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Abstract

We firstly reviewed the symmetric top problem, then we have solved
different possible motions numerically. We have given explanation about
the rise of the symmetric top during nutation in terms of torque and angu-
lar momentum. We have encountered with previously unnoticed proper-
ties of motion and studied them. During the study, calculations gave some
surprising results that the symmetric top can change its spin direction.

1 Introduction

Since child’s top has very special properties, many people are interested with its
motion starting from antiquity and the symmetric top problem became one of
the long studied topics of physics. The study on this topic starts with Euler and
continues through Lagrange, Kovalevskaya and so on. Its unintuitive motion,
nutation and precession are some of interesting properties of symmetric top.

The unintuitive property of symmetric top is related with its being a non-
inertial system. In our daily life, in general, we are familiar with inertial objects
and this makes non-inertial object’s motion unintuitive. Euler has obtained
equations describing such motions of rotating rigid bodies under the influence
of a torque, these are known as Euler equations.

These equations can result in some complicated coupled equations and some-
times obtaining their solution analytically is impossible, and this problem is
studied with geometric techniques related with our historical background. One
of the important works with this geometric techniques on this problem is given
by Routh in his book[1], which has explanations on many different types of mo-
tion. There is also another work involving geometric techniques written by Klein
and Sommerfeld[2]. Studying these books is a bit hard, but if you are eager to
deal with some geometrical calculations these books can be good resources.

There are more books involving chapters on the symmetric top problem,
and some of them use a technique based on conservation of energy and angular
momenta[3, 4, 5], usage of these is related with previous works on the problem
with geometrical techniques. This technique is a bit hard to imagine since
mathematical transformations and functions hide physical motion. Some other
books on classical mechanics and dynamics or symmetric top includes effective
potential, and they are a bit easier to imagine[6, 7, 8, 9, 10]. Some of these
books also includes the technique based on conservation of energy and angular
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momenta. We cited only some examples here, there are many more books related
with this problem and also internet resources involving wikipedia.

In this work, we will deal with the problem in a detailed way by using
effective potential and we will give physical explanations. In section [2], we will
firstly review the symmetric top problem and obtain equations by using Euler
equations, and then we will shortly review the problem in terms of Lagrangian
and energy. We will include some comments in this review part. In section
[3], we will study the symmetric top problem with examples by using effective
potential and conservation of energy and angular momentum, we will also give
explanations in terms of torque and angular momentum. In section [4], we will
give a summary.

2 Symmetric top

2.1 Euler angles and Angular velocities

Let us consider two reference frames, initially they are coincided; one of them
will be stationary, S′(x′, y′, z′), and the other one will be a reference frame
fixed to the rotating rigid body, S(x, y, z). First, we rotate the second reference
frame around z′-axis of S′ by an angle φ and call the new reference system
S̃1(x̃1, ỹ1, z̃1), where z̃1 = z′. Now, we will apply a rotation around x̃1, known
as the line of nodes, by an angle θ and show the new reference system by
S̃2(x̃2, ỹ2, z̃2), where x̃2 = x̃1. Finally, we will apply a rotation around z̃2, by an
angle ψ, and we will obtain the body reference system S(x, y, z), where z = z̃2.
These three angles, the line of nodes, the stationary and body reference frames
are shown in Fig.[1].

One can use these three angles; θ, φ and ψ, to define rotations in three
dimensional space. These three angles are known as Euler angles. Rotational
motions of classical rigid bodies can be defined in terms of these Euler angles.
Though while obtaining we have started initially coincided two reference frame,
for studying rigid body rotations they do not have to be coincided and we should
consider them dynamically. It is customary to define domain of these angles as;
0 < θ < π, 0 < φ < 2π and 0 < ψ < 2π. However, in some cases different
domains can be used. We can consider as an example a pendulum, it is not wise
to consider domain of θ as [0, π] for pendulum.

By using Euler angles, angular velocities of rotating rigid bodies can be
defined as; θ̇, φ̇ and ψ̇. θ̇ is shown in the direction of the line of nodes, φ̇ is
shown in the direction of ẑ′, and ψ̇ is shown in the direction of ẑ. Then the
angular velocities in body coordinate system are

wx = θ̇cosψ + φ̇sinθsinψ

wy = −θ̇sinψ + φ̇sinθcosψ (1)

wz = ψ̇ + φ̇cosθ.

These angular velocities can be used to define rotations of rigid bodies in
the body coordinate system. We need to mention that these three angles are
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Figure 1: Euler Angles. We see two coordinate system S(x, y, z) and S′(x′, y′, z′)
and Euler angles together with the line of nodes, shown by N . θ is the angle
between z′-axis and z-axis, φ is the angle between x′-axis and the line of nodes,
and ψ is the angle between the line of nodes and x-axis.

not linearly independent of each other. Some of the complicated structure of
rigid body rotations are related with this structure. Though this complicated
structure they are very successful.

The motion of a symmetric top can also be studied in terms of these angular
velocities, Eq.[1]. A symmetric top can be considered as child’s top having
rotational symmetry in one axis, but in general any object having such symmetry
can be studied with below techniques.

The main property of symmetric top is related with moments of inertia,
i.e. Ix = Iy 6= Iz. For the child’s top, Fig.[2], Iz > Ix; and for cigar shaped
structures Iz < Ix. We see a symmetric top in Fig.[2], its symmetry axis is
chosen as the z-axis and when we mention about symmetric top, mostly we
consider that it spins around it. For the case shown in the figure the fixed
point is the tip of top, origin of both reference system. The body coordinates,
S(x, y, z), are fixed on symmetric top and rotates with it. Euler angles are also
shown in the figure. To define the motion of symmetric top, we need to use 7
variables; θ, φ, ψ, θ̇, φ̇, ψ̇ and t. As symmetric top spins ψ changes, and the
gravitational force causes changes in θ, the change of θ causes changes in φ.
There are many interesting cases related with the motion of symmetric top and
we will try to explain these changes below.
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Figure 2: Symmetric top and Euler angles. Primed letters represent axes of the
stationary reference frame, ordinary letters represent axes of the body reference
frame.

2.2 Methods

For a detailed study of the symmetric top problem, one need to use Euler
equations, which can be written directly or can be obtained from Lagrangian.
Firstly, we will give the application of these equations to the symmetric top
problem from Euler equations and then from Lagrangian and energy.

2.2.1 Euler equations

If we apply a force to a rigid body with a fixed point, then that rigid body can
rotate. The torque, cause of the angular acceleration, is defined as

~τ = ~r × ~F (2)

where ~F is the force, and ~r is the vector representing distance from the rigid
body’s fixed point to the acting point of the force.

If there is a torque applied to a rigid body, as time changes there will be
a change in the angular momentum, ~L = I ~w where I is the moment of iner-
tia tensor. In the stationary reference frame, the relation between torque and
angular momentum can be written as

d~L′

dt
= ~τ ′. (3)

While writing this equation in the body reference frame, we should take into
account that it is a non-inertial reference frame. In a rotating reference frame,
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here it is the body coordinate system, we should consider effects of rotations
and it will be resulted with an additional term, ~w×, to the time derivative,(
d
dt

)
S′ =

(
d
dt

)
S

+ ~w×. Then, in the body coordinate system Eq.[3] becomes

d~L

dt
+ ~w × ~L = ~τ (4)

Here we have an extra term, ~w × ~L, which is the key for understanding rigid
body rotations. This extra term acts like torque in the body coordinate system.
We can write components of Eq.[4] in the body coordinate system as

τx = Ixẇx − (Iy − Iz)wywz
τy = Iyẇy − (Iz − Ix)wxwz (5)

τz = Izẇz − (Ix − Iy)wxwy

where Ii’s are corresponding moments of inertia and wi’s are angular velocities
given in Eq.[1]. Equations in Eq.[5] are Euler equations for a rotating rigid
body in the body reference frame, and they correspond to equations of motion
for them. The left hand side of these equations corresponds the relevant applied
torque, the first term at the right hand side is angular acceleration times moment
of inertia in the considered direction and the second term corresponds to the
inertial torque arising from being non-inertial reference frame. Euler equations
are written in traditional way in Eq.[5], however taking the second term to the
left hand side may help understanding in a better way. In that case, we can
write Euler equations as

τx + (Iy − Iz)wywz = Ixẇx

τy + (Iz − Ix)wxwz = Iyẇy (6)

τz + (Ix − Iy)wxwy = Izẇz.

Now, terms at the left hand side corresponds to the torque, felt by rigid body,
and the terms at right hand side are angular acceleration times moment of
inertia.

For a symmetric top under the influence of the gravitational field, in the
body reference frame the torque caused by the gravitational force is

~τ = ~r × ~F

= Mglsinθ(cosψx̂− sinψŷ) (7)

where l is the distance from the fixed point to the center of mass and M is
mass of the rigid body. The direction of this torque is in the direction of the
line of nodes. If there is not any initial angular momentum, then the torque
will only cause an angular acceleration in the direction of lines of nodes, θ̈, and
the motion will be like pendulum. If there is an initial angular momentum the
motion will be complex and other components of the angular momentum will
also change. This complex system is defined by Euler equations. One may
consider that in such a case we can use inertial reference frame to avoid such
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complications, however in that case complexity will show itself in another place,
and moments of inertia will be much more complex and resulting equations will
be same. In one way or another way we need to deal with this complex system.

If we insert the torque arising from the gravitational interaction in Eq.[6]
and use angular velocities in terms of Euler angles in the case of a symmetric
top, we obtain Euler equations for that symmetric top as

Mglsinθcosψ + (Ix − Iz)(ψ̇ + φ̇cosθ)(−θ̇sinψ + φ̇sinθcosψ) (8)

= Ix(θ̈cosψ − θ̇ψ̇sinψ + φ̈sinθsinψ + φ̇θ̇cosθsinψ + φ̇ψ̇sinθcosψ),

−Mglsinθsinψ + (Iz − Ix)(ψ̇ + φ̇cosθ)(θ̇cosψ + φ̇sinθsinψ) (9)

= Ix(−θ̈sinψ − θ̇ψ̇cosψ + φ̈sinθcosψ + φ̇θ̇cosθcosψ − φ̇ψ̇sinθsinψ),
0 = Iz(ψ̈ + φ̈cosθ − φ̇θ̇sinθ). (10)

Now, we need to make necessary simplifications to be able to analyze motion.
Eq.[10] is obtained from Izẇz and it is equal to zero, as it is seen from the
equation. From this equation we can conclude that Izwz is constant, and we
can write it in terms of another constant a as

Ixa = Iz(ψ̇ + φ̇cosθ). (11)

This constant is chosen in this way by considering future simplifications.
Multiplying Eq.[8] with sinψ and Eq.[9] with cosψ and adding them we

obtain

φ̈ =
θ̇

sinθ

(
−2φ̇cosθ +

Iz
Ix

(ψ̇ + φ̇cosθ)

)
. (12)

We can write this in terms of a as

φ̈ =
θ̇

sinθ
(−2φ̇cosθ + a). (13)

We can multiply it by sin2θ and we can write it as a total time derivative

d

dt

[
φ̇sin2θ + acosθ

]
= 0. (14)

Since this total time derivative is equal to zero, the term inside the parenthesis
is equal to another constant

b = φ̇sin2θ + acosθ. (15)

By using constants a and b, we can write Eq.[13] as

φ̈ =
θ̇

sinθ

(
−2

b− acosθ
sin2θ

cosθ + a

)
. (16)

Also multiplying Eq.[8] with cosψ and Eq.[9] with sinψ and subtracting the
first one from the second we obtain

θ̈ = sinθ

(
Mgl

Ix
+ φ̇2cosθ − Iz

Ix
φ̇(ψ̇ + φ̇cosθ)

)
. (17)
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We can rewrite this equation in terms of the defined constants as

θ̈ = sinθ

(
Mgl

Ix
+

(
b− acosθ
sin2θ

)2

cosθ − ab− acosθ
sin2θ

)
. (18)

We can also find ψ̈ by using Eq.[12] in Eq.[10] as

ψ̈ = −cotθθ̇
[
Iz
Ix

(ψ̇ + φ̇cosθ)− 2φ̇cosθ

]
+ φ̇θ̇sinθ, (19)

and we can write this equation in terms of constants as

ψ̈ = θ̇

[
−acotθ +

b− acosθ
sin3θ

(1 + cos2θ)

]
. (20)

We obtained the three angular accelerations from Euler equations in two
ways. In one case Eq.s[12], [17] and [19], they are obtained in terms of θ and
angular velocities. In the other case Eq.s[16], [18] and [20], they are obtained in
terms of θ, θ̇ and constants of motion a and b.

