Beal Conjecture Original Proved

"5% of the people think; 10% of the people think that they think; and the other 85% would rather die than think."----Thomas Edison

"The simplest solution is usually the best solution"---Albert Einstein

Abstract

Using a direct construction approach, the author proved the original Beal conjecture that if $A^x + B^y = C^z$, where A, B, C, x, y, z are positive integers and x, y, z > 2, then A, B and C have a common prime factor. In the proof, using concrete examples, one begins with $A^x + B^y$ and changes this sum to a product and to a single power, C^z . It was determined that if $A^x + B^y = C^z$, then A, B and C have a common prime factor. The proof is very simple, and occupies a single page.

Beal Conjecture Original Proved

Process and Requirements Involved in Changing the Sum of Two Powers to a Single Power

The necessary requirement is that the two powers must have a common power. If this requirement is not satisfied, the sum of the two powers cannot be changed to a product. and to a single power.

Step 1: Change the sum of the two powers to a product. If the two powers do not have a common power. (and consequently, a common prime factor). you cannot proceed. Any product obtained also has the same common prime factor as the sum of the powers

Step 2: Change the product to a single power.

Example 1: $2^3 + 2^3 = 2^4$

Change the sum $2^3 + 2^3$ to a single power of 2.

The 2^4 must have a common factor as 2^3 and 2^3 , from which it was obtained.. From above, the common prime factor is 2,

Example 2 $7^6 + 7^7 = 98^3$

power form.

Change the sum $7^6 + 7^7$ to a single power of 98.

Since 98^3 was obtained from the sum $7^6 + 7^7$, which has a common prime factor. 7, 98^3 has the same common prime factor, 7, Therefore 7^6 , 7^7 and 98^3 have the common prime factor of 7.

Example 3: $3^3 + 6^3 = 3^5$

Change the sum $3^3 + 6^3$ to a single power of 3...

Factor out the greatest common factor. $3^{3} + 6^{3}$ $= 3^{3} + (3 \cdot 2)^{3}$ $= 3^{3} + 3^{3} \cdot 2^{3}$ $= 3^{3}(1+2^{3})$ $= 3^{3}(1+8)$ $= 3^{3}(9)$ $= 3^{3} \cdot 3^{2}$ $= 3^{5}$ It is interesting how the "(1+8)" provided the much needed 3².

Example 4 $2^9 + 8^3 = 4^5$

Change the sum $2^9 + 8^3$ to a single power of 4.

Example 5 $34^5 + 51^4 = 85^4$

Change the sum $34^5 + 51^4$ to a single power of 85.

Factor out the greatest common factor.

Since 85^4 was obtained from 34^5 and 51^4 which have the common prime factor , 17, 85^4 has the same common factor, 17.

3

Example 6: $3^9 + 54^3 = 3^{11}$

Change the sum $3^9 + 54^3$ to a single power of 3.

Since 3^{11} was obtained from 3^9 and 54^3 which have the common prime factor, 3, 3^{11} has the common factor 3.

Example 7: $33^5 + 66^5 = 33^6$

Change the sum $33^5 + 66^5$ to a single power of 33...

Factor out the greatest common factor. $33^5 + 66^5$ = $(11 \cdot 3)^5 + (11 \cdot 2 \cdot 3)^5$ = $11^5 \cdot 3^5 + 11^5 \cdot 2^5 \cdot 3^5$ = $11^5 \cdot 3^5 (1 + 2^5)$ (G) <-----
= $(11 \cdot 3)^5 (1 + 2^5)$ = $33^5 (33)$ = 33^6 This step requires that 33^5 and 66^5 have a common prime factor

It is interesting how the $1 + 2^5$ provided the much needed 33

Proof and Conclusion

Based on the above examples, (Examples 1-7). it can be observed that A and B must have a common factor (a prime factor), otherwise, the sum $A^x + B^y$ cannot be changed to a product such that A, B, C, x, y, z are positive integers and x, y, z > 2, and subsequently to a single power of C.. Step (G) in each example requires that A and B have a common power, Since C is produced from $A^x + B^y$, C will have the same common factor as $A^x + B^y$., Therefore, without $A^x + B^y$ with a common factor, there would be no C. Note in the examples that C is produced solely from the sum $A^x + B^y$. Thus to produce C, A and B must have a common prime factor, and if C is produced from $A^x + B^y$ with a common prime factor, C will also have the same common prime factor.. Therefore if $A^x + B^y = C^z$, where A, B, C, x, y, z are positive integers and x, y, z > 2, then A, B, C, x, y, z are positive integers and x, y, z > 2, then A, B, C, x, y, z are positive integers and x, y, z > 2, then

PS

Other proofs of Beal Conjecture by the author are at viXra:1702.0331; viXra:1609.0383, viXra:1609.0157.

Adonten