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Abstract: Following a series of papers on geometric interpretations of the wavefunction, this paper offers an overview of all of 
them. If anything, it shows that classical physics goes a long way in explaining so-called quantum-mechanical phenomena. It is 
suggested that the fine-structure constant can be interpreted as a scaling constant in a layered model of electron motion. 
Instead of one single wave equation explaining it all, we offer a theory of superposed motions based on the fine-structure 
constant, which we interpret as a scaling constant. The layers are the following: 

1. To explain the electron’s rest mass, we use the Zitterbewegung model. Here, we think of the electron as a pointlike charge 
(no internal structure or motion) with zero rest mass, and (1) its two-dimensional oscillation, (2) the E/m = c2 = a2ω2 elasticity of 
spacetime and (3) Planck’s quantum of action (h) explain the rest mass: it is just the equivalent mass of the energy in the 
oscillation. 

2. We then have the Bohr model, which shows orbitals pack the same amount of physical action (h) or a multiple of it (S = n·h). 
It just packs that amount in much larger loops which – of course – then also pack a different amount of energy. As it turns out, 
the equivalent energy (E = h·f) is equal to α2mc2. The fine-structure constant also acts as a scaling constant for all other 
dimensions (radii, velocities, and frequencies). 

3. The difference between the energies of the Bohr orbitals is, of course, the energy of the photon when an electron makes a 
transition. Hence, we also offer an elegant one-cycle model of a photon and show the meaning of the fine-structure constant as 
a coupling constant in QED. 

This leads to a more comprehensive interpretation of the fine-structure constant as a scaling constant. As an added bonus, we 
argue that the fine-structure constant also introduces a form factor (the electron is now viewed as a disk-like structure), which 
might explain the anomalous magnetic moment. We argue that the anomalous magnetic moment may, therefore, not be 
anomalous at all.  
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Layered motions: the meaning  
of the fine-structure constant 

I. Introduction 
This paper – like all the others we have written – is born out of curiosity and frustration. Curiosity – 
because we all want to understand the nature of matter and energy. But curiosity is not a sufficient 
reason to write yet another paper. There are so many out there. That is where frustration comes in: we 
have started to think one or two re-interpretations of quantum-mechanical concepts may be needed to 
make sense of it all – and we are surely not the only ones thinking that – while we always get 
numerically correct answers from quantum-mechanical models – their conceptual framework often 
appears as being mixed up or, worse, as being plain ad hoc.1  

One absolutely inexcusable mistake is that quantum physicists think of the elementary wavefunction as 
representing some theoretical spin-zero particle. The mistake is inexcusable because the associated 
redundancy in the mathematical framework is directly related to the logic leading to the rather 
uncomfortable conclusion that the wavefunction of spin-1/2 particles (read: all matter-particles 
(fermions), practically speaking) has some weird 720-degree symmetry in space. This conclusion is 
uncomfortable because we cannot imagine such objects in space without invoking the idea of some kind 
of relation between the subject and the object (the reader should think of the Dirac belt trick here). It 
has, therefore, virtually halted all creative thinking on a physical interpretation of the wavefunction. We 
have written at length about this and other objections to a geometric interpretation of the wavefunction 
before2, so we will just briefly summarize the point here. The two possibilities (a·ei· and a·e+i·) are 
visualized below. 

 

Figure 1: Left-handed and right-handed angular momentum 

                                                           
1 We love the self-criticism of John P. Ralston, Professor of Physics and Astronomy at the University of Texas: 
“Quantum mechanics is the only subject in physics where teachers traditionally present haywire axioms they don’t 
really believe, and regularly violate in research.” (How to understand quantum mechanics (2017), p. 1-10) 
Having mentioned the comment, from our correspondence, we understand – and duly note – that he would surely 
not want to be associated with the classical ideas that are being presented in this paper.  
2 Such objections usually also include the idea that the coefficient (a) of the wavefunction a·ei may be complex-
valued, whereas in any real interpretation this (maximum) amplitude should be real-valued. This objection is also 
rejected. See: Jean Louis Van Belle, 30 October 2018, Euler’s wavefunction: the double life of 1, 
http://vixra.org/pdf/1810.0339v2.pdf.    



2 
 

All real particles have spin – electrons, photons, anything – and spin (a shorthand for angular 
momentum) is always in one direction or the other: it is just the magnitude of the spin that differs. 
Hence, why not use the sign of the imaginary unit in the a·e±i function to incorporate the spin direction 
in the description from the start? Indeed, most introductory courses in quantum mechanics will show 
that both a·ei· = a·ei·(tkx) and a·e+i· = a·e+i·(tkx) are acceptable waveforms for a particle that is 
propagating in a given direction – as opposed to, say, some real-valued sinusoid. We would think 
physicists would then proceed to provide some argument why one would be better than the other, or 
some discussion on why they might be different, but that is not the case. The professors usually 
conclude that “the choice is a matter of convention” and, that “happily, most physicists use the same 
convention.”3  

This is, frankly, quite shocking because we know, from historical experience, that theoretical or 
mathematical possibilities in quantum mechanics often turn out to represent real things. Here we 
should think of the experimental verification of the existence of the positron (or of anti-matter in 
general) after Dirac had predicted its existence based on the mathematical possibility only. So why 
would that not be the case here? Occam’s Razor principle tells us that we should not have any 
redundancy in the description. Hence, if there is a physical interpretation of the wavefunction, then we 
should not have to choose between the two mathematical possibilities: they would represent two 
different physical situations, and the only characteristic that can make the difference is the spin 
direction.  