We can also get θ̇ in terms of constants of motion. We can multiply Eq.(17)
by 2θ̇ and Eq.(12) by 2φ̇sin2θ and add these to get

2θ̇θ̈ + 2φ̇φ̈sin2θ + 2θ̇φ̇2sinθcosθ − 2
mgl

Ix
θ̇sinθ = 0. (21)

The left hand side of this equation can also be written as a total time derivative

d

dt

[
θ̇2 + φ̇2sin2θ + 2

mgl

Ix
cosθ

]
= 0. (22)

This gives us another constant and by multiplying it with Ix/2, we can define
it as

E′ =
Ix
2
θ̇2 +

Ix
2
φ̇2sin2θ +Mglcosθ, (23)

or

E′ =
Ix
2
θ̇2 +

Ix
2

(b− acosθ)2

sin2θ
+Mglcosθ (23’)

and if we add another constant, a2I2x/(2Iz), we will get the energy as a result.
We can write θ̇2 from Eq.[23’] by using Eq.[15] as

θ̇2 =
2E′

Ix
− (b− acosθ)2

sin2θ
− 2Mgl

Ix
cosθ. (24)

As it is seen, θ̇ is also obtained in terms of constants of motion. Then we can
obtain all angular accelerations in terms of constants of motion (a, b and E′ or E)
and as function of θ. We have mentioned that there are 7 variables to define this
system, 3 of them φ, ψ and t are not available in the angular accelerations, then
we left with 4 variables (θ, θ̇, φ̇ and ψ̇) in equations giving angular accelerations.
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Equations giving angular accelerations correspond to the equations of motion,
since these three variables are not available in angular acceleration equations
then the system should be symmetric with respect to these; there are some
quantities that do not change as these variables change. According to Noether’s
theorem we should have three constants of motion. We already obtained these;
E′ or E corresponds to conservation of energy and related with t symmetry, a
corresponds to conservation of angular momentum in z direction and related
with ψ symmetry, and b corresponds to the conservation of angular momentum
in z′ direction and related with φ symmetry.

These constants of the motion can be determined by the initial values; θ0, θ̇0,
φ̇0 and ψ̇0. After determining these constants we can get angular accelerations
in terms of these constants, and then angular accelerations depend on only one
variable θ. In fact we do not have to use angular accelerations to get necessary
information on the system. By using constants of motion, i.e. Eq.[11] and
Eq.[15], we can get angular velocities φ̇ and ψ̇ as

φ̇ =
b− acosθ
sin2θ

(25)

and

ψ̇ =
Ix
Iz
a− b− acosθ

sin2θ
cosθ. (26)

These equations together with Eq.[24] show that all angular velocities and ac-
celerations can be obtained in terms of constants of motion (a, b and E′) and
as a function of θ. Hence, we can say that if we are able to find θ(t), we can
find all other variables as a function of t.

Now, we should focus on θ. Its change is given by θ̇, Eq.[24]. We see
that θ̇ is a function of θ and it is obtained as a square and we need to take
squareroot to get it. From Eq.[24], we can say that right hand side of it should
be positive for a physical motion. The solution of Eq.[24] is in terms of elliptic
integrals, and they require a good mathematical knowledge. Without entering
its mathematical details, we can comment on motion without finding solution
of Eq.[24]. If we consider second term in Eq.[24], we see that it goes to negative
infinity as θ goes to 0 or π. Then, right hand side of this equation is positive only
for an interval. The first term, which should be calculated by using Eq.[23] from
the initial values and corresponds to energy, determines that interval. We can
also say that for each θ value making right hand side positive, θ̇ can be positive
or negative. On the other hand φ̇ and ψ̇ can get only one value for each θ value.
This is related with the motion of the symmetric top, which will be clear in the
next sections. We should also mention that if θ is greater than π/2, then there is
a possibility that E′ can be negative. This may seem to odd since it corresponds
to the energy. There are two reasons for this; definition of the origin and not
including all energy terms. We can make more comments, however studying
on different cases with defining effective potential and then commenting will be
much more explanatory and we will do it in the next sections.

We have seen that angular velocities and accelerations can be written in
terms of constants of the motion. Then, we can use two different set to define
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the motion of the symmetric top; θ and angular velocities or θ and constants
of the motion. Both sets are equivalent and they define the motion of the
symmetric top. We will use both to analyze the motion.

There are two ways to obtain necessary variables (θ, φ and ψ) to describe the
motion of the symmetric top. First way is to find θ(t) and find angular velocities
by using it and get ψ(t) and φ(t). Second way is solving angular accelerations
Eq.s[12], [17] and [19]. We will use both, however we will not get ψ(t) and φ(t)
from the first technique. We will use numerical techniques in both.

The spinning symmetric top effected by the gravitational field is a very
fruitful case. We will consider different possibilities in the following sections.

2.2.2 Lagrangian and Energy

Now, we will obtain the equations derived in the previous section from La-
grangian and energy.

For a spinning symmetric top, the kinetic energy is the total of kinetic en-
ergies due to all angular velocities

T = Ixw
2
x + Ixw

2
y + Izw

2
z (27)

and under the gravitational field the potential energy is

U = Mglcosθ. (28)

Then, Lagrangian becomes

L = T − U

=
Ix
2

(θ̇2 + φ̇2sin2θ) +
Iz
2

(ψ̇ + φ̇cosθ)2 −Mglcosθ. (29)

We can find equations of motion from this Lagrangian by using Euler-Lagrange

equations, d
dt

(
∂L
∂q̇i

)
− ∂L

∂qi
= 0. In this problem qi’s correspond ψ, φ and θ.

There are two cyclic coordinates, ψ and φ, and there should be two correspond-
ing conserved angular momenta since they define rotation. One can obtain
these conserved angular momenta from Euler-Lagrange equations for angular
momenta in z and z′ direction as

Lz = Iz(ψ̇ + φ̇cosθ),

Lz′ = Ixφ̇sin
2θ + Iz(ψ̇ + φ̇cosθ)cosθ. (30)

Using these conserved angular momenta, we can define following constants

a =
Iz(ψ̇ + φ̇cosθ)

Ix
,

b = φ̇sin2θ +
Iz
Ix

(ψ̇ + φ̇cosθ)cosθ

= φ̇sin2θ + acosθ.
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These are same constants that are obtained in the previous section. As it is
seen, these constants of motion are in the dimension of angular velocity.

φ̇ can be written in terms of them as

φ̇ =
b− acosθ
sin2θ

(25)

and ψ̇ becomes

ψ̇ =
Ix
Iz
a− b− acosθ

sin2θ
cosθ. (26)

There is another variable in Lagrangian, θ, and corresponding Euler-Lagrange
equation can be found as

θ̈ = sinθ

[
Mgl

Ix
+ φ̇2cosθ − Iz

Ix
φ̇2cosθ − Iz

Ix
φ̇ψ̇

]
. (17)

These equations are same with the ones in the previous section. If we write the
angular velocities in terms of constants, then we obtain Eq.[18].

We can also find other angular accelerations by taking time derivative of
Eq.s[25] and [26] as

φ̈ =
θ̇

sinθ
(a− 2

b− acosθ
sin2θ

cosθ), (16)

and

ψ̈ =
θ̇

sin3θ
(b+ bcos2θ − 2acosθ). (20)

These equations are also same with the previously obtained ones. If we write a
and b in terms of angular velocities then we obtain Eq.[12] and [19].

We can also obtain θ by using the energy. Since we are considering dissi-
pation free cases, there is another conserved quantity in the motion, energy.
Energy is the total of the kinetic energy and potential energy, E = T + U , and
for the symmetric top it is

E =
Ix
2

(θ̇2 + φ̇2sin2θ) +
Iz
2

(ψ̇ + φ̇cosθ)2 +Mglcosθ. (31)

From the definition of a, we see that second term is constant and by subtracting
it from the energy we obtain

E′ =
Ix
2
θ̇2 +

Ix
2

(b− acosθ)2

sin2θ
+Mglcosθ. (23’)

This is same constant that we obtained previously. If we take total time deriva-
tive of E′ by considering it depends on θ and θ̇, by equating it to zero we obtain
Eq.[18].

If we change variable by using u = cosθ, from Eq.[23’] we obtain

u̇2 = (1− u2)(α− βu)− (b− au)2, (32)
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where α = 2E′/Ix and β = 2Mgl/Ix. We can take squareroot of both side and
obtain time as an integral of u

t =

∫
du√

(α− βu)(1− u2)− (b− au)2
. (33)

This kind of integrals are known as elliptic integrals, and again we encountered
with them and we will not deal with details of these integrals as we did in the
previous section. We will do this integration numerically, and then we will get t
for different u values, and using this result it is possible to obtain θ for different
t. After obtaining θ, one can obtain θ̇, φ̇ and ψ̇ by using Eq.s[23], [25] and [26]
and also φ and ψ by using them. However, obtaining φ and ψ from these can
be cumbersome due to not evenly spaced time.

Without finding the solution of the equation, it is possible to make some
comments on the motion using Eq.[32]. Firstly let us call the right hand side of
Eq.[32] as f(u)

f(u) = (1− u2)(α− βu)− (b− au)2. (34)

Since u = cosθ, the time derivative of u corresponds θ̇. Then, the roots of f(u)
correspond to θ̇ = 0. For the motion of symmetric top, the domain of θ can be
considered as [0, π] and then u can take values −1 ≤ u ≤ 1.

f(u) has three roots since it is a cubic function. Two of the roots correspond
to turning angles of θ. The third one is irrelevant from the physical motion of
the symmetric top. u and constants of the motion can also be used to analyze
the motion of the symmetric top.

3 Motion of a spinning symmetric top

We have seen that we have an extra term in the Euler equations, ~w × ~L. It
is related with the symmetric top’s being non-inertial reference frame. For the
symmetric top, angular velocity and angular momentum can be in different
directions. These two things make harder to understand the motion of the
symmetric top from torque and angular momentum. Here, we will solve Euler
equations for the symmetric top numerically and explain its motion from these
solutions.

We have seen that we can use two equivalent set to study motion; E′, b, a
and u (or θ) or φ̇, ψ̇, θ̇ and θ. By using φ̇0, ψ̇0 and θ0 we can determine b and a,
and including θ̇0 we can determine E′. We mentioned that these three constants
E′, b and a correspond to the conservation of the energy, the conservation of the
angular momentum in z direction and the conservation of the angular momen-
tum in z′ direction respectively. Both set has their own advantages; the first set
provides advantages to understand the motion in terms of conserved quantities
and provides insight; and the second one provide advantages to understand and
study the motion dynamically. In this work, we will use them in a mixed way
to understand the motion.
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Let us consider a symmetric top with moments of inertia Ix and Iz, mass M ,
the distance from tip to center of mass l, and also consider that this symmetric
top spins with some initial angular velocity ψ̇0 and started to its motion with
an initial inclination θ0. It can also have initial angular velocities φ̇0 and θ̇0;
even if φ̇0 and θ̇0 are zero at the beginning, they can be developed during the
motion. Precession is related with φ̇ and nutation is related with θ̇. There are
different types of motion for the symmetric top. These can be obtained from
different initial values and can be understood from the constants of the motion.

