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Abstract

Important polytope sequences, like the associahedra and permutohe-
dra, contain one object in each dimension. The more particles labelling
the leaves of a tree, the higher the dimension required to compute physical
amplitudes, where we speak of an abstract categorical dimension. Yet for
most purposes, we care only about low dimensional arrows, particularly
associators and braiding arrows. In the emerging theory of motivic quan-
tum gravity, the structure of three dimensions explains why we perceive
three dimensions. The Leech lattice is a simple consequence of quantum
mechanics. Higher dimensional data, like the es lattice, is encoded in
three dimensions. Here we give a very elementary overview of key data
from an axiomatic perspective, focusing on the permutoassociahedra of
Kapranov.

These notes originated in a series of lectures I gave at Quantum Gravity Re-
search in February 2018. There I met Michael Rios, whom I originally taught
about the associahedra and other operads many, many years ago. He discussed
the magic star and exceptional periodicity. In March I met Tony Smith, the
founder of eg approaches to quantum gravity. In June I attended the Advances
in Quantum Gravity workshop at UCLA, where I met the M theorist Alessio
Marrani, and in July participated in Group32 in Prague, where I met Piero
Truini, who I later talked to about operad polytopes in motivic quantum grav-
ity. All these activities led to a greatly improved understanding of the emerging
theory. I was then forced to return to a state of severe poverty, isolation and
abuse, ostracised effectively from the professional community, from local com-
munities, from family, and many online websites. I am working now on an ipad
in my tent.

Although I hope the discussion here is elementary, the motivation for it
comes from deep mathematical conundrums, as any good question in quantum
gravity should. As a category theorist, the slow development of topological field
theories was endlessly frustrating, with its separation of spatial and algebraic
data. Like in gauge theories, one was supposed to mark spatial diagrams with
objects from an algebraic category, such as a traditional category of Hilbert
spaces. But the most interesting functors are monadic, and it seemed that
gravity should canonically interpret its geometry in an algebraic way. Moreover,
the common habit of grabbing R or C as a God given set of numbers was in



conflict with both the axioms of a topos [1] and the need to construct classical
manifolds from discrete quantum data.

We begin with the power set monad [1], which simply maps any set to the
set of all subsets of the set. In the case of a three element set, there are eight
possible subsets including the empty set, listed by the vertices of figure 1. A set
with n elements gives a cube in dimension n. An edge on a cube, directed away
from the empty set 1, is an inclusion of sets. The concatenation of elements, like
oo, denotes the union. Conversely, reverse arrows restrict to a subset of a set,
and the source of a square is the intersection of sets. A category theorist talks
about the duality of reversing arrows, or the opposite category of the category
of all sets.

But quantum mechanics is not about sets. Axioms based on set theoretic
mathematics must be replaced by axioms for quantum logic. In the next section
we see that n-cubes also play an important role in the quantum case. The
signed vertices on a cube denote a state of n qubits in the theory of quantum
computation [2][3][4], and we use the universality of special categories like the
Fibonacci anyons [5][6] to argue that gauge groups emerge from braid group
representations.
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Figure 1: The parity cube in dimension 3

From cubes we move on to the associahedra [7] and permutohedra [8], the
polytopes that are specified by rooted binary trees or permutations. The combi-
nation of these polytopes, including both Mac Lane pentagons [9] and braiding
hexagons, are the permutoassociahedra of [10]. In particular, the 120 vertex
permutoassociahedron in dimension 3 stands in for half the 240 roots of the 8
dimensional eg lattice.

So what is a motive? Certainly, it does not begin with a variety based on
C, or any other random field. A whole, infinite dimensional category of motives



should be linked to our quantum axioms, taking motivic diagrams directly to
physical results, following the original vision of Grothendieck [11]. A classical
spacetime is a mere afterthought, a three time Minkowski space perhaps com-
pactified to SU(2) x SU(2), constructed using the anyon braid group Bs [12].
Ribbon diagrams are spatial, and integral octonions, for instance, are algebraic,
but the category of motives thinks they are one and the same, thinks that a fun-
damental group drawn in knots is its own algebraic structure. And the Standard
Model of particle physics lives here.

