Beal Conjecture Convincing Proof

"5% of the people think; 10% of the people think that they think; and the other 85% would rather die than think."----Thomas Edison

"The simplest solution is usually the best solution"---Albert Einstein

Abstract

Using a direct construction approach, the author proved the original Beal conjecture that if $A^x + B^y = C^z$, where A, B, C, x, y, z are positive integers and x, y, z > 2, then A, B and C have a common prime factor. By applying numerical examples,, it is shown that one can begin with the sum $A^x + B^y$ and change this sum to a product and then to the single power, C^z . It is concluded that it is necessary that the sum $A^x + B^y$ has a common prime factor before C^z can be derived. It was shown that if $A^x + B^y = C^z$, then A, B and C have a common prime factor.

Beal Conjecture Convincing Proof

Process and Requirements Involved in Changing the Sum of Two Powers to a Single Power

The necessary requirement is that the two powers must have a common power. If this requirement is not satisfied, the sum of the two powers cannot be changed to a product. and to a single power.

Step 1: Change the sum of the two powers to a product. If the two powers do not have a common power. (and consequently, a common prime factor). you cannot proceed. Any product obtained also has the same common prime factor as the sum of the powers

Step 2: Change the product to a single power.

Example 1: $2^3 + 2^3 = 2^4$ $A = 2, B = 2, C = 2, x = 3, y = 3, z = 4; A^x + B^y = C^z$

Change the sum $2^3 + 2^3$ to a single power of 2.

Factor out the greatest common factor.

Note that if $2^3 + 2^3$ did not have any common factor, one could not factor, and one will not be able write the sum as a product and subsequently change the product to power form.

This step requires that 2^3 and 2^3 have a common prime factor

It is interesting how the "(1+1)" provided the much needed 2.

The 2^4 must have a common factor as 2^3 and 2^3 , from which it was obtained.. From above, the common prime factor is 2,

Example 2 $\boxed{7^6 + 7^7 = 98^3}$ $A = 7, B = 7, C = 98, x = 6, y = 7, z = 3, A^x + B^y = C^z$

Change the sum $7^6 + 7^7$ to a single power of 98.

Factor out the greatest common factor.

 $= (98)^3$ = 98^3

This step requires that 76 and 77 have a common prime factor

It is interesting how the "(1+7)" provided the much needed 2^3 .

Since 98^3 was obtained from the sum $7^6 + 7^7$, which has a common prime factor. 7, 98^3 has the same common prime factor, 7, Therefore 7^6 , 7^7 and 98^3 have the common prime factor of 7.

2

Example 3: $3^3 + 6^3 = 3^5$ A = 3, B = 6, C = 3, x = 3, y = 3, z = 5, $A^x + B^y = C^z$ Change the sum $3^3 + 6^3$ to a single power of 3..

This step requires that 3³ and 6³ have a common prime factor

It is interesting how the "(1+8)" provided the much needed 3^2 .

Since 3^6 was obtained from the sum $3^3 + 6^3$, which has a common prime factor. 3, 3^6 has the same common prime factor, 3,

Example 4 $2^9 + 8^3 = 4^5$ A = 2, B = 8, C = 4, x = 9, y = 3, z = 5, $A^x + B^y = C^z$ Change the sum $2^9 + 8^3$ to a single power of 4.

= 45

This step requires that 29 and 83 have a common prime factor

It is interesting how the "(1+1)" provided the much needed 2.

Since 3^6 was obtained from the sum $3^3 + 6^3$, which has a common prime factor. 3, 3^6 has the same common prime factor, 3,

Example 5 $34^5 + 51^4 = 85^4$ A = 34, B = 51, C = 85, x = 5, y = 4, z = 4, $A^x + B^y = C^z$ Change the sum $34^5 + 51^4$ to a single power of 85.

This step requires that 34⁵ and 51⁴ have a common prime factor

It is interesting how the $\underbrace{17 \cdot 2^5 + 3^4}_{\text{magic}}$ provided the much needed $\underbrace{625 = 5^4}$

Since 85^4 was obtained from 34^5 and 51^4 which have the common prime factor, 17, 85^4 has the same common factor, 17.

Example 6:
$$3^9 + 54^3 = 3^{11}$$
 $A = 3$, $B = 54$, $C = 3$, $x = 9$, $y = 3$, $z = 11$, $A^x + B^y = C^z$ Change the sum $3^9 + 54^3$ to a single power of 3.

Since 3^{11} was obtained from 3^9 and 54^3 which have the common prime factor , 3, 3^{11} has the common factor 3.

Example 7:
$$33^5 + 66^5 = 33^6$$
 $A = 33$, $B = 66$, $C = 33$, $x = 5$, $y = 5$, $z = 6$, $A^x + B^y = C^z$ Change the sum $33^5 + 66^5$ to a single power of 33 ..

Factor out the greatest common factor.	
$33^5 + 66^5$	
$= (11 \cdot 3)^5 + (11 \cdot 2 \cdot 3)^5$	
$=11^5 \cdot 3^5 + 11^5 \cdot 2^5 \cdot 3^5$	This step requires that 335 and 665
$=11^5 \cdot 3^5(1+2^5)$ (G) <	This step requires that 33 ⁵ and 66 ⁵ have a common prime factor
$= (11 \cdot 3)^5 (1 + 2^5)$	-
$=33^{5}(33)$	It is interesting how the $1 + 2^5$ provided
= 336	the much needed 33

Similary, as from above, 336 has the common prime factors 3 and 11

Proof and Conclusion

Based on the above examples, (Examples 1-7). it can be observed that A and B must have a common factor (a prime factor), otherwise, the sum $A^x + B^y$ cannot be changed to a product such that A, B, C, x, y, z are positive integers and x, y, z > 2, and subsequently to a single power of C. Step (G) in each example requires that A and B have a common power. Since C is derived from $A^x + B^y$, C will have the same common factor as $A^x + B^y$, Therefore, without $A^x + B^y$ with a common factor, there would be no C. Note in the examples that C is derived solely from the sum $A^x + B^y$. Thus to derive C, A and B must have a common prime factor, and if C is derived from $A^x + B^y$ with a common prime factor, C will also have the same common prime factor. Therefore if $A^x + B^y = C^z$, where A, B, C, x, y, z are positive integers and x, y, z > 2, then A, B, C, x, y, z are positive integers and x, y, z > 2, then A, B, C, x, y, z are positive integers and x, y, z > 2, then

PS

Other proofs of Beal Conjecture by the author are at viXra:1702.0331; viXra:1609.0383, viXra:1609.0157.

Adonten