It is easier to consider the motion of the symmetric top with the constants
of motion. E′ determines the changes in θ and θ̇. a and b determines changes
in ψ̇ and φ̇ according to changes in θ. ψ̇ and φ̇ are not linearly independent of
each other, then a and b are entangled. Though this entangled structure, they
provide necessary information to understand the motion. By using changes in
θ, we can understand changes in φ̇ mainly from b and in ψ̇ mainly from a. We
can also use Eq.s[25] and [26] to understand these changes.

In some places f(u) is used to consider the motion of the symmetric top in
θ, however it is hard to imagine the symmetric top’s motion in terms of u. It is
also possible to use an effective potential to analyze the motion in θ, and it is
much more convenient for interpretation.

We will mainly use effective potential to understand some parts of the mo-
tion, but we will also consider f(u) for comparison. By considering Eq.[23’] and
using E′ = Ixθ̇

2/2 + Ueff , effective potential is written as

Ueff (θ) =
Ix
2

(b− acosθ)2

sin2θ
+Mglcosθ. (35)

It is seen that Ueff depends only one variable θ. One may consider that only

changes in θ will effect θ̇, but this is not true since all things are coupled, and
these coupled variables effect each other obeying conservation of energy and
angular momenta. It can seen from Eq.[18] that change in θ is more complex.

This effective potential will go to infinity at the domain boundaries of θ,
[0, π], and have a minimum within these limits. Then, the form of the potential
is like a well. We see general structure of the Ueff in Fig.[3]. The minimum of
the effective potential can be negative and depends on Ix, Mgl, b and a.

Firstly, let us consider the motion from the effective potential and start with
the denominator of the first term to understand different types of the motion;
if θ goes to 0 or π, the denominator approaches to zero and the first term goes
to infinity.

By looking at these infinities, one can consider that the motion at θ = 0
or π is not possible, however it is possible. If at the beginning of the motion
θ0 is equal to 0 or π together with θ̇0 = 0, then this configuration corresponds
sleeping top and in these two cases the torque arising from the gravitational
force on the symmetric top is equal to zero and the symmetric top will continue
its spinning without any change in θ.

There are different possibilities for E′ with respect to minimum of the effec-
tive potential and other things. These will be resulted with different types of
motion.
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Figure 3: General form of Ueff for 0 < θ < π.

If E′ is equal to the minimum of Ueff , then the right hand side of Eq.[24]
becomes equal to zero. Since right hand side can not be negative for the physical
motion then only one θ value is possible, and θ̇ will be equal to zero throughout
the motion. There are other things that should be considered for this type
of motion, which we will consider later. This case will correspond to regular
precession.

If E′ is grater than the minimum value of Ueff . Then at two different values
of θ, Ueff will be equal to E′. These two different θ values correspond to the
turning angles of the symmetric top. Since θ will change between these two
turning angles periodically, θ̇ should be either positive or negative at different
parts of the period. As θ changes between these two turning angles, φ̇ will have
different values and these values will identify the type of motion.

To understand different possibilities for φ̇, we will consider φ̇ in terms of
constants of motion and θ;

φ̇ =
b− acosθ
sin2θ

. (25)

We already considered cases making denominator zero, they were giving infini-
ties for Ueff . The nominator can be zero, grater than zero or less than zero,

dependently φ̇ will have same properties. These three possibility together with
E′ and Ueff relation will be resulted with different types of motion. There

will be changes in the angular velocity ψ̇ as well. It will change as φ̇ changes
according to the constant a and b. We will analyze these changes for different
types of motion.

We have mentioned that calculation of φ and ψ can be cumbersome from
previously mentioned method, i.e. using the integration of Eq.[33]. There is an-
other method that we can calculate variables of the motion: numerical solutions
of the angular accelerations. In this numerical solution, cumbersome structure
is not present and it is preferable. However solving with only one method can
sometimes lead problems. When we solve from two different methods, we ob-
tain a checking point for calculations. Then we will follow such a structure and
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calculate from both techniques. We will not calculate φ and ψ from the first
technique since if φ̇ and ψ̇ calculations are consistent there will be no need to
deal with unevenly spaced time interval.

We will solve following angular accelerations

θ̈ = sinθ

[
Mgl

Ix
+ φ̇2cosθ − Iz

Ix
φ̇2cosθ − Iz

Ix
φ̇ψ̇

]
φ̈ =

θ̇

Ixsinθ

[
Izψ̇ + Izφ̇cosθ − 2Ixφ̇cosθ

]
ψ̈ = −cotθ

[
Iz
Ix
θ̇ψ̇ +

Iz
Ix
θ̇φ̇cosθ − 2θ̇φ̇cosθ

]
+ θ̇φ̇sinθ

by integrating numerically. Since they are all coupled, we will integrate them in
a coupled way to get the solution. For all cases we will take φ0 = 0 and ψ0 = 0.
We will obtain three angles and three angular velocities as a function of time
from this technique. Since, we have obtained θ and φ as a function of time we
will plot three dimensional figures, and these plots will give more insight on the
motion. Remaining plots related with θ, φ, ψ, θ̇, φ̇ and ψ̇ will be available at
the appendix. All results given below are consistent in θ, θ̇, φ̇ and ψ̇ for two
techniques.

Now let us overview of the motion of the symmetric top to understand these
three dimensional figures; ψ will be related with rotation around symmetry axis,
θ and φ will be related with the motion of the symmetry axis. If we plot the
points defined by θ and φ, obtained from equations describing the motion of
the symmetric top, in three dimensional way, we will get the intersection of the
unit sphere having origin at the tip of the symmetric top with the symmetry
axis of the symmetric top. So, these three dimensional figures correspond to the
motion of the symmetry axis. This type drawings are known as the locus of the
figure (symmetry) axis on the unit sphere.

We need to mention another point about the first method. At the turning
angles of θ there are some discontinuities, arising from separation of the inte-
gration as increasing and decreasing part. This separation causes loss of some
information, decreasing integration step to smaller values will be helpful.

3.1 Sleeping top

Sleeping top corresponds that the symmetric top continue its spinning with
initial ψ̇0 without changing its orientation. There are two possible θ value for
the sleeping top; 0 and π. To obtain such a motion, it is enough to let the
symmetric top spin along z′ or −z′ axis without any initial θ̇. In these cases the
symmetric top continues its spinning without changing its orientation.

Let us consider the denominator of Eq.[25], if θ is equal to 0 or π, it becomes
zero and gives infinities. These infinities do not mean that φ̇ becomes infinite,
it shows that φ̇ can be irrelevant for the motion in these cases.

In the sleeping top case, body z-axis becomes parallel or anti parallel to the
stationary z′-axis, and φ̇ becomes irrelevant for the motion since it defines how
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body z-axis rotates around stationary z-axis. To obtain equations describing
such a case one need to rearrange terms with φ̇. If φ̇ is not eliminated from the
relevant equations, there can be some misleading situations.

If θ0 = 0 then z-axis overlaps with z′-axis. So, we should eliminate terms
with φ̇ from the equations. After eliminating φ̇ from the relevant equations and
letting θ = 0, from Eq.s[30] we see that Lz becomes equal to L′z. Then from
Eq.[17], we see that the angular acceleration θ̈ is equal to zero. If θ0 = π, then
z-axis overlaps with negative z′-axis and we get Lz = −L′z. Again θ̈ becomes
zero. Since θ̇0 = 0 and θ̈ = 0, there will be no change in θ.

In these two cases, the torque arising from the gravitational force on the
symmetric top is equal to zero and the symmetric top will continue its spinning
without any change in θ. Here we are considering dissipation free cases, then
the spin angular momentum arising from ψ̇ does not decay.

In daily life, for the spinning symmetric top there is always a friction and
this friction causes decay of ψ̇. However, this is not the reason for falling of the
symmetric top. If the symmetric top’s symmetry axis is parallel to stationary z-
axis which is the direction of gravitational force then torque will be always zero
and the symmetric top will not change its orientation. The reason of the change
in the orientation of the symmetric top is small fluctuations in the direction of
the symmetric top, any small change independent of the amount will cause a
torque and this will trigger motions different than sleeping top. We will later
give some more explanations on such cases.

3.2 Regular precession

The regular precession is the precession that θ does not change and φ̇ is con-
stant. For the regular precession the spinning symmetric top should start its
motion with an initial inclination θ0 and angular velocity φ̇0 and continue its
precession without nutation, θ̇0 = 0. We can find such values by using the
effective potential.

If E′ is equal to the minimum of Ueff , then only one θ value is possible.

Since θ does not change, θ̇ is always zero. To find initial values for such a
configuration, we can take derivative of Ueff

dUeff (θ)

dθ
=
Ix

2

(
2(b− acosθ)asinθ

sin2θ
−
−2(b− acosθ)2cosθ

sin3θ

)
−Mglsinθ (36)

and then equate it to the zero. We can write this equation after inserting b and
a in terms of φ̇ and ψ̇ as

(φ̇2cosθ(Iz − Ix) + φ̇ψ̇Iz −Mgl)sinθ = 0. (37)

Here sinθ is common multiplier and it is zero when θ equals to 0 or π, which
correspond sleeping top. We will look at the cases which makes the terms in
the parenthesis equal to zero.

If we eliminate sinθ, we get

φ̇2cosθ(Iz − Ix) + φ̇ψ̇Iz −Mgl = 0. (38)
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The discriminant of this equation is D = (Izψ̇)2 + 4(Iz − Ix)Mglcosθ. If
4(Iz − Ix)Mglcosθ = −(Izψ̇)2 then the discriminant will be equal to zero and
only one φ̇ will give regular precession. Since (Izψ̇)2 is always positive, left
hand side should also be negative for equality. If Iz < Ix, then θ should be
between 0 and π/2; if Iz > Ix, then θ should be between π/2 and π, otherwise
regular precession with one φ̇ is not possible. Since the maximum value of
|cosθ| = 1, then for regular precession with single φ̇, the spin angular velocity
ψ̇ should be smaller than

√
4Mgl|Iz − Ix|/I2z . We will use the angular velocity√

4Mgl|Iz − Ix|/I2z to discriminate regular precessions with single φ̇ and two φ̇
and designate it with w̃. Since w̃ corresponds small angular velocities we will
name symmetric tops spinning with smaller angular velocity than w̃ as ”weak
top”. If ψ̇ > w̃, then we will use ”strong top”.

We can write Eq.[38] as

φ̇2cosθ − φ̇a+
Mgl

Ix
= 0. (39)

We see that the discriminant will be equal to a2 − 4Mglcosθ/Ix. If a2 <
4Mgl/Ix, then θ should be between π/2 and π to get regular precession. How-
ever, it is still possible to get regular precession when 0 < θ < π/2. Using
constant a detain these cases, to see these we need to use previous relation.

Still there are advantages of using a. We can also use ã =
√

4Mgl/Ix to
make discrimination for the symmetric top as ”strong top” or ”weak top”. If
|a| > ã the symmetric top will be designated as ”strong top”, and if |a| < ã
the symmetric top will be designated as ”weak top”. Both weak or strong top
definitions are nearly same, and either ψ̇ or a can be used to determine it.
However in some situations at the border these definitions can conflict.

If we use Eq.[39], determination of φ̇ and ψ̇ will not be straightforward as
Eq.[38], since constant a involves both. Here, we will use Eq.[38].

In regular precessions with single φ̇ cases the relation between θ and ψ̇ is

cosθ = −(Izψ̇)2/(4(Iz − Ix)Mgl). (40)

For a positive discriminant, giving regular precession for two φ̇ value, roots
can be obtained by using

φ̇1,2 =
−Izψ̇ ±

√
D

2(Iz − Ix)cosθ
. (41)

After assigning suitable values to θ and ψ̇ for a symmetric top, from Eq.[41] it
is possible to find φ̇, which will give a precession without nutation.