1 A motivic perspective

Geometric categorical axioms encode algebraic information. In the theory of
quantum gravity, we require a canonical symbiosis of discrete geometry and
algebraic rules. Motivated by the power set monad [1], we begin with the
humble cube.

The vertices of figure 1 carry two sets of labels. Physically, the signs encode
the fractional charges of the anyons [13] underlying the leptons and quarks, so
that ——— denotes 3 zero charges on a neutrino and +++ denotes the charge on
a positron. There is a second cube for the negative leptons and quarks [14][15].
In quantum computation, three signs stand for a set of 3 qubit states. At the
same time, the edges of a 3-cube move in the 3 directions of a qutrit space. A
qutrit has three possible measurement outcomes, while a qubit has two. A path
from the source 1 to the target ajasag has three edges. These six paths clearly
form a copy of the permutation group Ss, if we label the directions 1, 2 and 3.

Seven of the vertices give an unconventional Fano plane, as shown in figure
2. This gives us a basis for the integral octonions [16][17], which are appearing
here automatically, once we decide to study sets carefully.

In quantum mechanics, an element of a set usually becomes a basis vector
in a state space. Instead of three points and their unions, consider three generic
lines in a FEuclidean plane with respect to intersection in the plane. If no lines
are selected, we have the whole plane. If one line is selected, we get a line.
If two lines are selected, we obtain the point of intersection of the lines. And
finally, if all three lines are selected, we have the empty set. Observe how these
possibilities reverse the position of empty set, moving it from 1 to the target of
the cube. The source 1 is now the entire plane, an axiomatic object of dimension
2. The singleton «; are now dimension 1 objects and the ;05 of dimension zero.
Whereas sets are always zero dimensional, whatever the cardinality, quantum
geometry interprets a whole number n as a dimension.

In this example, there are spaces of dimension 0, 1 and 2. A classical topolo-
gist would take these numbers and put them on the vertices of a triangle, calling
the triangle a 2-simplex. We have already drawn the 2-simplex as the interior of
three lines in a plane. It is also the diagonal slice of the 3-cube at the «; posi-
tions, or rather, the points 001, 010 and 100. Now consider qutrit words which
allow more than one step in each direction. As well as 231 € S3 we have 2231,
taking two steps in one direction. Allowing arbitrary noncommutative words,



Figure 2: The Fano plane

we see discrete paths on rectangular blocks in any dimension. On a cubic array
of paths, the diagonal slice fixes the length of the word, so that length 3 qutrit
words collapse to the discrete simplex of figure 3. Simplices carry commutative
words, while cubes carry the full set of noncommutative words.

Given any noncommutative word, a rectangular subspace of subwords sits
below it. For example, 2231 sits on a 3-cube with three points along each edge,
while its subpath 231 lies in the space of paths closer to the source vertex.
If the stepping represents powers of a set of primes, as in p3psp;, then the
subspace vertices list the divisors, and each dimension out to oo lists powers of
an integral prime. Then the positive integers in Z use up every cubical point in
every dimension.

A qubit corresponds to the prime 2 and a qutrit to the prime 3, because state
spaces are characterised by Schwinger’s mutually unbiased bases [18][19][20].
For qubits, the three Pauli matrices are replaced by the three unitary bases of
eigenvectors,
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Figure 3: The commutative tetractys for three qutrits

For qutrits, the bases are

1 1 1 1 1 1 w 1 1 1 1 w
ngi 1 w w ,Rgzi 1 1 w s 371_7 w 1 1 ,Ig,
V3 1l U w V3 w 1 1 V3 1 w 1

2)
where w is the cubed root of unity. In every prime power dimension d, there is a
(one step) circulant generator Ry whose powers give d bases that are mutually
unbiased. Thus each cubic point is associated to a set of d = p" matrices.
Dimension 3 is special because circulants are Hermitian, like the elements of the
exceptional Jordan algebra over the octonions [16][17]. The physical charges
attached to figure 1 by the C® O algebra [14][15] correspond to ribbon twists in
the particle spectrum of Bilson-Thompson [13][21], where three anyon strands
braid in B3 to give leptons and quarks.

