Beal Conjecture Original Proved

"5% of the people think; 10% of the people think that they think; and the other 85% would rather die than think."----Thomas Edison

"The simplest solution is usually the best solution"---Albert Einstein

Abstract

Using a direct construction approach, the author proved the original Beal conjecture that if $A^x + B^y = C^z$, where A, B, C, x, y, z are positive integers and x, y, z > 2, then A, B and C have a common prime factor. By applying numerical examples,, it is shown that one can begin with the sum $A^x + B^y$ and change this sum to a product and then to the single power, C^z . It is concluded that it is necessary that the sum $A^x + B^y$ has a common prime factor before C^z can be derived. It was shown that if $A^x + B^y = C^z$, then A, B and C have a common prime factor.

Beal Conjecture Original Proved

Process and Requirements Involved in Changing

the Sum of Two Powers to a Single Power

The necessary requirement is that the two powers must have a common power. If this requirement is not satisfied, the sum of the two powers cannot be changed to a product. and to a single power.

Step 1: Change the sum of the two powers to a product. If the two powers do not have a common power. (and consequently, a common prime factor). you cannot proceed. Any product obtained also has the same common prime factor as the sum of the powers

Step 2: Change the product to a single power.

Example 1: $2^3 + 2^3 = 2^4$

Change the sum $2^3 + 2^3$ to a single power of 2.

Factor out the greatest common factor. $2^3 + 2^3$ $= 2^3(1+1)$ (G) < $= 2^3(2)$ $= 2^4$ Note that if $2^3 + 2^3$ did not have any common factor, one could not factor, and one will not be able write the sum as a product and subsequently change the product to	This step requires that 2 ³ and 2 ³ have a common prime factor It is interesting how the "(1+1)" provided the much needed 2.
and subsequently change the product to power form.	

The 2^4 must have a common factor as 2^3 and 2^3 , from which it was obtained. From above, the common prime factor is 2,

Example 2	$7^6 + 7^7 = 98^3$
-----------	--------------------

Change the sum $7^6 + 7^7$ to a single power of 98.

Factor out the greatest common factor.

detor out the greatest common ractor.	
$7^{6} + 7^{7}$ = $7^{6}(1+7)$ (G)< = $7^{6}(8)$	This step requires that 7^6 and 7^7 have a common prime factor
$= 7^{6}(2^{3})$ = (7 ²) ³ (2 ³) = (7 ² • 2) ³ = (49 • 2) ³	It is interesting how the " $(1+7)$ " provided the much needed 2^3 .
$= (98)^3$ = 98 ³	

Since 98^3 was obtained from the sum $7^6 + 7^7$, which has a common prime factor. 7, 98^3 has the same common prime factor, 7, Therefore 7^6 , 7^7 and 98^3 have the common prime factor of 7.

Example 3: $3^3 + 6^3 = 3^5$	
Change the sum $3^3 + 6^3$ to a single power	of 3
Factor out the greatest common factor.	
$3^3 + 6^3$	
$= 3^3 + (3 \cdot 2)^3$	
$= 3^3 + 3^3 \cdot 2^3$	This step requires that 3^3 and 6^3
$= 3^{3}(1+2^{3})$ (G)<	have a common prime factor
$= 3^3(1+8)$	_
$=3^{3}(9)$	It is interesting how the " $(1+8)$ " provided
$= 3^3 \cdot 3^2$	the much needed 3^2 .
= 3 ⁵	

Since 3^6 was obtained from the sum $3^3 + 6^3$, which has a common prime factor. 3, 3^6 has the same common prime factor, 3,

Example 4 $2^9 + 8^3 = 4^5$

Change the sum $2^9 + 8^3$ to a single power of 4.