Now, we will obtain roots of Eq.[38] for different ψ̇ values. We will consider
a symmetric top with parameters Ix = 0.00014kgm2, Iz = 0.00022kgm2 and
Mgl = 0.068J for this and later calculations in this work. In this case β becomes
971.4. These parameters can correspond to the child’s top or a symmetric top
with disc like structure, and gives w̃ = 21.20rad/s and ã = 44.08.
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Figure 4: Ueff at left, and f(u) (right hand side of Eq.[32] as a function of
u = cosθ) at right. E′ is plotted with straight black line in Ueff graph. This case
gives regular precession with single φ̇, and initial values and constants of motion
for this case as follows; θ0 = 2.269rad, θ̇0 = 0, ψ̇0 = 17rad/s, φ̇ = 36.36rad/s,
E′ = 0.01060J , a = −10.02, b = 27.78 and α = 151.2.

If we take ψ̇ equal to
√

4Mgl(Iz − Ix)|/I2z , from Eq.[40] we obtain θ as π,
which corresponds to sleeping top and we can not obtain regular precession with
single φ̇, then we need to take smaller ψ̇ values to obtain such a motion.

If we took ψ̇ as 17rad/s, then we obtain θ as 2.269rad for the regular preces-
sion with single φ̇. In this case φ̇ becomes 36.36rad/s. For this case, Ueff
is shown in Fig.[4]. It is seen that E′ intersects Ueff at its minimum, at
θ = 2.269rad. We see it also from f(u); it intersects with zero twice, and
one of them gives regular precession,u = −0.6428 corresponding θ = 2.269rad.

If we choose ψ̇ grater than w̃, then we need to specify θ as well to find φ̇. If
we choose ψ̇ = 50rad/s and θ = 1.1rad, then we obtain ψ̇1 = −309.2rad/s and
ψ̇2 = 6.061rad/s. For these cases the graphs of Ueff are available in Fig.[5]. It
is seen that the minimum of Ueff is at θ = 1.1rad and E′ intersects Ueff at
there.

In Eq.[38] we have three variables θ, ψ̇ and φ̇. We found φ̇ by assigning
values to others. It is also possible to find any one of the variables after assigning
suitable values to others.

In this case, we can not use integration with respect to u to find time, since
only one u value is available. However we can integrate numerically angular
accelerations, and results are available in Fig.[6]. In Fig.[6], we see shapes of
locus for regular precession with single φ̇ and two φ̇. The first one is for the
precession with single φ̇, seen at the left. Second and third one plotted on
the same graph, seen at the right, since they precesses without nutation at
same θ value, they are overlapped and it looks like one line. One of them
precessing in negative direction with grater angular velocity, the other one in
the positive direction with smaller angular velocity. Results, obtained from
numerical integration of angular accelerations, of θ, φ, ψ, θ̇, φ̇ and ψ̇ for this
and next cases are available in the appendix; Fig.[40] shows results for regular
precession with single φ̇, Fig.[41] and Fig.[42] show results for regular precession
with two φ̇.
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Figure 5: At left; Ueff and E′ for φ̇1(top E′ = 5.346J) and φ̇2(bottom E′ =
0.03289J) for regular precession. At right; corresponding f(u)s. For the first
one ψ̇0 = 50rad/s, θ0 = 1.1rad, φ̇ = −309.2rad/s, a = −141.8, b = −309.9,
α = 76370 and Mglb/a = 0.1486. For the second one ψ̇0 = 50rad/s, θ0 = 1.1rad,
φ̇ = 6.061rad/s, a = 82.89, b = 42.41, α = 469.8 and Mglb/a = 0.03479.
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Figure 6: Shapes of the locus on unit sphere for the regular precession. The left
one for the single φ̇ with initial values θ0 = 2.269rad, φ0 = 0, ψ0 = 0, θ̇0 = 0,
φ̇0 = 36.36rad/s, ψ̇0 = 17rad/s. The right one for φ̇1 = −309.2rad/s (continuous
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ψ0 = 0, θ̇0 = 0, ψ̇0 = 50rad/s. The dashed line and continuous line can be seen
only if one look closely.

Here, it is better to mention about some points. The gravitational force gives
a torque, if initial angular momentum is zero then this torque causes a rotation
around the line of nodes and θ will increase. For the symmetric top, this torque
is still available however for this regular precession case it is not resulted with
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an increase in θ. This shows that, there is an effect balancing this torque. If we
look at the effective potential this effect is result of Ixφ̇

2/2. This shows that for
the symmetric top, the angular momentum around stationary z′-axis can cause
rise of the symmetric top. We will consider this rise with details in the next
cases.

3.3 Cup like motion

For the cup like motion it is better to start studying in terms of ψ̇, φ̇, θ̇ and θ.
This type of motion is one of the most seen one.

Now let us consider a symmetric top spinning with an initial angular velocity
ψ̇0. If we let it spin with an initial inclination θ0 and with zero angular velocities
φ̇0 = 0 and θ̇0 = 0, we see cup like motion.

Initially the symmetric top will rotate an infinitesimal amount around the
line of nodes by the effect of torque caused by the gravitational force and depen-
dently θ will increase. Then according to φ̇ = (b− acosθ)/sin2θ, the symmetric
top will start to gain some angular velocity φ̇. As the magnitude of φ̇ increases,
the magnitude of ψ̇ will decrease according to the conserved quantity a.

We can see from the initial values that E′ = Mglcosθ0, which is equal
to the effective potential at that point. We also see from the initial values
that b = acosθ and if |b| < |a| we can say θ0 = arccos(b/a), which makes
E′ = Mglb/a. Then one of the intersection angle of E′ and Ueff occurs at
θ0, which is the minimum since θ increases after the start of the motion. As θ
increases Ueff decreases, this decrease is compensated by an increase in θ̇ and
the total energy remains constant. The increase in θ gives necessity of positive
θ̇. From the shape of Ueff , we can conclude that after some point θ̇ will start to

decrease and it will eventually be equal to 0 at the θmax. After θmax, θ̇ will have
negative values and the symmetric top will rise till θ reaches its initial value.
θ̇ should be naturally zero at the turning points, and have extrema at θ values
where the minimum value of Ueff occurs.

In this case b = acosθ0, and if we consider φ̇ = (b − acosθ)/sin2θ relation
we can understand the changes in φ̇. We have mentioned that φ̇ will gain
some angular velocity as θ increases. During this motion, the magnitude of φ̇
will reach to the maximum value when θ reaches its maximum value. After
reaching the maximum value, θ will gradually decrease and dependently φ̇ will
also decrease. When θ returns to its initial value, φ̇ will also and become zero.
The magnitude of ψ̇ will firstly decrease and then increase to its initial value
corresponding to changes in φ̇. All changes are similar to harmonic motion, but
not exactly same.

The turning angles of θ are two important parameters of the motion. In this
case, we have seen that θ0 is the minimum angle. The maximum angle can be
found from f(u) or from the solution of Ueff = E′.

For a case with initial values θ0 = 0.175rad, φ̇0 = 0, θ̇0 = 0 and ψ̇0 =
100rad/s, we obtained results. With these initial values constants in f(u) be-
comes a = 157.1, b = 154.7 and α = 956.6. The results are depicted in Fig.[7],
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[8] and [9]. At left of Fig.[7], we see the general structure of f(u), and at right
we see close view of it and the relevant roots, u1 = 0.9834 and u2 = 0.9847.
Corresponding θ values to these roots are θ1 = 0.1823 and θ2 = 0.1750rad.
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Figure 7: f(u) (left) and its close view (right) for a = 157.1, b = 154.7 and
α = 956.6. Roots occur at u = 0.9834 and u = 0.9847.

In Fig.[8], we see Ueff and E′ for this situation. From the graph we see
possible θ values; for physical cases E′ should be grater than Ueff , which is
possible if θ is between 0.1750 and 0.1823rad. From this graph we can say that
the motion of the symmetric top in θ will be periodic between these two turning
angles. It starts from the initial θ value, 0.1750rad, then as a result of the
gravitational force the symmetric top will fall and θ will gradually increase till
0.1823rad. Then, the symmetric top will return from that point and continue
its motion toward the other turning point and the motion will continue in this
way.

Using Eq.[33], we can find θ(t) and θ̇(t), and then using θ(t) we can find
φ̇(t) and ψ̇(t) from Eq.s[25] and [26]. Due to the structure of Eq.[33], we need
to consider one period in two parts; from θmin to θmax and then from θmax to
θmin. In this procedure there can be some discontinuities due to this separation.
The results are shown in Fig.[9].
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obtained by integration of Eq.[33]. Initial values are same with Fig.[8].

From Ueff , we made conclusions about θ and θ̇. The mentioned changes for

θ and θ̇ can be seen in Fig.[9]. We also see changes in φ̇ and ψ̇ at that figure.
Now let us consider these changes in terms of conserved quantities, which show
themself as constants a and b. b corresponds to the conservation of angular
momentum in z′, a component of ψ̇ contribute to it via acosθ. As θ increases
this contribution decreases, then the conservation of the angular momentum in
z′ direction assures increase in the magnitude of φ̇. But this increase should also
be consistent with the conservation of the angular momentum in z direction,
related with a, and as the magnitude of φ̇ increases the magnitude of ψ̇ should
decrease. After the maximum θ value, θ starts to decrease and the mentioned
changes happen in the reverse order. We can see how these took place from the
graphs in Fig.[9].

These relations are a bit more complicated due to existence of trigonometric
functions, and we will consider this complicated structure in next cases.

We see that φ̇ is at the maximum when θ is at the maximum, and zero when
it is minimum, so the symmetric top precesses in a slower rate when θ is near
to its minimum. This produces a cup like figure if we draw a three dimensional
figure.

We have obtained changes in variables with respect to time by numerically
integrating angular accelerations. The three dimensional plots are available
in Fig.[10]. Plots for angles and angular velocities are available in appendix,
Fig.[43]. All angular velocities oscillate due to torque felt by the symmetric top
and obey conservation of angular momenta and energy; a, b and E′.
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Figure 10: Shapes of the locus on unit sphere for the cup like motion. At the
left we see a few nutation period, and at the right we see precession for 2π. Initial
values are same with Fig.[8].

In this type of motion, φ̇ will have positive values if a is positive, and if a is
negative it will have negative values. For the cup like motion, b can take values
between −a to a depending on θ0.

Now, we can explain the rise of the symmetric top in terms of the angular
momentum in z′-axis. In the previous case we have seen that the gravitational
torque is balanced by an effect caused by the angular momentum in z′-axis. The
gravitational torque is parallel to the line of nodes. If we consider ~w × ~L term,
Eq.[4], and take cross product of ~w with the angular momentum in z′ direction
we obtain a vector anti-parallel to the line of nodes. This is also possible if the
angular momentum is in −z′ direction. This vector acts like torque and it is
available because of the symmetric top’s being a non-inertial reference frame. It
is just like the inertial forces or pseudo forces appeared in non-inertial reference
frames, and we will refer it by inertial torque.

In this case, at the beginning φ̇ was zero and it was gradually increasing.
Then, we can say that at the beginning, the gravitational torque was grater
than the inertial torque. But after some time inertial torque around the line of
nodes becomes equal to the gravitational torque, at that moment θ̇ reaches its
maximum value and the minimum value of Ueff occurs. However θ continues

to increase some more time. When θ̇ reaches zero, the magnitude of the inertial
torque around the line of nodes is already grater than the gravitational torque.
This difference results with a negative torque around the line of nodes and
negative θ̈, as a result of this the symmetric top rises. As it rises the φ̇ becomes
smaller, and at a point again the torque around the line of nodes becomes zero,
where again the minimum value of Ueff occurs. This rise continues for a while

as a consequence of negative θ̇. Finally θ reaches its initial value and rise stops,
where φ̇ is zero. Then this procedure repeats itself.

3.4 Wavy precession

In this case, we will consider that the symmetric top precesses toward the same
direction at both θmin and θmax, and nutation takes many times during one
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precession. This kind of motion is possible if the initial φ̇ is different than zero,
and it should have same sign at both extremum of θ.