Sometimes we view the «; as differential forms, but we want to avoid any ref-
erence to manifolds over bothersome fields. Most complex numbers are obtained
from the (half) integers in dimension 8 using Q(+/5) with the golden ratio. Let
¢ = (1++/5)/2 and p = /¢ + 2. Then the Gaussian integer combinations
a+ bo + cp + dop fill the plane. Everything begins with discrete data.



2 Associahedra and Permutohedra

The permutation group S, has a polytope in dimension n — 1. The three di-
mensional permutohedron is shown in figure 4 with its Sy labels. Think of the

4321
el

Figure 4: Three dimensional permutohedron

elements of Sy as integral coordinates in dimension 4 and restrict to the three
dimensional plane given by the fixed sum 1 + 2 + 3 +4 = 10. The infinite set
I S» of all permutohedra form an operad, meaning that natural compositions
of permutations give larger permutations.

Another important operad is the set of associahedra polytopes [7], whose
vertices are labeled by binary rooted planar trees. Figure 5 gives the pentagon
associahedron for trees with 4 leaves. As an axiom for categories of Hilbert
spaces (symmetric monoidal) the pentagon edges are directed associator maps
(12)3 — 1(23) between bracketing options on nonassociative words. In every
dimension n, the associahedron is embedded in a discrete simplex by the coor-
dinates of [8]. The pentagon lies in the bottom left corner of the tetractys of
figure 3, as follows. Take vertices such that each place ¢ in the word has a value
that is less than or equal to ¢. This is the set 111, 112, 122, 113 and 123. These
words may be viewed (homework problem) geometrically as arbitrary forests of
rooted trees on three nodes. Forests are geometrically dual to binary rooted
trees. For the 14 vertex associahedron we use length 4 words in 4 letters, but
the 14 points required actually fit inside a three 4-dit simplex, which itself sits
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Figure 5: Mac Lane’s pentagon axiom

inside the three dimensional path cube with four points along each edge. This
64 point cube is the true home of the tetractys.

The edges of an associahedron are marked by a tree with one ternary node,
which collapses the binary nodes on the end vertices. Similarly, each face of an
associahedron is a tree with two collapsed nodes, and each cell in any dimension
is labeled by a tree. The associahedra operad underlies scattering amplitude
calculations in particle physics [22][23]. Particle number determines the required
dimension of the calculation, which is therefore arbitrary.

There are only two ways to choose two prime powers that differ by 1. We can
either put 2 with 3 or 3 with 4. The latter gives our 64 point cube with internal
three qutrit tetractys, and the former a simple cube with 8 vertices. Including
both noncommutative qubits and qutrits, these state space dimensions are 1728
and 24. The special number 1728 is the natural normalisation for the j-invariant.

Observe that labels on the leaves of a tree on the pentagon give an element
of S4. Allowing all possible labels on all trees, we obtain the three dimensional
permutoassociahedron [10] of figure 7. We suspect now that cubes, simplices,
associahedra and permutohedra are all closely related. In fact, they carry a rich
algebraic structure, crucial to the observational arguments of the neutrino CMB
correspondence [12][24]. We discuss now Solomon’s algebra of descent, which
maps the permutohedra to the sign labels on a cube of the same dimension.



3 Cubes and Solomon’s Algebra

Finite sets are acted on by permutations. Taking an element of the hexagon S3,
we permute the «; vertices on the cube, or reorder the word ayasas. Distinct
actions slice a cube into its diagonal subsets. The cardinality of a diagonal is a
binomial coefficient, and these sum to the total 2.

