1)

= (tk − 1)
( p−1∑

j=1

(tjk − 1) + p
)
.

(1)
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By our assumption, pn divides tk−1. Hence, pn divides tjk−1 for j = 1, 2, . . . ,

and p divides
p−1∑
k=1

(tjk − 1) + p. Combining these two facts with the last line of

(1), we have that tkp ≡ 1 (mod pn+1). Since kp < (p − 1)pn = ϕ(pn+1),
the integer t cannot be a primitive root modulo pn+1. This is equivalent to saying
that if t is a primitive root modulo pn+1, then t is a primitive root modulo pn.
Using induction, we conclude that t is also a primitive root modulo pj for j =
n− 1, n− 2, . . . 1.

Corollary 2.2. Let r be a positive integer and let p be an odd prime integer. Then
r is a primitive root modulo p2 if and only if r is a primitive root modulo pn for
n = 1, 2, . . . .

Proof. It is known that if r is a primitive root modulo p2, then r is also a primitive
root modulo pn for n = 1, 2, . . . For more information, you can look, for example,
at [4, Theorem 8.9]. The converse is implied by Lemma 2.1.

Using group theory language, we state Corollary 2.2 as follows.

Corollary 2.3. An element r is a generator of the multiplicative group of integers
modulo p2 if and only if it is a generator of the multiplicative group of integers
modulo pn for n = 3, 4, . . .

The following lemma is also needed in the proof of the main result and con-
tains some ideas that are well known to mathematicians working on Fermat’s last
theorem We prefer to provide a proof because we couldn’t find a reference where
all three assertions of the lemma are proved together.

Lemma 2.4. Let y and z be two relatively prime integers with z ̸= y and let n be
an odd prime integer.

1. If n divides z − y, then gcd
(
z − y ,

zn − yn

z − y

)
= n.

2. If n does not divides z − y, then n, (z − y) and
zn − yn

z − y
are pairwise

relatively prime.

3. n2 does not divides
zn − yn

z − y
.

Proof. We have

zn = (z − y + y)n =

n∑
i=2

(
n

i

)
(z − y)i y(n−i) + n(z − y)y(n−1) + yn,
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from which,

zn − yn = (z − y)
[ n∑

i=2

(
n

i

)
(z − y)(i−1) y(n−i) + ny(n−1)

]
= (z − y)

[
(z − y)

{ n∑
i=2

(
n

i

)
(z − y)(i−2) y(n−i)

}
+ ny(n−1)

]
,

so that

zn − yn

z − y
= (z − y)

{ n∑
i=2

(
n

i

)
(z − y)(i−2) y(n−i)

}
+ ny(n−1). (2)

Since y and z are relatively prime, then yn−1 and (z − y) are relatively prime.
Hence, Formula (2) implies that

gcd
(
z − y ,

zn − yn

z − y

)
= n, if n divides z − y,

and

gcd
(
z − y ,

zn − yn

z − y

)
= 1, if n is relatively prime to z − y.

Moreover, (2) can be rewritten as

zn − yn

z − y
= (z − y)n−1 +

{ n−1∑
i=1

(
n

i

)
(z − y)(i−1) y(n−i)

}
. (3)

Since n is a prime integer, we have

gcd
(
n,

(
n

i

))
= n for i = 1, 2, . . . n− 1. (4)

From (3) and (4) , we get

zn − yn

z − y
≡ (z − y)n−1 (mod n). (5)

It follows from (5) that if n is relatively prime to z − y, then n and
zn − yn

z − y
are

relatively prime. This is to prove the second assertion. The third assertion of the
lemma follows directly from the second one if n does not divide z− y. Otherwise,
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suppose that n divides z − y. Then from (2) and (4), we can see easily that, in this
case,

zn − yn

z − y
≡ ny(n−1) (mod n2). (6)

If n2 divides
zn − yn

z − y
, then (6) implies that n divides y, so that also, n divides z

since it divides z − y. This is in contradiction with our assumptions that y and z
are relatively prime.

Remark 2.5. The first two assertions of Lemma 2.4 apply to the case where n = 2,
but the third one does not. For example, if we take z = 5, y = 3 and n = 2, then

22 divides
52 − 32

5− 3
= 8.

Next, we state and prove the main theorem.

Theorem 2.6. Let y and z be two distinct nonnegative integers. Let p be an odd
prime integer relatively prime to y and let r be a primitive root modulo p2. Let n

be an odd prime integer. Then pn divides
zn − yn

z − y
if and only if

n divides p− 1 and z ≡ y rcp
n−1

(mod pn),

where c is any integer that satisfies:

1. 0 < c < p− 1.

2. p− 1 divides nc.