φ̇ = (b − acosθ)/sin2θ, then it will be equal to the zero if θ = arccos(b/a),
which requires |b| < |a|. If we use θ = arccos(b/a) in Ueff , we obtain it as
Mglb/a. E′ determines possible interval of θ according to Ueff , and if E′

is smaller than Mglb/a then θ does not take values which makes φ̇ equal to
zero. Since φ̇ is a continuous quantity then φ̇ does not change sign and always
precesses in one direction in this case. Then we can say that to obtain this kind
of motion the absolute value of b should be smaller than the absolute value of
a, and E′ should be smaller than Mglb/a, and Mglb/a should be grater than
Ueff . In this case |b| > |acosθ|.
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Figure 11: Ueff , E′ (black straight line), Mglb/a (dotted line) at left and
f(u) at right. This case gives wavy precession, and initial values for this case as
follows; θ0 = 0.2056rad, θ̇0 = 0, ψ̇0 = 148.3rad/s, φ̇ = 0.8968rad/s and resulting
E′ = 0.06657J . Turning angles for θ are 0.2056 and 0.2077rad, and the minimum
of Ueff is at 0.2067rad. For this case a = 234.4, b = 229.5 and α = 951.0.

To obtain such a case we can choose θ0 = 0.2056rad, θ̇0 = 0, φ̇0 = 0.8968rad/s
and ψ̇0 = 148.3rad/s. With these initial valuess, the constants become a =
234.4, b = 229.5 and α = 951.0. Then, Mglb/a = 0.06658J and E′ = 0.06657J ,
which is smaller than Mglb/a. The turning angles of θ are 0.2056 and 0.2077rad,
and these can be obtained from Ueff by using E′ or from f(u), whose plot are
available in Fig.[11].

In Fig.[12], we see the results obtained numerically from Eq.s[33], [25] and
[26]. The initial value of θ is the minimum value, then as time passes it increases
in the first part of motion. We can understand this change from Ueff , as θ

increases θ̇ increases till the minimum of the effective potential then starts to
decrease. As θ increases, φ̇ increases to obey conservation of angular momentum
in z′-direction since acosθ decreases, seen from b = φ̇sin2θ + acosθ. As φ̇
increases, ψ̇ decreases in accordance with conservation of angular momentum in
z-direction, seen from a = (Iz/Ix)(ψ̇+ φ̇cosθ). When θ reaches its maximum, θ̇
becomes zero. In the second half of the motion these changes take place in the
reverse order.

By numerically integrating angular acceleration for the mentioned initial val-
ues we obtained results. Three dimensional plots are available in Fig.[13], other
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Figure 12: θ(up left), θ̇(up right), φ̇(down left) and ψ̇(down right) are obtained
from the integration of Eq.[33]. Initial values are same with Fig.[11].

results can be found in appendix, Fig.[44]. Wavy structure of the precession is
visible in the three dimensional figure.

This kind motion can take place as long as the absolute value of b is smaller
than the absolute value of a, i.e. |b| < |a|, provided that Ueffmin

< E′ <

Mglb/a. If a is positive, φ̇ becomes always positive and the symmetric top
precesses always in the forward direction. If a is negative, φ̇ becomes always
negative and the symmetric top precesses in the backward direction.

If we consider the motion in terms of the gravitational torque and the angular
momentum in z′ direction, we can say that at the beginning of the motion the
component of the inertial torque in the direction of the line of nodes, obtained
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Figure 13: Shapes of the locus on unit sphere for the wavy precession. Initial
values are same with Fig.[11].
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from ~w × ~Lz′ , is smaller than the gravitational torque. Then the symmetric
top falls and θ increases, meanwhile this increase resulted with an increase in φ̇.
At some point this increase resulted with a negative torque around the line of
nodes. The consequences of this will not be seen immediately as a rise, this rise
will seen after it makes θ̇ zero. Its effect is not enough to rise the symmetric
top to reach necessary height to provide negative φ̇ values. After some time,
the gravitational torque will become dominant and then the symmetric top will
start to fall again. Then this motion will repeat itself.

3.5 Looping motion

If the symmetric top have both negative and positive φ̇ and θ̇, then the combi-
nation of motions due to them forms a looping motion.

In this case, b − acosθ should be equal to the zero for a value of θ between
θmin and θmax. Then φ̇ becomes sometimes positive, sometimes negative and
zero in between. Zero of φ̇ occurs at θ = arccos(b/a), this requires |b| < |a|
because of the possible range of cosθ. We have seen in the previous case that
if E′ < Mglb/a then φ̇ never becomes zero and always gets the same sign. So,
for the looping motion E′ should be bigger than Mglb/a. Then, φ̇ will have a
reverse sign for some θ values and it will precesses toward different directions
at θmin and θmax. So, the conditions for the looping motion can be written as
θmin < arccos(b/a) < θmax and E′ > Mglb/a > Ueffmin

provided that |b| < |a|.
Since the symmetric top precesses in one direction at θmin and in other direction
at θmin, there will be a looping motion.

Now, we will get results for this looping motion. We will choose the initial
values to provide that φ̇ have negative and positive values at the extrema of
θ. To obtain such a case, we can choose θ0 = 0.27rad, θ̇0 = 0, φ̇0 = 10rad/s
and ψ̇0 = 100rad/s. With these initial values, the constants become a = 172.3,
b = 166.8 and α = 943.3. In this case E′ = 0.06603J and Mglb/a = 0.06582J .
The turning angles of θ are 0.2472 and 0.2700rad, and these can be obtained
from the effective potential by using E′ or f(u), their graphs are available in
Fig.[14].

Let us again start to analyze the motion from Ueff . This time the motion

starts with the maximum θ value since initial φ̇0 and a are positive, then the
most of changes happen in reverse order with respect to previous cases. From
the effective potential, we can conclude that θ will reduce till the smaller turning
angle, 0.2472rad, and then increase till its initial value. Since the minimum of
Ueff is at θ = 0.2583rad, at these values θ̇ should have extremum values.

Now let us analyze motion in terms of conservation of angular momenta.
The results obtained by integration of Eq.[33] are seen in Fig.[15]. We see that
the motion is started from the maximum θ, then it decreases as time passes.
As it decreases, the contribution from constant a in b increases and φ̇ should
decrease to obey conservation of angular momentum in z′-direction and this
decrease continues to negative values. As φ̇ decreases its contribution in a
decreases, then ψ̇ should increase to obey conservation of angular momentum
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Figure 14: Ueff , E′ (black straight line) and Mglb/a (dotted line) at left, and
f(u) at right. This case gives looping motion, and initial values for this case
as follows; θ0 = 0.27rad, θ̇0 = 0, ψ̇0 = 100rad/s, φ̇ = 10rad/s and resulting
E′ = 0.06603J . Turning angles for θ are 0.2472 and 0.27rad, and the minimum
of Ueff is at 0.2583rad. For this case a = 172.3, b = 166.8 and α = 943.3.
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Figure 15: θ(up left), θ̇(up right), φ̇(down left) and ψ̇(down right) are obtained
from the integration of Eq.[33]. Initial values are same with Fig.[14].

in z-direction. We also see that φ̇ is positive at the maximum value of θ, and it
is negative at the minimum value of θ.

The three dimensional graphs obtained from numerical integration of angular
accelerations are seen in Fig.[16]. Looping structure is clearly seen. Other results
are available in appendix, Fig.[45].

If a is positive, then at the maximum of θ, φ̇ is positive, and it is negative
at the minimum. If a is negative, φ̇ takes reverse signs.

Now let us consider the motion in terms of angular momentum and torque.
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Figure 16: Shapes of the locus on unit sphere. The initial values are same with
Fig.[14].

This motion starts from θmax since θ̇0 = 0 and φ̇ and a are positive. The inertial
torque in the direction of the line of nodes originated from φ̇ is big enough to rise
the symmetric top to have negative φ̇ values. At the negative φ̇ values, ~w× ~Lz′
contribute to the gravitational torque in the same direction, then the symmetric
top falls till reaching the initial θ and φ̇ value. The mentioned procedure repeats
itself and the average value of φ changes in every looping motion.

3.6 Precession with single nutation

In the cup like motion, the wavy precession and the looping motion, absolute
value of b was always smaller than the absolute value of a. Now we will consider
that |b| > |a|. In the regular precession, there were some cases with |b| > |a|
however at that case there were no nutation. In the wavy precession, φ̇ was
having always same sign with careful determination of E′, with this determina-
tion possible θ values was resulting with always same sign for φ̇ though |b| < |a|
and there were many nutations in one precession. Differently from that case, in
this case there will be nearly one nutation during one precession and φ̇ will have
always same sign as a result of |b| > |a|. |b| > |a| provides precession always in
the same direction independent of θ, with E′ > Mglb/a and E′ > Ueffmin

.

In this one, we will choose initial values to provide that φ̇ is always positive
and different than zero with condition |b| > |a|. If we use initial values θ0 =
1.310rad, θ̇0 = 0, φ̇0 = 190rad/s and ψ̇0 = 100rad/s, then we obtain such a
motion. With these initial values, the constants become a = 234.1, b = 237.7
and α = 33950. By using f(u) or Ueff and E′, we find extrema of θ as 0.02013
and 1.310rad for this configuration.

Graphs of f(u) and Ueff are available in Fig.[17]. If we look at the shape
of Ueff from the graph, we see that it has a high asymmetry and the minimum
value of Ueff is very close to the smaller turning angle. This asymmetry causes

very rapid changes in θ̇ near that turning angle.
By using integral in Eq.[33], we obtained θ, θ̇, φ̇ and ψ̇, available in Fig.[18]. θ

starts from the maximum value, then it gradually reduces, and as it comes closer
to the minimum value its change becomes more rapid. We see that θ decreases
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Figure 17: Ueff , E′ (straight black line), Mglb/a (dotted line) at left and f(u)
at right. This case gives precession with single nutation, and initial values for
this case as follows; θ0 = 1.310rad, θ̇0 = 0, ψ̇0 = 100.0rad/s, φ̇ = 190rad/s and
resulting E′ = 2.377J and Mglb/a = 0.06905. Turning angles for θ are 0.02013
and 1.310rad, and the minimum of Ueff (0.186145) is at 0.1760rad. For this case
a = 234.1, b = 237.7 and α = 33950.

till the minimum θ value, then a sharp change occurs and θ start to increase.
This sharp change is seen in θ̇ in a better way; θ̇ reaches its minimum value, a
negative one, then it starts to increase and becomes zero. After turning angle
of θ, θ̇ suddenly increases to its maximum value and then gradually decreases
to zero.

The change in φ̇ is more interesting, it starts with its positive initial value
then decreases but do not reach to zero. Before the symmetric top having its
minimum θ value, there is a sudden increase in φ̇ and then it reaches to its
maximum value, more than 40 times of its initial value, at the minimum of θ.
At the same time there occurs a sudden change in ψ̇, while it was decreasing
gradually from its initial value it suddenly drops to very high negative values.

Now let us analyze these from conservation of angular momenta. If we
consider constant b = φ̇sin2θ+acosθ, as θ decreases cos θ increases and φ̇ should
decrease to compensate this and preserve angular momentum z′-direction. At
the beginning of motion we see this decrease. However, as θ approaches to
θmin, very close to zero, the multiplication factor of φ̇ becomes very small. To
compensate this, φ̇ takes very great values.

We have another constant of motion, a corresponding conservation of angular
momentum in z direction. At the beginning of motion there is slight decrease
in φ̇. In this part, the increase rate of cosθ is grater than that decrease, and
then φ̇cosθ increases. Then ψ̇ decreases to compensate this increase. As motion
continues, φ̇ increases with an increasing rate. As φ̇ becomes larger and larger,
ψ̇ firstly becomes zero then takes high negative values to obey conservation of
angular momentum. ψ̇ is related with the symmetric top’s spin and its negative
values mean that it spins in the reverse direction. The spin in the reverse
direction is much more faster than its initial value, more than 80 times. The
symmetric top’s spin in the reverse direction of its initial spin with very high
values is very interesting situation.
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Figure 18: θ(up left), θ̇(up right), φ̇(down left) and ψ̇(down right) are obtained
from the integration of Eq.[33]. Initial values are same with Fig.[17].

These changes happen during rising of the symmetric top, after reaching
turning angle the symmetric top starts to fall and all these changes happens in
the reverse order.