There are 12 ways to braid three objects into a permutation in Ss, either by
flipping only two objects or by flipping one object around the other pair. These
are the 12 edges of the octahedron in figure 6. The bracket on a word indicates

Figure 6: Octahedron for permutations

the face on the cube dual to the octahedron, where a permutation is a three step
path along edges on the cube. Accounting for all possible nonassociative words
in S3, there are two copies of the octahedron, giving all vertices of the 12-gon
permutoassociahedron [10], using both swap maps and associators between the
two octahedra. That is, we use three vertices in one octahedron, three in the
other, and alternate these with the six associators in between.

Why such an abtuse drawing of a 12-gon? Because what we aim for, in
the next section, is a special set of three dimensional pictures that capture the
data we need to describe gravity. The 12-gon carries all possible terms in weak



Jacobi rules, such as those required for the nonassociative algebras of exceptional
periodicity based on the magic star [25][26].

Return to the permutohedron of figure 4. This polytope collapses to a 3-cube
with signed vertices. The signs at each vertex of S,, are the signature of the
permutation, given by following the increases and decreases in the numerical
entries from left to right. Signs for Ss3 appear in figure 6. For example, the
signature of 4312 is — — +. Signature sets occupy neighbouring sets in the S,
polytope.

Solomon’s (Hopf) algebra [27] on signature classes uses integral elements of
the group algebra product for S,,. An element of this group algebra, over Z, is
an arbitrary sum of permutations, written out like a polynomial. The product
is like an ordered polynomial product. For example,

(231 + 312)(231) = 231 - 231 + 312 - 231 = (312 + 123). (3)

For each signature of S,, write the sum of permutations with that signature.

For example,
+— = (132 + 231). (4)

Solomon’s theorem shows that the polynomial product on the signatures always
results in a signature, closing an algebra on the signed cube.

Figure 7: The permutoassociahedron



The permutoassociahedra vertices in dimension n list all associahedra trees
with permutation labels, characterising the essential data for the scattering of
n + 1 particles. However, the essential axioms belong to categories in three
dimensions: the braided monoidal categories of quantum computation. We
are interested in finding the three dimensional essence of these polytopes, for
application to quantum gravity. This means defining a sequence of trivalent
graphs, picking out three special neighbouring permutations to any permutation
in S,,. In the case of S3, there are three other permutations resulting from a
flip S3. Restricting to a subset of 3 particles in a set of n + 1, we can identify
three outgoing edges.

4 The Leech Lattice and Monster

A double copy of figure 7 has 240 vertices, the number of roots in the eg Lie
algebra lattice. The connection between octonions and this lattice was often
used in Lie group compactification approaches to gravity, originating decades
ago in the work of Tony Smith [28]. To characterise rest mass, we study the
relations between 24 dimensional lattices, pertaining to the state space of three
qubits and one qutrit.

To obtain the 196560 vertices of the Leech lattice Ay using three copies
of @ [29], multiply the 240 by 3 times 273, where 273 = 1 + 16 + 256. That
is, double a 3-cube to 16 vertices (particles and antiparticles), double a 7-cube
to 256 vertices (magnetic information), and add half a 1-cube. This all makes
sense in the Jordan algebra description of quantum gravity, which extends M
theory. From moonshine mathematics, we remember that the j-invariant Fourier
transform (for three dimensional topological gravity [30]) is closely related to
the modular form for the Leech lattice [31][32].

An even nicer polytope decomposition works as follows. As well as the Leech
lattice and its automorphism group, we want a description of the Monster M,
the largest sporadic finite group [33]. The three largest primes in the order of
M give the relation

196883 = (48 — 1)(60 — 1)(72 — 1) (5)

for the first non trivial module of M. For us, the fundamental Fibonacci numbers
work on a clock of either 12 or 24 ticks, because the Fibonacci sequence mod
k for £ < 12 has a common cycle length of 240 and factors of k = 12 give a
cycle length of 24. A cycle of length 12 appears for mod 8. The importance
of the number 24 is why we have 24 hours in a day. Remember, in quantum
mechanics every cardinal is a dimension! So hiding in the 196883 are 120 copies
of something, which we find in an old paper by Tits [34].