Proof. Recall that since r is a primitive root modulo p2, then r is also a primitive
root modulo pn for n = 3, 4, . . . Suppose that n divides p− 1 and

z ≡ y rcp
n−1

(mod pn), (7)

for some integer c such that 0 < c < p − 1 and p − 1 divides nc. Formula (7)
implies that zn ≡ yn rncp

n−1
(mod pn). Since p− 1 divides nc, it follows that

ϕ(pn) = (p− 1)pn−1 divides ncpn−1 and therefore

zn ≡ yn (mod pn). (8)

Also, Formula (7) implies that z ≡ y rcp
n−1

(mod p), which is equivalent to
z ≡ y rc rc(p

n−1−1) (mod p). Since ϕ(p) = p − 1 divides c(pn−1 − 1), it
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follows that z ≡ y rc (mod p). By Lemma 2.1, r is a primitive root modulo p
and since 0 < c < p− 1, we have that rc ̸≡ 1 (mod p). Hence

z ̸≡ y (mod p). (9)

It follows from (8) and (9) that
zn − yn

z − y
is divisible by pn.

Conversely, we treat two different cases.

1. Case1: z and y are relatively prime.

Suppose that pn divides
zn − yn

z − y
. Then pn divides zn − yn. Thus,

zn ≡ yn (mod pn). (10)

Since z and y are relatively prime and r is a primitive root modulo pn, there
exists an integer k such that 0 < k < (p− 1)pn−1 and

z ≡ y rk (mod pn). (11)

This implies
zn ≡ ynrnk (mod pn). (12)

From (10) and (12) we have yn(1 − rnk) ≡ 0 (mod pn), which leads to
(1− rnk) ≡ 0 (mod pn) since y and p are relatively prime. Therefore,

ϕ(pn) = (p− 1)pn−1 divides nk. (13)

By the third assertion of Lemma 2.4, n2 does not divide
zn − yn

z − y
; and since

pn divides
zn − yn

z − y
, it follows that

p ̸= n. (14)

We obtain from (13) and (14) that pn−1 divides k and since 0 < k < (p −
1)pn−1, there exists an integer c such that 0 < c < p− 1 and

k = cpn−1. (15)

From (15) and (13), we have that (p− 1)pn−1 divides ncpn−1. Thus,

(p− 1) divides nc. (16)

Since 0 < c < p− 1 and n is a prime integer, Expression (16) implies that

n divides p− 1, (17)

We complete the proof of Case1 by taking (15) into (11) to obtain

z ≡ y rcp
n−1

(mod pn). (18)
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2. Case2: gcd(z, y) = q > 1.
Let y′ and z′ be such that y = qy′ and z = qz′. Then gcd(z′, y′) = 1,
gcd(y′, p) = 1, q ̸= p and

zn − yn

z − y
= qn−1 z′n − y′n

z′ − y′
. (19)

Therefore, if pn divides
zn − yn

z − y
with p and y are relatively prime, then we

have, by Case1, that n divides p − 1 and z′ ≡ y′rcp
n−1

(mod pn), so that
z ≡ yrcp

n−1
(mod pn), where c is an integer such that 0 < c < p− 1 and

p− 1 divides nc.

Corollary 2.7. Let y and z be two distinct nonnegative integers. Let p be an odd
prime integer relatively prime to y and let n be an odd prime integer. If p < 2n+1

then pn does not divide
zn − yn

z − y
.

Proof. Follows from Theorem 2.6, which requires that n has to be an odd prime
integer dividing the even integer p− 1, so that p− 1 ≥ 2n.

Corollary 2.8. Let y and z be two distinct nonnegative integers. Let p be an odd
prime integer relatively prime to y and having the form p = 2k+1 for some positive

integer k. Let n be an odd prime integer. Then pn does not divide
zn − yn

z − y
.

Proof. Follows, immediately, from Theorem 2.6 since there is no odd prime integer
n that divides p− 1 = 2k.

Follows an idea that can be seen from the proof of Theorem 2.6 and may be of
some independent interest.

Corollary 2.9. The system of congruence equations

z ≡ y rc (mod p)
z ≡ y rcp (mod p2)

z ≡ y rcp
2

(mod p3)
...

z ≡ y rcp
n−1

(mod pn).

is dependent, has rank 1 and it is equivalent to the last equation in it,

z ≡ y rcp
n−1

(mod pn). (20)
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Proof. Clearly, the congruence equation (20) implies

z ≡ y rcp
n−1

(mod pt), for t = 1, 2, . . . , n− 1. (21)

Observe that

pn−1 = pn−1 − pt−1 + pt−1

= pt−1(pn−t − 1) + pt−1

= (p− 1)pt−1(
∑j=n−t−1

j=0 pj) + pt−1

= ϕ(pt) (
∑j=n−t−1

j=0 pj) + pt−1.

(22)

By (21) and (22), we have z ≡ y rcp
t−1

(mod pt) for t = 1, 2, . . . , n− 1.