There is another point related with this case; the symmetric top has nearly
equal precession and nutation periods, nutation period is slightly grater than
the precession period.

The three dimensional graphs obtained from numerical integration of angular
accelerations are available in Fig.[19]. From the left one we see that nutation
period and precession period is nearly same, and from the right one we see
that it slightly precesses forward after each nutation. Other results obtained
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Figure 19: Shapes of the locus on unit sphere. Initial values are same with
Fig.[17].
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from numerical integration of angular accelerations can be found in appendix,
Fig.[46].

For this case there are two possibility; forward and backward precession. If
b is positive, then the precession is forward and if b is negative it is backward,
both case is independent of sign of a. This case is an example of the forward
precession.

If we consider this case in terms of the torque and angular momentum,
we can easily say that at the beginning the effect of ~w × ~Lz′ is bigger than
the gravitational torque, and it rises the symmetric top. The rise continues
up to very small θ values. The astonishing changes in φ̇ and ψ̇ are better
understood from conservation of the angular momenta and we have already
given the explanation. After rise of the symmetric top to θmin, ~w× ~Lz′ becomes
very small because of very small θ values and the gravitational torque becomes
dominant and the symmetric top falls till θ0.

3.7 Motion when |a| < |b| and Ueffmin
< E ′ < Mglb/a

In the previous case, E′ was grater than Mglb/a. Now we will consider a case,
|a| < |b| and Ueffmin

< E′ < Mglb/a. Previous case and this case are similar
in many ways, however for the completeness we will analyze this case also. We
should choose initial values according to these conditions, which require small
|a| and |b| values.

If we choose initial values as θ0 = 0.9225rad, θ̇0 = 0, ψ̇0 = 1.225rad/s
and φ̇ = 22.21rad/s we obtain such a configuration. In this case constants of
motion becomes a = 23, b = 28, α = 900.0; and we get E′ = 0.06300J and
Mglb/a = 0.08278J .
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Figure 20: Ueff , E′ (straight black line) and Mglb/a (dotted line) at left, and
f(u) at right. Initial values for this case as follows; θ0 = 0.9225rad, θ̇0 = 0,
ψ̇0 = 1.225rad/s, φ̇ = 22.21rad/s and resulting E′ = 0.06300J . Turning angles
for θ are 0.9225 and 1.759rad, and the minimum of Ueff is at 1.423rad and equal
to 0.05336J . For this case a = 23, b = 28 and α = 900.0

In Fig.[20], we see Ueff and f(u). It is also seen that E′ is smaller than
Mglb/a. E′ and Ueff intersects when θ is equal to 0.9225 and 1.759rad. As it
is seen, smaller turning angle is away from θ = 0 point. This is related with
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Figure 21: θ(up left), θ̇(up right), φ̇(down left) and ψ̇(down right) are obtained
from the integration of Eq.[33]. Initial values are same with Fig.[20].

the shape of Ueff and when a and b are small the minimum of the Ueff occurs
at grater angles. Since initial θ value is the minimum value, we can say θ will
increase till 1.759rad.

Results obtained from the numerical integration of Eq.[33] are available in
Fig.[21]. It is seen that at the beginning φ̇ slightly decreases as θ increases.
We can understand this decrease from conservation of angular momentum in
z′-direction by using b = φ̇sin2θ + acosθ; the increase in sin2θ is faster at the
beginning and to compensate it φ̇ decreases. As θ increases, the decrease in
cosθ becomes dominant and φ̇ increases to compensate it. We can understand
increase in ψ̇ from the mentioned decrease in cosθ from conservation of angular
momentum by using a = (Iz/Ix)(ψ̇+ φ̇cosθ); its decrease is faster than increase
in φ̇ in second part and to compensate it ψ̇ increases. The increase in first part
can be understood from decrease of both φ̇ and cosθ.

By integrating angular accelerations numerically, we plotted there dimen-
sional figure for this case, available in Fig.[22]. We see that again nutation and
precession periods are nearly equal, however differently from previous case nuta-
tion period is a bit more smaller than precession period. Then the three dimen-
sional figure becomes different than the previous case. Other results obtained
from numerical integration of angular accelerations are available in appendix,
Fig.[47].

In this case, precession direction depends on the sign of b, if it is positive
(negative) then the precession direction is positive (negative). Both b and a
should have same sign to be able to get E′ < Mglb/a.

The motion starts from its minimum θ value, though initially φ̇ is different
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Figure 22: Shapes of the locus on unit sphere. Initial values are same with
Fig.[20].

than zero, the inertial torque is smaller than the gravitational torque. This
difference causes fall of the symmetric top. As the symmetric top falls, φ̇ be-
comes grater, and then inertial torque increases. At some point, inertial torque
becomes grater than gravitational torque as a result of increase in φ̇, and even-
tually it rises the symmetric top. Then this motion repeats itself.

3.8 Motion with same precessional angular velocity at ex-
trema

When b < a, if we choose initial values to provide E′ = Mglb/a we obtained
the cup like motion. In previous two cases for |b| > |a|, E′ was either grater
or smaller than Mglb/a. In this case we choose initial values to provide b > a
and E′ = Mglb/a > Ueffmin

, and at the end we get really interesting result; φ̇
becomes equal at θmin and θmax.

Let us rewrite Eq.[23’] for E′ = Mglb/a; if we consider extrema of θ, where
θ̇ becomes zero, then Eq.[23] becomes

Mgl
b

a
=
Ix
2

(b− acosθext)2

sin2θext
+Mglcosθext (42)

By taking Mglcosθext to left hand side and dividing both side to b− acosθext,
after some arrangement we get

b− acosθext
sin2θext

=
2Mgl

Ixa
(43)

Here the left hand side is equal to φ̇ when θ = θext, then φ̇ becomes 2Mgl/(Ixa)
at both extrema of θ.

Now let us see this interesting case from an example. If we choose θ0 =
0.04097rad, θ̇ = 0, φ̇ = 41.51rad/s and ψ̇ = −26.59rad/s, we obtain; a = 23.4,
b = 23.45 and E′ = Mglb/a = 0.06815J . For this case turning angles becomes
θmin = 0.04097 and θmax = 2.021rad.

In Fig.[23], we see Ueff and f(u). It is seen that θ covers from very small
values to values grater than π/2. By using our previous experience, we can say
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Figure 23: Ueff and E′ at left, f(u) at right. This case gives motion with
same precessional angular velocity at extrema, and initial values for this case
as follows; θ0 = 0.04097rad, θ̇0 = 0, ψ̇0 = −26.59rad/s, φ̇ = 41.51rad/s and
resulting E′ = 0.06815J . Turning angles for θ are 0.04097 and 2.021rad, and the
minimum of Ueff is at 1.508rad and equal to 0.03822J . The constants of motion:
a = 23.4, b = 23.45 and α = 973.5.

from Ueff and E′ that the symmetric top will make a periodic motion between
its two turning angles.

In Fig.[24], we see results obtained by numerical integration of Eq.[33]. The
results related with θ and θ̇ are compatible with Ueff . Asymmetry seen in θ̇
near grater turning angle is a result of asymmetry in Ueff . We can understand

changes in φ̇ from conservation of angular momentum in z′-direction by using
b. We see at the beginning φ̇ decreases, this decrease compensates increase
in sinθ to preserve b. Then we see an increase in φ̇, this increase occurs to
compensate decrease in cosθ again to preserve b. When θ becomes larger than
π/2, both sinθ and cosθ decreases, and increase in φ̇ becomes more rapid. This
increase continues till φ̇ reaching its initial value, which is the result of choosing
E′ = Mglb/a.

Changes in ψ̇ can be explained from conservation of angular momentum in z-
direction by using a. As φ̇ decreases, ψ̇ increases to preserve a. When φ̇ starts to
increase the decrease rate of cosθ is faster and ψ̇ should still increase to preserve
a. When θ passes π/2, the contribution in a from φ̇ becomes negative and the
increase in ψ̇ becomes more rapid to obey conservation of angular momentum
in z-direction.

We see three dimensional figures in Fig.[25]. We see that the symmetric
top makes a motion like spiral without inner part, we know that from the above
calculations at the bottom and top φ̇ has same values. Other results are available
in appendix, Fig.[48].

If we consider the motion in terms of torque and angular momentum, there
is an interesting situation; we have same φ̇ at the bottom and top however in one
case the symmetric top rises, in the other it falls. It is directly related with the
cross product and existence of sinθ, which results with grater inertial torque
with respect to gravitational torque at the bottom and results with smaller
inertial torque at the top. Then when the symmetric top is at the bottom it
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Figure 24: θ(up left), θ̇(up right), φ̇(down left) and ψ̇(down right) are obtained
from the integration of Eq.[33]. Initial values are same with Fig.[17].
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Figure 25: Shapes of the locus on unit sphere. Initial values are same with
Fig.[48].
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rises gradually till reaching smaller turning angle, and when it is at the top it
gradually falls. This structure repeats itself in the motion.

3.9 Motion through pseudo singular points

We have seen that the effective potential has infinities at θ = 0 and θ = π.
These infinities occur because sinθ equals to zero at these angles. However if
we consider |b| = |a|, one of the singularities at these angles can be removed by
simplifications and one of these infinities disappears. Now, we will study this
interesting case.

In the sleeping top case, we have already dealt with |b| = |a| situation,
however in that case b was becoming equal to ±a because of overlapping. b
corresponds to angular momentum in z′-direction and a corresponds to angular
momentum in z-direction, then the equivalence of angular momenta assures
equivalence of a and b, i.e. if Lz = ±Lz′ then b = ±a. This time we will analyze
the motion with b = a and without such an overlap.
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Figure 26: Ueff , E′ (straight black line) and Mglb/a (dotted line) at right,
f(u) at left. This case is possible with initial values θ0 = 1.2rad, θ̇0 = 0, φ̇0 =
198.2rad/s and ψ̇0 = 100rad/s. Here E′ = 2.413J . Turning angles for θ are 1.2
and −1.2rad, and the minimum of Ueff is at θ = 0 and equal to Mgl. The roots
of f(u) occur at u = 0.3624 and 1 corresponding to turning angles for θ 1.2rad
and 0. For this case constants: b = a = 270.0 and α = 34470.

If we choose θ0 = 1.2rad, θ̇0 = 0, φ̇0 = 198.2rad/s and ψ̇0 = 100rad/s, then
b becomes equal to a, b = a = 270.0. For this case f(u) is shown in Fig.[26].
The roots of f(u) are u = 0.3624 and 1, which correspond 1.2rad and 0 values
for θ. In this case, there is a subtle difference between f(u) and Ueff , related
with transformation, u = cosθ.

This case is different than all previously considered cases because of the
disappearing infinity in Ueff , which is at θ = 0 for b = a. Then it is better to
consider the previous restrictions on the motion. While considering Euler angles
it is mentioned that usually the domain of θ is considered as [0, π]. However
if we use this interval for θ, Ueff goes to its minimum at θ = 0 and leaves no
turning angle in one side for the symmetric top. Now let us change the interval
of the domain to [−π, π], and leave evaluation of this change to the later. In
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Fig.[26], we also see Ueff plotted for mentioned initial values with extended
domain. It is seen that extended interval provides an effective potential with
two turning angles.
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Figure 27: θ(up left), θ̇(up right), φ̇(down left) and ψ̇(down right) are obtained
from the integration of Eq.[33]. Initial values are same with Fig.[26].

In Fig.[27], we see the results obtained from the integration of Eq.[33]. It
is seen that the first half of the motion starts from θmax = 1.2rad and goes to
θmin = −1.2rad, which is consistent with the effective potential. If we look at θ̇,
it decreases to its minimum at θ = 0. This shows that for this case the symmetric
top approaches to θ = 0 with a negative angular velocity and it should continue
its motion with that angular velocity. If we had kept the domain for θ between
0 and π, then we need to change θ̇ from negative to positive values. Since θ̇
is a continuous quantity, it is better to change the domain of θ to [−π, π] with
keeping in mind that we are not using one to one mapping between coordinate
systems.

