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Abstract

The curvature of a closed surface can lead to fractional dimension. In this paper, the
properties of the 2-sphere surface of a three-dimensional ball and the 2.z-dimensional
surface of a three-dimensional fractal set are considered. Tessellation is used to approxi-
mate each surface, primarily because the 2.z-dimensional surface of a three-dimensional
fractal set is otherwise non-differentiable (having no well-defined surface normals).

1 Overview

Unlike in traditional geometry where dimension is an integer, fractional (non-integer) di-
mension occurs in fractal geometry. In fractal geometry, there are currently many ways to
calculate the dimension of a surface [1, 2]. This paper uses a new method of calculating the
fractional dimension of a surface — it is curvature that leads to this fractional dimension.

In this paper we will focus on the tessellation of closed surfaces. For instance, Marching
Cubes [3, 4] can be used to generate triangular tessellations (meshes), where dimension
D € (2.0,3.0).

We will focus on the difference between the curvature and dimension of a 2-sphere and
the 2.x-dimensional surface of a three-dimensional fractal set. We will generate both a 2-
sphere and the 2.z-dimensional surface of a three-dimensional fractal set by using iterative
quaternion equations. For example, a 2-sphere is generated by the iterative quaternion Julia

set equation
7 =7*+C, (1)

but where C' = 0.0,0.0,0.0,0.0. Also for example, the 2.z-dimensional surface of a three-
dimensional fractal set is generated by the iterative quaternion equation

Z = Zcos(Z). (2)

See [5] for information on how to perform quaternion multiplication, addition, cos, etc.
In the end, some notes are given.
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2 The tessellation of a closed surface

Approximating the surface of a three-dimensional shape as a mesh allows us to calculate the
surface’s dimension D € (2.0, 3.0). This includes approximation of both a 2-sphere and the
2.z-dimensional surface of a three-dimensional fractal set.
First we calculate, for each triangle, the average dot product of the triangle’s face normal
n; and its three neighbouring triangles’ face normals 01, 03, 03:
ni - 01+ N; - 02+ 1, 03

d; = . € (—1.0,1.0]. (3)

Because we assume that there are three neighbours per triangle, the mesh must be closed
(no cracks or holes, precisely two triangles per edge). The reasion why the value —1.0 is not
achievable is because that would lead to intersecting triangles.
Then we calculate the normalized measure of curvature:
1—d;

ki = —5— €[0.0,10). (4)

Once k; has been calculated for all triangles, we can then calculate the average normalized
measure of curvature K, where ¢ is the number of triangles in the mesh:

t
1 ki+ ko + ...+ Ky
K=- ki = € (0.0,1.0). 5
>3 : 0.0.10) 5)
The reason why the value 0.0 is not achievable is because we are dealing with a closed surface,
and so there’s bound to be some curvature.

The dimension of the closed surface is:

D=2+K €(20,3.0). (6)

As far as we know, this method of calculating the dimension of a closed surface is new
[6, 7]. The entire C++ code for generating a mesh can be found at [8]. The entire C++
code for calculating a mesh’s dimension can be found at [9].

3 Vanishing versus non-vanishing curvature

Where r € [2,00) is the integer sampling resolution, gm.x € (—00,00) is the sampling grid
maximum extent, gmin € (—00,00) is the sampling grid minimum extent, and gmax > Gmin,
the Marching Cubes step size is:

9max — Ymin
E = —— . ()O .

In this paper gmax = 1.5, gmin = —1.5, and r is variable.
For a 2-sphere, the local curvature all but vanishes as ¢ decreases (as r increases):

lim K(¢) = 0.0. (8)

£—0.0



This results in a dimension of practically (but never quite) 2.0, which is to be expected from
a non-fractal surface. See Figures 1 - 3.

On the other hand, for the 2.2-dimensional surface of a three-dimensional fractal set, the
local curvature does not vanish as ¢ decreases:

lim K(¢) # 0.0. (9)
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This results in a dimension considerably greater than 2.0, but not equal to or greater than
3.0, which is to be expected from a fractal surface. See Figures 4 - 7.

4 Notes

The minimum Marching Cubes step size, in real life, is the Planck length /p.

Marching Squares [10, 11, 12] can be used to generate closed line paths, where dimension
D € (1.0,2.0). See Figures 8 - 10 for some examples of a line path. These figures might be
helpful if there is difficulty envisioning the curvature in the case of Marching Cubes.

References

[1] http://paulbourke.net/fractals/fracdim/
[2] https://en.wikipedia.org/wiki/Fractal_dimension

[3] Lorensen, W. E.; Cline, Harvey E. (1987). ”Marching cubes: A high resolution 3d surface
construction algorithm”. ACM Computer Graphics. 21 (4): 163-169

[4] http://paulbourke.net/geometry/polygonise/
[5] http://www.theworld.com/~sweetser/quaternions/intro/tools/tools.html

[6] Mandelbrot, B. (1967). "How Long is the Coast of Britain? Statistical Self-Similarity
and Fractional Dimension”. Science. 156 (3775): 636-S.

[7] Mandelbrot, B. (1982). ”The Fractal Geometry of Nature”. ISBN 978-0716711865.
[8] https://github.com/sjhalayka/marching_cubes
[9] https://github.com/sjhalayka/meshdim

[10] Maple, C. (2003). Geometric design and space planning using the marching squares and
marching cube algorithms. Proc. 2003 Intl. Conf. Geometric Modeling and Graphics. pp.
90-95

[11] https://en.wikipedia.org/wiki/Marching_squares

[12] https://github.com/sjhalayka/Marching-Squares



Figure 1: Low resolution (r = 10) surface for the iterative quaternion equation is Z = Z2.
The surface’s dimension is 2.02.

Figure 2: Medium resolution (r = 100) surface for the iterative quaternion equation is
7 = 7?. The surface’s dimension is 2.06.

Figure 3: High resolution (r = 1000) surface for the iterative quaternion equation is Z = Z2.
The surface’s dimension is practically 2.0.



Figure 4: Low resolution (r = 10) surface for the iterative quaternion equation is Z =
Z cos(Z). The surface’s dimension is 2.05.

Figure 5: Medium resolution (r = 100) surface for the iterative quaternion equation is
Z = Zcos(Z). The surface’s dimension is 2.11.

Figure 6: High resolution (r = 1000) surface for the iterative quaternion equation is Z =
Z cos(Z). The surface’s dimension is 2.08.



Figure 7: A two-dimensional slice of the iterative quaternion equation Z = Z cos(Z), showing
the fractal nature of the set.



Figure 8: Example input (a two-dimensional greyscale image, consisting of pixels) and output
(a 1.z-dimensional closed set of line segments) of the Marching Squares algorithm, approx-
imating a 1-sphere (a circle), where sampling resolution is r = 8. Note that for Marching
Cubes, the input is a three-dimensional ‘greyscale image’, consisting of voxels, and the output
is a 2.xz-dimensional closed set of triangles.
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Figure 9: Illustrated is a section of a closed line path, with surface normals. The average
dot product of neighbouring line segments is d; = 0.0. This leads to a normalized measure
of curvature k; = (1 — d;)/2 = 0.5, which in turn leads to an average normalized measure of
curvature K = 0.5. The dimension is D =1+ K = 1.5.
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Figure 10: A section of a closed line path as it goes from dimension 1.0 (at top) to 1.9999
(at bottom). In the end, where the dimension is 1.9999, the result is practically a rectangle.
The reason why the dimension cannot be 2.0 is because that would lead to intersecting line
segments.