As a completion of Theorem 2.6, we show that integers of the form
zn − yn

z − y
are not divisible by 2n, given that z and y are not both even and n is an odd prime
integer.

Remark 2.10. If y and z are two distinct nonnegative integers not both even and

n is an odd prime integer, then 2n does not divide
zn − yn

z − y
. To understand this, It

suffices to show that
zn − yn

z − y
is an odd integer. In fact, if one of y and z is odd and

the other is even, then both (zn − yn) and (z − y) are odd integers, so that their

quotient
zn − yn

z − y
is also odd. If each of y and z is odd, then (z−y) is even. Hence,

zn − yn

z − y
has to be an odd integer since, by Lemma 2.4, gcd

(zn − yn

z − y
, z−y

)
= 1

or n.

3 Some applications of Theorem 2.6

3.1 Constructions of an integer
zn − yn

z − y
divisible by pn

Theorem 2.6, beside being a characteristic theorem, it is also a constructive the-
orem. In other word, for a given odd prime integer p with p ≥ 7, Theorem 2.6

allows to construct the set ξp of all integers of the form
zn − yn

z − y
that are divisible

by pn,

ξp =
{zn − yn

z − y

∣∣∣ gcd(y, p) = 1 , n divides p− 1 ,

z ≡ y rcp
n−1

(mod pn) and p− 1 divides nc
}
.

(23)
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If y is also fixed to be any integer relatively prime to p, then we can construct the
set

ξp,y =
{zn − yn

z − y

∣∣∣ n divides p−1 , z ≡ y rcp
n−1

(mod pn), and p−1 divides nc.
}

(24)

Example 3.1. Take p = 7, r = 3, n = 3, c = 2 and y = 1. We have that
n = 3 divides p − 1 = 6 and nc = 6 divides p − 1 = 6. Construct the integer
z = rcp

n−1
= 398. Then, by theorem 2.6,

73 = 343 divides
(398)3 − 1

398 − 1
.

Of course, this is a huge number. But Theorem 2.6 ensures that we can find other
positive numbers that are less than and equivalent to z modulo pn. By the use of a
calculator, we find easily that 398 ≡ 324 (mod 73). Indeed,

3243 − 1

324− 1
= 105301 = (307)(73).

3.2 Proving a general fact about primitive roots modulo pn

Beside its constructive aspect, the most interesting application of Theorem 2.6 that
we have obtained in this paper, is the following.

Corollary 3.2. Let p be an odd prime integer and let r be a primitive root modulo
p2. Suppose that n is an odd prime integer such n divides p − 1 and let c be an
integer such that 0 < c < p− 1 and p− 1 divides nc. Then

n−1∑
k=0

rkcp
n−1 ≡ 0 (mod pn). (25)

Proof. We choose an integer y relatively prime to p, and we construct the integer

z = yrcp
n−1

. (26)

By Theorem 2.6, we have
zn − yn

z − y
≡ 0 (mod pn), which is equivalent to

n−1∑
k=0

zk yn−k−1 ≡ 0 (mod pn). (27)
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Taking (26) into (27), we obtain

yn−1
n−1∑
k=0

rkcp
n−1 ≡ 0 (mod pn). (28)

Since y and p are relatively prime, it follows from (28) that

n−1∑
k=0

rkcp
n−1 ≡ 0 (mod pn). (29)

Example 3.3. As in Example 3.1, we take p = 7, r = 3, n = 3 and c = 2. Then∑n−1
k=0 r

kcpn−1
=

∑2
k=0 398k

= 1 + 398 + 3196

≡ 1 + 324 + 3242 (mod 73)
≡ 1 + 324 + (−19)2 (mod 343)
≡ 1 + 324 + 361 (mod 343)
≡ 0 (mod 73)

4 Connection with Fermat’s last theorem

Fermat’s last theorem [8] states:

Theorem 4.1. For every positive integer n with n ≥ 3, no nonnegative integers
x, y and z satisfy

xn + yn + zn = 0.

This theorem, which has been proved around 1995 [8], implies the following
fact.

Corollary 4.2. Let z and y be two relatively prime integers, and let n be an odd

prime integer. Then z − y is a perfect nth power if and only if
zn − yn

z − y
is not a

perfect nth power.

We have proved in this work, that
zn − yn

z − y
can be multiple of some perfect

nth power pn. But we don’t know if
zn − yn

z − y
, itself, is a perfect nth power; not

necessary equal to pn but maybe equal to (p1p2)
n or (p1p2p3)n and so on . . . , for
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some prime integers p1, p2, . . . By going back to Formula (23) and looking at how
large is the set ξp and the degrees of freedom that we have to construct such set
by acting on different parameters p, y, n and c, one may think, naively, that some
elements of ξp are perfect nth powers. Finding such elements could be done by a
constructive proof or by a well-written algorithm.
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