If we return to the consideration of f(u); it does not give turning angle
θ = −1.2rad, it gives 0 and 1.2rad. Trigonometric property of cosθ is lost
during the change of variable, and we can not get results corresponding to
extended domain. In this work, in necessary cases we will use extended domain
to analyze the motion. In this case (θ, φ) and (−θ, φ + π) corresponds same
points in xyz coordinate system. For this work it does not cause any trouble;
three dimensional plots will represent the motion without any problem.

If we look at the changes in φ̇ and ψ̇, there is a repeat. This is an expected
result since these two angular velocity are independent of θ̇, and cosθ is even and
sinθ shows itself as a square in related equations. Here we can write φ̇ = a/(1+
cosθ), then as θ goes to zero φ̇ decreases. We can also understand this decrease
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Figure 28: Shapes of the locus on unit sphere. Initial values are same with
Fig.[49].

from conservation of angular momentum by using b = φ̇sin2θ+acosθ, as θ goes
to 0 cosθ increases and φ̇ decreases to obey conservation of angular momentum
in z′-direction. As φ̇ decreases ψ̇ is decreasing. The increase of cosθ is faster
than the decrease in φ̇ then ψ̇ also decreases to obey the conservation of angular
momentum in z-direction, which can be seen from a = (Iz/Ix)(ψ̇ + φ̇cosθ).

Here it is better to mention about one more point. In the sleeping top case,
we claimed that φ̇ becomes irrelevant from the motion. At there, it is irrelevant
because z and z′ are always same. In this case, z and z′ momentarily become
equal and there is a motion which brings conservation of angular momentum.
Then, φ̇ should have some value at θ = 0, which can be found from φ̇ =
a/(1 + cosθ) as a/2 and in this example we have φ̇ = a/2 = 135rad/s.

Three dimensional figures obtained from numerical integration of angular
accelerations are available in Fig.[28]. During numerical integration for very
small values of θ because of the singularity at θ = 0, here and other necessary
cases we have used Eq.[25] and Eq.[26]. The apex of the symmetric top passes
from θ = 0 and makes nearly a loop, however there is a slight difference between
periods of nutation and precession and the symmetric top precesses slightly at
each loop like motion. Other results can be found in appendix, Fig.[49].

In this case, the symmetric top precesses in the forward direction. If both
a and b were negative, then the motion would be similar to this case but the
symmetric top would precess backward. If b = −a, then the infinity of Ueff at
θ = π will disappear and the motion will take place at the bottom including
θ = −π.

In this case, the positive φ̇ causes an inertial torque to rise up the symmetric
top, then it rises and passes from θ = 0 point. Then, the symmetric top falls
from the other side of θ = 0 point and falls till θmax (or -θmax), where it has its
initial angular velocity φ̇. Then the motion repeats itself.

In the previous cases, the structure of effective potential and the conservation
of angular momenta were preventing the symmetric top to pass θ = 0 point.
However, in this case the symmetric top can pass from θ = 0 point since a = b.
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3.10 Other types of motion with pseudo singular points

There are other changes in the motion of the symmetric top when b = a. There
are two main reasons for these; change in Ueff and φ̇. If b = a, the effective
potential becomes

Ueff (θ) =
Ix
2

a2(1− cosθ)
1 + cosθ

+Mglcosθ. (44)

Here, if a is smaller than
√

4Mgl/Ix then there exist a local maximum at

θ = 0, which is equal to Mglb/a (or Mgl). If a is grater than
√

4Mgl/Ix, this
maximum becomes the minimum with the same value, previous case, which is
the motion through pseudo singular points, is an example for such a potential
with minimum Mglb/a.

If such a local maximum exists and E′ is smaller than Mglb/a then we can
obtain regular precession and two turning angles for θ between 0 and π.

The other change is related with φ̇. When b = a, φ̇ becomes

φ̇ =
a

1 + cosθ
. (45)

Here, φ̇ does not change sign and never become zero. Then we can not obtain
cup like motion or looping motion.
•Again let us start with the regular precession. In previous study of the

regular precession the potential and φ̇ were different than in this case. In this
case, if we take derivative of Ueff with respect to θ and equate it to zero we
obtain

0 =

[
Ix
2

2a2

(1 + cosθ)2
−Mgl

]
sinθ. (46)

This time θ = 0 corresponds to unstable equilibrium and θ = π corresponds to
the sleeping top. Here, it is possible to find a minimum for the potential other
than θ = 0 if a <

√
4Mgl/Ix. If a >

√
4Mgl/Ix the minimum of the effective

potential occurs always at θ = 0.
Here, it is also seen that previous strong and weak top definition in terms of

ã are consistent with b = a case.
By using Eq.[45] and Eq.[46], for regular precession φ̇2 is obtained as

φ̇2 =
Mgl

Ix
. (47)

This gives constant φ̇ for regular precession, when a <
√

4Mgl/Ix. φ̇ can have
positive and negative values, positive (negative) one corresponds to positive
(negative) a. By using definition of a and Eq.[45] we obtain ψ̇ as

ψ̇ =
Ix
Iz
φ̇

(
1 + cosθ − Iz

Ix
cosθ

)
. (48)

Then we need to specify either θ0 or ψ̇0 and determine the other one from Eq.[48]
to obtain a regular precession as long as there exists a local maximum. This
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case is simpler than b 6= a case and we can obtain the minimum of the Ueff in
terms of constants in a simple way as

Ueffmin
=

√
Ixa2

2
− (
√
Mgl −

√
Ixa2)2. (49)
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Figure 29: Ueff , E′ (straight black line) Mglb/a (dotted line) and left, f(u)
at right. This case gives regular precession, and initial values for this case as
follows; θ0 = 1.1rad, θ̇0 = 0, ψ̇0 = 10.39rad/s, φ̇ = 22.04rad/s and resulting
E′ = 0.05785J . For this case: b = a = 32.04 and α = 826.4.
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Figure 30: Shapes of the locus on unit sphere for regular precession when b = a.
Initial values are same with the ones given in Fig.[29].

For the symmetric top, that we are considering in this work, φ̇ becomes
22.04rad/s for the precession in the positive direction. If we choose θ = 1.1rad,
then ψ̇ becomes 10.39rad/s. In this case b = a = 32.04 and E′ = Ueffmin =

0.05785 together with θ̇ = 0. In Fig.[29], we see Ueff and f(u). E′ intersects
Ueff at its minimum and the symmetric top regularly precesses around z′-axis.

In Fig.[30], we see results obtained by numerical integration of angular ac-
celeration. The symmetric top precesses in the positive direction. The other
results are available in Fig.[50].

If we had chosen φ̇ as −22.04rad/s, for θ = 1.1rad ψ̇ would be equal to
−10.39rad/s, and the symmetric top would be precessing in the negative direc-
tion. With these negative values a would be negative.
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We have mentioned that if b = −a, then the singularity at θ = π disappears,
however, regular precession is not possible since there is no local maximum at
θ = π.
•Other types of the motion are also possible. If there is a local maximum

and E′ is grater than Ueffmin
and smaller than that local maximum, which is

equal to Mglb/a, then we can obtain two turning angles for θ between 0 and
π. We have seen that φ̇ does not change sign when b = a. Then, in this case
we see only a precession in one direction and the direction of the precession
is determined by the sign of a. Since ψ̇ is small for these configurations, the
precession is faster and we do not see many nutation for one precession period.

If we take θ0 = 1.097rad, φ̇0 = 20.88rad/s and ψ̇0 = 9.824rad/s, then
b = a = 30.4. In our example Mgl = 0.068J . Then together with θ̇0 = 0, E′

becomes 0.05518J which is smaller than Mglb/a. As it is expected from the
sign of a, the precession is in the positive direction. We see Ueff and f(u) in
Fig.[31] with these initial values. We plotted Ueff (θ) with extended interval to
show the difference from the cases with a 6= b. We see two possible interval for θ
from the figure, however they correspond to same interval and it is the result of
taking extended interval. From the effective potential and E′, we can say that
the symmetric top will nutate between two turning angles.
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Figure 31: Ueff , E′ (straight black line), Mglb/a (dotted line) at left, and f(u)
at right right. This case gives a precession in one direction and initial values for
this case as follows; θ0 = 1.097rad, θ̇0 = 0, ψ̇0 = 9.824rad/s, φ̇ = 20.88rad/s and
resulting E′ = 0.05518J . Turning angles for θ are 1.097 and 1.259rad, and the
minimum of Ueff is at 1.182rad. For this case: b = a = 30.40 and α = 788.3.

In Fig.[32], we see change of θ and angular velocities obtained by using
Eq.[33]. We see from the figure that θ changes between two turning angles,
θ̇ have positive and negative values satisfying nutation. φ̇ takes only positive
values as we expected, and ψ̇ changes as φ̇ changes obeying the conservation of
angular momenta which can be seen from a and b. As θ increases φ̇ increases to
obey conservation of angular momentum because of the decrease in cosθ, which
can be understood by using b = φ̇sin2θ + acosθ. ψ̇ increases again because of
the decrease in cosθ, which can be understood from a = (Iz/Ix)(ψ̇ + φ̇cosθ).
Here we should mention that values of b and a are same, but this case is different
than sleeping top; b and a correspond different angular momenta and both are
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Figure 32: θ(up left), θ̇(up right), φ̇(down left) and ψ̇(down right) are obtained
from the integration of Eq.[33]. Initial values are same with Fig.[31].

conserved separately. If we consider fall of the symmetric top, the initial φ̇ is
not enough to satisfy necessary torque and the gravitational torque is dominant.
As the fall continues φ̇ becomes great enough to cause a torque grater than
gravitational one and the symmetric top rises. These repeat again and again as
precession continues.
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Figure 33: Shapes of the locus on unit sphere for precession in one direction
when b = a. Initial values are same with Fig.[31].

In Fig.[33], we see three dimensional figure obtained from the numerical
integration of angular accelerations. It is seen that it precesses away from the
θ = 0 point. The other results are available in appendix, Fig.[51].
•It is better to study two more cases when b = a. In the first one of these

two, we will consider that E′ is equal to the local maximum of Ueff at θ = 0,
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we see such a case in Fig.[34]. From Ueff , it is seen that the turning angles
occur at negative and positive θ values and it is better to extend domain of θ
with remembering that it corresponds double defined points in xyz coordinate
system. If we do not use extended domain while solving system, there can be
a problem at θ = 0 point about which direction the symmetric top will go
at that point. When we use extended domain it continue its motion obeying
conservation of angular momentum, so it is better to use extended domain. We
can say that the symmetric top will oscillate between these two turning angles
while precessing. The existence of precession result with a spiralling motion
while the symmetric top falls from θ = 0 to θ = θmax.
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Figure 34: Ueff , E′ (straight black line), Mglb/a (dotted line) at left, and
f(u) at right. E′ and Mglb/a are overlapped since they are equal. This case
gives spiral like motion, and initial values for this case as follows; θ0 = 1.619rad,
θ̇0 = 0, ψ̇0 = 20.90rad/s, φ̇0 = 31.95rad/s and resulting E′ = 0.06800J . Turning
angles for θ are −1.619 and 1.619rad, and the minimum of Ueff is at 1.182rad.
f(u) has roots at u = −0.04866 and u = 1, corresponding to θ = 1.619 and θ = 0.
For this case constants of the motion are b = a = 30.4 and α = β = 971.4.

We see the results obtained by using Eq.[33] in Fig.[35] for initial values
θ0 = 1.619rad, θ̇0 = 0, φ̇0 = 31.95rad/s and ψ̇0 = 20.90rad/s. With these
initial values b = a = 30.40 and α = β = 971.4. From the figure, we can say
that θ starts with the maximum value and decreases negative of that maximum
value and the symmetric top passes from θ = 0 point.