There are 120 elements in the binary icosahedral group, given by the follow-
ing 4-vectors with quaternion basis {1,14,j,k}. First, 24 vectors coming from
the sign choices on (£1,0,0,0) and (£1,+1,+1,+1), with permutations, and
also 12 even permutations of each of the 8 sign choices for (0, +1,+¢~1, £¢)/2.
The automorphism group of the binary icosahedral group is S5, the 120 vertex
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Table 1: 1638 vector components

total factor v2

576 24 (L 4% 9
192 8 (67, 62,2)
192 8 (9%, 97,24
192 8 1.1,2)
192 8 (1,1,2¢?)
% 4 (L0
% 1 (LY
48 ) ©0,2,267)
2 1 0,2.2)
2 1 (0,247,267
3 0 0,0,4)
3 0 0,0,40%)

permutohedron on 5 objects. Over Q we have the eight dimensional space of
the eg lattice.

How do the golden ratio entries in these vectors mix with entries in a 3-
vector? Since any power of ¢ is linear in ¢, the final cancellation of ¢ in the
norms requires only that contributing signs sum to zero. We decompose the
short vectors of Agy as

196560 = 120 - 14 - 117, (6)

where each 14 stands for an associahedron in dimension 3. The 14 vertex blowup
of S5 is the four dimensional permutoassociahedron, with 1680 vertices (bringing
in the seven days). The 14-117 copies of 120 are given by the three dimensional
vectors of [34], as listed in Table 1. The 14 vertex associahedron has a neat set of
hyperplane coordinates in dimension 6. These coordinates count the triangles at
a vertex on a hexagon in the chorded hexagon diagrams for binary tree vertices.
Ignoring normalisations, we have the points

1. (3,1,2,3,1,2) and cyclic permutations
2. (1,2,2,2,1,4) and cyclic permutations
3. (1,3,1,3,1,3) and (3,1,3,1,3,1) away from the squares.

The first three coordinates determine the hyperplane, and we are free to subtract
1 everywhere in order to obtain vectors like (2,0,1) and (3,0,1). Note that
¢*+ 972 =3.

Why the 1177 In future work we will study the connection to quantum logic,
especially the Kochen-Specker theorem [35][36] for R®. This canonical proof for
the failure of classical ontology uses a configuration of 57 qutrit rays in R?, or
rather, points in RP?. This gives 114 points on the subspace lattice, to which
one usually adds the full plane and the zero space.
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It seems the entire Leech lattice comes down to the basics of quantum me-
chanics: the four dimensional permutoassociahedron with 1680 vertices and the
logic of Kochen-Specker configurations.

5 Three Dimensions in Quantum Gravity

The number of vertices in S, is n!. Starting with the octahedron for S3, we
might blow up each vertex by a factor of 4 to find the 24 vertices of figure
4. Indeed, the truncated octahedron is the permutohedron polytope. For each
o € S3 there are 4 positions to place the letter 4 to make an element of Sy.
For how long can we keep going this way? Blowing up each vertex of Sy by a
pentagon gives the permutoassociahedron, now a representation of S5. Many
higher dimensional edges are lost as blowups continue in dimension 3, but the
set S, is recovered.

Let us look more closely now at the trivalent nature of restricted S, poly-
topes. For each blowup by an n-gon, the n edges that are not used in drawing
the n-gon must join a neighbouring n-gon vertex. So we must partition these
n edges into three sets, to follow the original three edges of the initial graph.
For n mod 3 = 0, an equal partition is possible and the new graph is clearly
well defined. For n mod 3 € 1,2, one out of three outgoing edges is the odd
man out. How do we know we can define a new polytope with the odd man
edges connecting vertices consistently? If there was a Hamiltonian circuit on the
initial S,, polytope, then each trivalent vertex automatically has an odd man
out missing from the circuit.

Observe that Sy and figure 7 both have Hamiltonian circuits. Since Sy has a
Hamiltonian circuit, and 5 = 2 is an odd man case, the pentagon blowup exists
as figure 7 (ignoring for now the 4-valent part). Does a Hamiltonian circuit
always exist on the new graph? In general, finding circuits is an N P-complete
problem, but we have a specific sequence of graphs.

