Beal Conjecture Convincing Proof

"5% of the people think; 10% of the people think that they think; and the other 85% would rather die than think."----Thomas Edison

"The simplest solution is usually the best solution"---Albert Einstein

Abstract

Using a direct construction approach, the author proved the original Beal conjecture that if $A^x + B^y = C^z$, where A, B, C, x, y, z are positive integers and x, y, z > 2, then A, B and C have a common prime factor. By applying numerical examples,, it is shown that one can begin with the sum $A^x + B^y$ and change this sum to a product and then to the single power, C^z . It is concluded that it is necessary that the sum $A^x + B^y$ has a common prime factor before C^z can be derived. It was shown that if $A^x + B^y = C^z$, then A, B and C have a common prime factor.

Beal Conjecture Convincing Proof

Process and Requirements Involved in Changing the Sum of Two Powers to a Single Power

The necessary requirement is that the two powers must have a common power. If this requirement is not satisfied, the sum of the two powers cannot be changed to a product. and to a single power.

Step 1: Change the sum of the two powers to a product. If the two powers do not have a common power. (and consequently, a common prime factor). you cannot proceed. Any product obtained also has the same common prime factor as the sum of the powers

Step 2: Change the product to a single power.

Example 1: $2^3 + 2^3 = 2^4$ $A = 2, B = 2, C = 2, x = 3, y = 3, z = 4; A^x + B^y = C^z$. Change the sum $2^3 + 2^3$ to a single power of 2.

The 2^4 must have a common factor as 2^3 and 2^3 , from which it was obtained.. From above, the common prime factor is 2,

Example 2 $7^6 + 7^7 = 98^3$	$A = 7, B = 7, C = 98, x = 6, y = 7, z = 3, A^{x} + B^{y} = C^{z}$
Change the sum $7^6 + 7^7$ to	a single power of 98.

Factor out the greatest common factor.	
7 ⁶ + 7 ⁷	
= 7 ⁶ (1 + 7) (G)<	This step requires that 7^6 and 7^7
$=7^{6}(8)$	have a common prime factor
$=7^{6}(2^{3})$	
$=(7^2)^3(2^3)$	
$=(7^2 \cdot 2)^3$	It is interesting how the " $(1+7)$ " provided
$=(49 \cdot 2)^3$	the much needed 2^3 .
$=(98)^3$	
$= 98^{3}$	

Since 98^3 was obtained from the sum $7^6 + 7^7$, which has a common prime factor. 7, 98^3 has the same common prime factor, 7, Therefore 7^6 , 7^7 and 98^3 have the common prime factor of 7.

Example 3: $3^3 + 6^3 = 3^5$ $A = 3, B = 6, C = 3, x = 3, y = 3, z = 5, A^x + B^y = C^z$		
Change the sum $3^3 + 6^3$ to a single power of 3		
Factor out the greatest common factor.		
$3^3 + 6^3$		
$= 3^3 + (3 \cdot 2)^3$		
$= 3^3 + 3^3 \cdot 2^3$	This step requires that 3^3 and 6^3	
$= 3^{3}(1+2^{3})$ (G)<	have a common prime factor	
$= 3^3(1+8)$		
$= 3^{3}(9)$	It is interesting how the " $(1+8)$ " provided	
$= 3^3 \bullet 3^2$	the much needed 3^2 .	
= 3 ⁵		
Since 3^5 was obtained from the sum $3^3 + 6^3$, which has a common prime factor. 3,		
3^5 has the same common prime factor, 3,		
Example 4 $2^9 + 8^3 = 4^5$ $A = 2, B = 8,$		
Change the sum $2^9 + 8^3$ to a single power	of 4.	
Factor out the greatest common factor.		
$2^9 + 8^3$		
$= 2^9 + (2^3)^3$		
$=2^{9}+2^{9}$	This step requires that 2^9 and 8^3	
$= 2^{9}(1+1)$ (G)<	have a common prime factor	
$=2^{9} \cdot 2$		
$=2^{10}$	It is interesting how the $"(1+1)"$ provided	
$=(2^2)^5$	the much needed 2.	
$=(4)^5$		
= 45		
Since 4^5 was obtained from the sum $2^9 + 8^3$, which has a common prime factor. 2,		
4^5 has the same common prime factor, 2,		
Example 5 $34^5 + 51^4 = 85^4$ $A = 34, B = 51, C = 85, x = 5, y = 4, z = 4, A^x + B^y = C^z$		