It is seen from Fig.[34] that when θ is close to zero, θ̇ will be close to zero. So
the symmetric top spends more time at these θ values. Results of this are seen
in Fig.[35]; θ̇, φ̇ and ψ̇ do not change much when θ is close to zero. If we look at
φ̇ as the symmetric top rises (θ decreases), it decreases. But, this decrease is not
enough for fall of the symmetric top; it rises till θ reaching 0 and falls from the
other side. If we consider b = φ̇sin2θ + acosθ; as θ decreases the contribution
from a increases and to obey conservation of the angular momentum in z′-
direction φ̇ should also decrease. If we consider a = (Iz/Ix)(ψ̇ + φ̇cosθ); the
contribution from φ̇ increases since cosθ increases faster, then ψ̇ should also
decrease to obey conservation of the angular momentum in z-direction. The
following part of the motion is something like inverted structure of this as θ
goes to −θmax. After θ reaching −θmax, the above procedure will take place in
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Figure 35: θ(up left), θ̇(up right), φ̇(down left) and ψ̇(down right) are obtained
from the integration of Eq.[33]. Initial values are same with Fig.[34].

the reverse order.
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Figure 36: Shapes of the locus on unit sphere for spiralling motion. Initial
values are same with Fig.[51].

In Fig.[36], we see results obtained from the numerical integration of Eq.s[36].
It is seen that from θ = θmax to 0 the symmetric top makes a spiralling motion.
The other results obtained from integration of angular accelerations can be
found in appendix, Fig[52].

If we consider torque and angular momentum, at the beginning φ̇ causes
an inertial torque grater than the gravitational one and top rises. This inertial
torque is enough to rise the symmetric top to θ = 0 point and then top falls
from other side by the effect of gravitational torque. This fall causes increase of
φ̇ and at θ = θmax the symmetric top starts to rise again. This motion repeats
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itself.
Here, it will be better to consider this case with dissipation. If we put

a spinning gyroscope or symmetric top in the sleeping top position, θ = 0,
its spin will decrease as time passes due to dissipation. If at the beginning
|a| >

√
4Mgl/Ix, small deviations from the sleeping top will result with return

of the symmetric top to the sleeping position. As time passes the spin of the
symmetric top will slow down and |a| will be smaller than

√
4Mgl/Ix. In this

case, the motion will look like b = a and E′ = Mglb/a case, and the symmetric
top will fall slowly with a spiralling motion. This motion can be seen from
gyroscopes. However, the situation for child’s top is a bit different. As child’s
top falls the contact point with the surface changes, when this combines with
impurities we see wobbling motion.
•The last case, that we will consider here is b = a, E′ > Mglb/a and

|a| <
√

4Mgl/Ix. In this case the motion will look like the motion through
pseudo regular points, but in this case we have a bump. In Fig.[37], we see
Ueff together with E′ and f(u) for such a case. From effective potential graph,

if the symmetric top starts its motion from θmax we can say that θ̇ will have
negative values at the beginning to rise the symmetric top. The magnitude of
θ̇ will reach its maximum when Ueff is at the minimum. Then we will see the

effect of the bump; the magnitude of θ̇ will decrease till θ reaching to 0. At
θ = 0, the symmetric top will fall to the other side with its negative θ̇ value till
θ reaching −θmax. Then the motion will take place in the reverse order.
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Figure 37: Ueff , E′ (straight black line), Mglb/a (dotted line) at left, and f(u)
at right. This case gives a motion over a bump, and initial values for this case as
follows; θ0 = 1.770rad, θ̇0 = 0, ψ̇0 = 26.85rad/s, φ̇ = 37.91rad/s and resulting
E′ = 0.08318. Turning angles for θ are −1.770 and 1.770rad, and the minimum
of Ueff is at 1.182rad. The roots of f(u) occurs at u = −0.1981 and u = 1
corresponding to θ = 1.770rad and θ = 0. Constants of motion: b = a = 30.40
and α = 1188.

In Fig.[38], we see the results obtained by using Eq.[33] for initial values
θ0 = 1.770rad, θ̇0 = 0, ψ̇0 = 26.85rad/s and φ̇ = 37.91rad/s. We see that the
change in θ̇ at the local maximum of the effective potential does not effect too
much φ̇ and ψ̇. Change in φ̇ and ψ̇ is similar to the motion through pseudo
singular points case. Explanations will be similar to that case.
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Figure 38: θ(up left), θ̇(up right), φ̇(down left) and ψ̇(down right) are obtained
from the integration of Eq.[33]. Initial values are same with Fig.[31].

In Fig.[39], we see results obtained by numerical integration of angular ac-
celerations. The symmetric top goes to θ = 0 point after making a curve and
then falls from the other side, this repeats itself and at each case it passes from
θ = 0 point with different crossings.The other results are available in appendix,
Fig.[53].
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Figure 39: Shapes of the locus on unit sphere for motion over the bump. Initial
values are same with Fig.[37].
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4 Summary

We have studied the symmetric top problem in detail. This study showed that
there are many previously unnoticed interesting situation related with the mo-
tion of the symmetric top. We also have learned that the inertial torque arising
from the non-inertial structure of the spinning symmetric top rises it. This in-
ertial torque shows itself in the effective potential via constants a and b, which
corresponds conserved angular momenta in z and z′-direction respectively. Af-
ter writing effective potential we see that θ changes mostly between two turning
angles in accordance with conservation of energy.

The inertial torque originated from ~w×~L term in Euler equations is responsi-
ble from both precession and nutation. A component of it in z′-direction causes
precession, and an other component in the direction of the line of nodes causes
nutation. These components can change throughout the motion, depending on
the content of the ~w × ~L. In the precession θ̇ plays a crucial role and in the
nutation φ̇ plays a crucial role.

We also have seen that conservation of angular momenta is vital for under-
standing the motion of the symmetric top. It can keep the symmetric top from
θ = 0 point, or force it to pass from that point depending on values of angular
momenta. We have seen that conservation of angular momentum can change
spin direction of the symmetric top in an unimaginable way.
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5 Appendix

Graphs for θ, φ, ψ, θ̇, φ̇ and ψ̇ for the above cases, these are obtained from the
numerical solutions of the angular accelerations.
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Figure 40: Regular precession with single φ̇; θ (up left), φ (up middle), ψ
(up right), θ̇ (down left), φ̇ (down middle) and ψ̇ (down right) for initial values
θ0 = 2.269rad, φ0 = 0, ψ0 = 0, θ̇0 = 0, φ̇0 = 36.36rad/s and ψ̇0 = 17rad/s.
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Figure 41: Regular precession with two φ̇; θ (up left), φ (up middle), ψ (up
right), θ̇ (down left), φ̇ (down middle) and ψ̇ (down right) for initial values θ0 =
1.1rad, φ0 = 0, ψ0 = 0, θ̇0 = 0, φ̇0 = −309.2rad/s and ψ̇0 = 50rad/s.
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Figure 42: Regular precession with two φ̇; θ (up left), φ (up middle), ψ (up
right), θ̇ (down left), φ̇ (down middle) and ψ̇ (down right) for initial values θ0 =
1.1rad, φ0 = 0, ψ0 = 0, θ̇0 = 0, φ̇0 = 6.061rad/s and ψ̇0 = 50rad/s.
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Figure 43: Cup like motion, changes in θ (up left), φ (up middle), ψ (up right),
θ̇ (down left), φ̇ (down middle) and ψ̇ (down right) as time changes for initial
values θ0 = 0.175rad, φ0 = 0, ψ0 = 0, θ̇0 = 0, φ̇0 = 0 and ψ̇0 = 100rad/s.
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Figure 44: Wavy precession, changes in θ (up left), φ (up middle), ψ (up right), θ̇
(down left), φ̇ (down middle) and ψ̇ (down right) as time changes for initial values
θ0 = 0.2056rad, φ0 = 0, ψ0 = 0, θ̇0 = 0, φ̇0 = 0.8968rad/s and ψ̇0 = 148.3rad/s.
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Figure 45: Looping motion, changes in θ (up left), φ (up middle), ψ (up right), θ̇
(down left), φ̇ (down middle) and ψ̇ (down right) as time changes for initial values
θ0 = 0.270rad, φ0 = 0, ψ0 = 0, θ̇0 = 0rad/s, φ̇0 = 10rad/s and ψ̇0 = 100rad/s.
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Figure 46: Precession with single nutation, changes in θ (up left), φ (up middle),
ψ (up right), θ̇ (down left), φ̇ (down middle) and ψ̇ (down right) as time changes
for initial values θ0 = 1.310rad, φ0 = 0, ψ0 = 0, θ̇0 = 0rad/s, φ̇0 = 190rad/s and
ψ̇0 = 100rad/s.
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Figure 47: Motion when |a| < |b| and Ueffmin < E′ < Mglb/a, changes in
θ (up left), φ (up middle), ψ (up right), θ̇ (down left), φ̇ (down middle) and ψ̇
(down right) as time changes for initial values θ0 = 0.9225rad, φ0 = 0, ψ0 = 0,
θ̇0 = 0rad/s, φ̇0 = 22.21rad/s and ψ̇0 = 1.225rad/s.

50



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0  0.5  1  1.5  2

θ
 (

ra
d
)

t (s)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  0.5  1  1.5  2

φ
 (

ra
d
)

t (s)

-1

 0

 1

 2

 3

 4

 5

 6

 7

 0  0.5  1  1.5  2

ψ
 (

ra
d
)

t (s)

-25

-20

-15

-10

-5

 0

 5

 10

 15

 20

 25

 0  0.5  1  1.5  2

θ.  (
ra

d
/s

)

t (s)

 10

 15

 20

 25

 30

 35

 40

 45

 0  0.5  1  1.5  2

φ.  (
ra

d
/s

)

t (s)

-30

-20

-10

 0

 10

 20

 30

 40

 0  0.5  1  1.5  2

ψ.
 (

ra
d
/s

)

t (s)

Figure 48: Motion with same precessional angular velocity at extrema, changes
in θ (up left), φ (up middle), ψ (up right), θ̇ (down left), φ̇ (down middle) and ψ̇
(down right) as time changes for initial values θ0 = 0.04097rad, φ0 = 0, ψ0 = 0,
θ̇0 = 0rad/s, φ̇0 = 41.51rad/s and ψ̇0 = −26.59rad/s.
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Figure 49: Motion through pseudo singular points, changes in θ (up left), φ (up
middle), ψ (up right), θ̇ (down left), φ̇ (down middle) and ψ̇ (down right) as time
changes for initial values θ0 = 1.200rad, φ0 = 0, ψ0 = 0, θ̇0 = 0, φ̇0 = 198.2rad/s
and ψ̇0 = 100rad/s.
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Figure 50: Regular precession when b = a , changes in θ (up left), φ (up middle),
ψ (up right), θ̇ (down left), φ̇ (down middle) and ψ̇ (down right) as time changes
for initial values θ0 = 1.1rad, φ0 = 0, ψ0 = 0, θ̇0 = 0, φ̇0 = 22.04rad/s and
ψ̇0 = 10.39rad/s.
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Figure 51: Precession in one direction when b = a, changes in θ (up left), φ
(up middle), ψ (up right), θ̇ (down left), φ̇ (down middle) and ψ̇ (down right)
as time changes for initial values θ0 = 1.097rad, φ0 = 0, ψ0 = 0, θ̇0 = 0rad/s,
φ̇0 = 20.88rad/s and ψ̇0 = 9.824rad/s.
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Figure 52: Spiralling motion, changes in θ (up left), φ (up middle), ψ (up
right), θ̇ (down left), φ̇ (down middle) and ψ̇ (down right) as time changes for
initial values θ0 = 1.619rad, φ0 = 0, ψ0 = 0, θ̇0 = 0, φ̇0 = 31.95rad/s and
ψ̇0 = 20.90rad/s.
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Figure 53: Motion over the bump, changes in θ (up left), φ (up middle), ψ
(up right), θ̇ (down left), φ̇ (down middle) and ψ̇ (down right) as time changes
for initial values θ0 = 1.770rad, φ0 = 0, ψ0 = 0, θ̇0 = 0, φ̇0 = 37.91rad/s and
ψ̇0 = 26.85rad/s.
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