Factor out the greatest common factor.	
$2^9 + 8^3$	
$= 2^9 + (2^3)^3$	
$= 2^9 + 2^9$	This step requires that 2^9 and 8^3
$= 2^{9}(1+1)^{5}$ (G)<	have a common prime factor
$= 2^9 \bullet 2$	-
$= 2^{10}$	It is interacting how the $(1 + 1)$ provided
$=(2^2)^5$	It is interesting how the " $(1+1)$ " provided the much needed 2.
$=(4)^5$	_
= 4 ⁵	

Since 3^6 was obtained from the sum $3^3 + 6^3$, which has a common prime factor. 3, 3^6 has the same common prime factor, 3,

Example 5 $34^5 + 51^4 = 85^4$

Change the sum $34^5 + 51^4$ to a single power of 85.

to a single power	
Factor out the greatest common factor.	
$34^5 + 51^4$	
$= (17 \bullet 2)^5 + (17 \bullet 3)^4$	
$= 17^5 \cdot 2^5 + 17^4 \cdot 3^4$	This stop requires that 245 and 514
$= 17^4 (17 \bullet 2^5 + 3^4)$ (G) <	This step requires that 34^5 and 51^4 have a common prime factor
$= 17^4 (17 \bullet 32 + 81)$	
$=17^{4}(625)$	It is interesting how the
$=17^{4}(5^{4})^{2}$	$17 \cdot 2^5 + 3^4$ provided the much needed
$=(17 \bullet 5)^4$	magic
= 85 ⁴	$625 = 5^4$

Since 85^4 was obtained from 34^5 and 51^4 which have the common prime factor, 17, 85^4 has the same common factor, 17.

Example 6: $3^9 + 54^3 = 3^{11}$	
Change the sum $3^9 + 54^3$ to a single power	r of 3.
Factor out the greatest common factor.	
$3^9 + 54^3$	
$= 3^9 + (9 \cdot 6)^3$	
$= 3^9 + (3 \cdot 3 \cdot 3 \cdot 2)^3$	
$= 3^9 + (3^3 \cdot 2)^3$	
$= 3^9 + 3^9 \cdot 2^3$	This step requires that 3^9 and 54^3
$= 3^{9}(1+2^{3})$ (G) <	have a common prime factor
$=3^{9}(1+8)$	$1 + 1 + 1 + 1 + 2^3$
$= 3^{9}(9)$	It is interesting how the $1+2^3$
$= 3^9 \cdot 3^2$	provided the much needed 9.
= 3 ¹¹	

Since 3^{11} was obtained from 3^9 and 54^3 which have the common prime factor, 3, 3^{11} has the common factor 3.

Example 7: $33^5 + 66^5 = 33^6$	
Change the sum $33^5 + 66^5$ to a single power	of 33
Factor out the greatest common factor.	
$33^5 + 66^5$	
$= (11 \bullet 3)^5 + (11 \bullet 2 \bullet 3)^5$	
$= 11^5 \cdot 3^5 + 11^5 \cdot 2^5 \cdot 3^5$	This step requires that 33^5 and 66^5
$= 11^5 \cdot 3^5(1+2^5)$ (G) <	have a common prime factor
$=(11 \cdot 3)^5(1+2^5)$	_
$= 33^{5}(33)$	It is interesting how
$= 33^{6}$	the $1+2^5$ provided the
= 55-	much needed 33

Similary, as from above, 33⁶ has the common prime factors 3 and 11

Proof and Conclusion

Based on the above examples, (Examples 1-7). it can be observed that A and B must have a common factor (a prime factor), otherwise, the sum $A^x + B^y$ cannot be changed to a product such that A, B, C, x, y, z are positive integers and x, y, z > 2, and subsequently to a single power of C... Step (G) in each example requires that A and B have a common power, Since C is derived from $A^x + B^y$, C will have the same common factor as $A^x + B^y$., Therefore, without $A^x + B^y$ with a common factor, there would be no C. Note in the examples that C is derived solely from the sum $A^{x} + B^{y}$. Thus to derive C, A and B must have a common prime factor, and if C is derived from $A^x + B^y$ with a common prime factor, C will also have the same common prime factor. Therefore if $A^x + B^y = C^z$, where A, B, C, x, y, z are positive integers and x, y, z > 2, then A, B and C have a common prime factor.

PS

Other proofs of Beal Conjecture by the author are at viXra:1702.0331; viXra:1609.0383, viXra:1609.0157.

Adonten