I	, , , , , , , ,	
Change the sum $34^5 + 51^4$ to a single power of 85.		
Factor out the greatest common factor.		
$34^5 + 51^4$		
$= (17 \bullet 2)^5 + (17 \bullet 3)^4$		
$= 17^5 \cdot 2^5 + 17^4 \cdot 3^4$	This stop requires that 245 and 514	
$= 17^4 (17 \cdot 2^5 + 3^4)$ (G) <	This step requires that 34 ⁵ and 51 ⁴ have a common prime factor	
$= 17^4 (17 \bullet 32 + 81)$		
$= 17^{4}(625)$	It is interesting how the	
$= 17^{4}(5^{4})^{2}$	$17 \cdot 2^5 + 3^4$ provided the much needed	
$=(17 \bullet 5)^4$	magic	
= 854	$625 = 5^4$	

Since 85^4 was obtained from 34^5 and 51^4 which have the common prime factor, 17, 85^4 has the same common factor, 17.

Example 6: $3^9 + 54^3 = 3^{11}$ $A = 3, B = 54, C = 3, x = 9, y = 3, z = 11, A^x + B^y = C^z$				
Change the sum $3^9 + 54^3$ to a single power of 3.				
Factor out the greatest common factor.				
$3^9 + 54^3$				
$= 3^9 + (9 \bullet 6)^3$				
$= 3^9 + (3 \cdot 3 \cdot 3 \cdot 2)^3$				
$= 3^9 + (3^3 \cdot 2)^3$				
$= 3^9 + 3^9 \cdot 2^3$	This step requires that 3^9 and 54^3			
$= 3^{9}(1+2^{3})$ (G) <	have a common prime factor			
$=3^{9}(1+8)$				
$=3^{9}(9)$	It is interesting how the $1 + 2^3$ provided the much needed 9.			
$= 3^9 \cdot 3^2$				
= 3 ¹¹				

Since 3^{11} was obtained from 3^9 and 54^3 which have the common prime factor, 3, 3^{11} has the common factor 3.

Example 7: $33^5 + 66^5 = 33^6$ $A = 33, B = 66, C = 33, x = 5, y = 5, z = 6, A^x + B^y = C^z$ Change the sum $33^5 + 66^5$ to a single power of 33..

U	
Factor out the greatest common factor.	
$33^5 + 66^5$	
$= (11 \bullet 3)^5 + (11 \bullet 2 \bullet 3)^5$	
$= 11^5 \cdot 3^5 + 11^5 \cdot 2^5 \cdot 3^5$	This step requires that 33^5 and 66^5
$= 11^5 \cdot 3^5(1+2^5)$ (G) <	have a common prime factor
$=(11 \cdot 3)^5(1+2^5)$	-
$= 33^{5}(33)$	It is interesting how the $1 + 2^5$ provided
= 33 ⁶	the much needed 33

Similary, as from above, 33⁶ has the common prime factors 3 and 11

Proof and Conclusion

Based on the above examples, (Examples 1-7). it can be observed that A and B must have a common factor (a prime factor), otherwise, the sum $A^x + B^y$ cannot be changed to a product such that A, B, x, y are positive integers and x, y, > 2, and subsequently to a single power of C. Step (G) in each example requires that A and B have a common power. Since C is derived from $A^x + B^y$, C will have the same common factor as $A^x + B^y$, Therefore, without $A^x + B^y$ with a common factor, there would be no C. Note in the examples that C is derived solely from the sum $A^x + B^y$. Thus to derive C, A and B must have a common prime factor, and if C is derived from $A^x + B^y$ with a common prime factor, C will also have the same common prime factor. Therefore if $A^x + B^y = C^z$, where A, B, C, x, y, z are positive integers and x, y, z > 2, then A, B and C have a common prime factor.

PS

Other proofs of Beal Conjecture by the author are at viXra:1702.0331; viXra:1609.0383, viXra:1609.0157. Adonten