Let us first build a set of loops in the blowup using the original circuit as a
template. The set covers every vertex once. Since an edge set from one polygon
to another creates a bunch of square faces, one can only cover all vertices on
an n-gon if one goes in and/or out across a leg using neighbouring edges. We
stick to two pairs of edges. On each edge bunch, use either the first two or last
two edges. These pairs can always link edges around the polygon in an obvious
way, so that every vertex is covered.

Now there are two circuits around the original graph, one for each of the
two edges along a bunch. For a Hamiltonian circuit, we need to join these two.
This is easily done by flipping the edge pair around one single square, since the
used two edges on the bunch belong one to each circuit. We have established
the following.

There exists a sequence of trivalent polytope graphs with Hamiltonian circuits
on n! vertices for any n > 3, each graph obtained from the previous one by an
n-gon blowup at each vertex.

Figure 8 paints a Hamiltonian circuit on Ss. Its blowup is Sg, with 720
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Figure 8: A Hamiltonian circuit on the permutoassociahedron

vertices. From these three dimensional reduced permutohedra, we obtain a set of
reduced associahedra. Each o € S,, is represented by a binary tree whose nodes
have distinct levels, as opposed to the trees of figure 5, where the word (12)(34)
does not distinguish the order of the bracketing. The hexagon S5 collapses to
the pentagon. The S4 polytope collapses to the three dimensional associahedron
with the contraction of three squares joined to two hexagons. Define the reduced
associahedron for S, in dimension 3 by collecting vertices according to the tree
type labels. Finally, an associahedron permutohedron pair, each from dimension
3, defines a low dimensional reduced permutoassociahedron [10].

In three dimensions, we play with 3 x 3 matrices. The 27 dimensional excep-
tional Jordan algebra is defined using three qutrits, following [37]. These 1,2,3
valued qutrits are the powers i, j and k of the matrices

w'XIpk, (7)

for X and P given by

010 10
xX=10 0 1], P=(0 w (8)
100 0 0

gl oo

Letters X and P stand for discrete space and momentum. Recall that the 27
words label the cubic paths for the tetractys of figure 3. This Jordan algebra J
of Hermitian matrices over the octonions marks a vertex on the magic star [25]
characterisation of the algebra eg [26]. There is a triangle of J algebras and a
triangle of .J. We can obtain the 13 points of a magic star from a divided cube

13



by projection along the diagonal. The source, target and centre point go to the
centre of the star.

6 Comments

With almost no input, we have uncovered some of the algebraic ingredients of
quantum gravity. As is well known, physical rest masses for leptons and quarks
are grouped as eigenvalues of 3 x 3 Hermitian matrices with special phases
related to charge [12]. The 3-cube charges augment the basis neutrino state.
The essential Koide-Brannen phase for leptons is 2/9, which is the ratio of six
paths on a cube to the 27 paths of the tetractys, sitting inside the larger cube
for Dirac spinors. The foundational neutrino phase is of course 7/12.

The duality between the CMB neutrino cutoff (maximal cosmological wave-
lengths) and the Planck scale defines a Higgs scale via the inverse see-saw
my = /m,mp; [12], and we see quantum masses growing from the pairing
of (right handed) CMB neutrinos with local neutrino states.

Everything is governed by the laws of computation, when axiomatised in the
infinite dimensional setting of quantum logic. From state sum triangulations,
we know that the dynamics of four dimensions requires a braiding, as shown
in figure 9, where one pentagon chord is forced to overlap another. Without
this single edge, the 4-simplex is a double tetrahedron in three dimensions. A 4-

Figure 9: 3d simplex and 4d simplex

simplex then becomes a planar pentagon, a face of figure 7. Instead of a 7-sphere
for the roots of eg, we look at the doubled permutoassociahedron. By reducing
dimension using categorical information, the algebra of gravity manifests itself
in an abstract braid soup (a la Langlands).
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