Hence, we do not agree with the mainstream view that the choice is a matter of convention. Instead, we 
dare to suggest that the two mathematical possibilities represent identical particles with opposite spin. 
Combining this with the two possible directions of propagation (which are given by the + or ++ signs in 
front of ω and k), we get the following table: 

Table 1: Occam’s Razor: mathematical possibilities versus physical realities 

Spin and direction of travel Spin up (e.g. J = +ħ/2) Spin down (e.g. J = ħ/2) 

Positive x-direction ψ = a·ei·(tkx) ψ* = a·e+i·(tkx) 

Negative x-direction χ = a·ei·(t+kx) χ* = a·ei·(t+kx) 

 

An added benefit of this interpretation is that we can now also associate some physical meaning with 
the complex conjugate of a wavefunction and – by extension – to various properties of quantum-
mechanical operators, including their hermiticity (or not).4 More generally speaking, we may say that we 
can finally offer a meaningful physical interpretation of the quantum-mechanical wavefunction. Let us 
get through the basics of it. 

                                                           
3 See, for example, the MIT’s edX Course 8.04.1x, Lecture Notes, Chapter 4, Section 3.  
4 See the above reference: : Jean Louis Van Belle, 30 October 2018, Euler’s wavefunction: the double life of 1, 
http://vixra.org/pdf/1810.0339v2.pdf. 
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II. The quantum of action and the Bohr orbitals 
To achieve some familiarity with the mathematical framework, we will use the quantum of action in the 
context of the Rutherford-Bohr model of an atom. This 105-year old model5 was designed to explain the 
wavelength of a photon that is emitted or absorbed by a hydrogen atom – a one-electron atom, 
basically – and does a superb job of it. The idea is that the energy of such photon is equal to the 
difference in energy between the various orbitals. The energy of these orbitals is usually expressed in 
terms of the energy of the first Bohr orbital, which is usually referred to as the ground state of (the 
electron in) the hydrogen atom. The Rydberg energy ER is just the combined kinetic and potential energy 
of the electron in the first Bohr orbital and it can be expressed in terms of the fine-structure constant (α) 
and the rest energy (E0 = mc2) of the electron6: 

Eோ =
αଶm𝑐ଶ

2
=

1

2
(

qୣ
ଶ

2εh𝑐
)ଶm𝑐ଶ =

qୣ
ସm

8ε
ଶhଶ

≈ 13.6 eV 

To be precise, the difference in energy between the various orbitals should be equal to: 

ΔE = ൬
1

𝑛ଵ
ଶ

−
1

𝑛ଶ
ଶ

൰ ∙ Eோ 

The Rydberg formula then becomes self-evident. The idea of the wavelength of a wave (λ), its velocity of 
propagation (c) and its frequency (f)7 are related through the λ = c/f relation, and the Planck-Einstein 
relation (E = h·f) tells us the energy and the wavelength of a photon are related through the frequency: 

λ =
𝑐

𝑓
=

ℎ𝑐

E
 

Hence, we can now write the Rydberg formula by combining the above: 

1

λ
=

E

h𝑐
= ൬

1

𝑛ଵ
ଶ

−
1

𝑛ଶ
ଶ

൰ ∙
Eோ

h𝑐
= ൬

1

𝑛ଵ
ଶ

−
1

𝑛ଶ
ଶ

൰ ∙
αଶm𝑐ଶ

2h𝑐
 

The Rydberg formula uses the fine-structure constant, but actually describes the so-called gross 
structure of the hydrogen spectrum only (illustrated below). Indeed, when the spectral lines are 
examined at very high resolution, the spectral lines are split into finer lines. This is due to the intrinsic 
spin of the electron. This intrinsic spin of the electron is to be distinguished from its orbital motion. It 
shows we should not be thinking of the electron as a pointlike (infinitesimally small) particle: it has a 

                                                           
5 Around 1911, Rutherford had concluded that the nucleus had to be very small. Hence, Thomson’s model – which 
assumed that electrons were held in place because they were, somehow, embedded in a uniform sphere of 
positive charge – was summarily dismissed. Bohr immediately used the Rutherford hypothesis to explain the 
emission spectrum of hydrogen atoms, which further confirmed Rutherford’s conjecture, and Niels and Rutherford 
jointly presented the model in 1913. As Rydberg had published his formula in 1888, we have a gap of about 25 
years between experiment and theory here. 
6 We should write m0 instead of m – everywhere. But we are using non-relativistic formulas for the velocity and 
kinetic energy everywhere. Hence, we dropped the subscript. 
7 Our paper relates mathematical and physical concepts. Hence, we prefer to think of a wavelength as a 
mathematical idea right now, as opposed to some (physical) reality. Our ontological viewpoint is very simple: 
language describes reality. Hence, math describes physics. There is an intimate relation between both but – at the 
same time – we should not confuse the two. 
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radius.8 Hence, we speak of spin angular momentum versus orbital angular momentum. However, as we 
will explain, there is some coupling between the two motions. We will come back to this later. 

 

Figure 2: The gross structure of the hydrogen spectrum 

The Copenhagen interpretation of quantum mechanics – which, privately, we have started to think of as 
the Heisenberg Diktatur9 – dismisses Bohr’s model. However, it is actually a proper quantum-mechanical 
explanation and, as we have shown10, Schrödinger’s equation does not seem to add much in terms of a 
scientific explanation for the atomic electron orbitals. Feynman (Lectures, III-2-4) derives it from the 
momentum-space expression of the Uncertainty Principle which we may loosely state as follows: the 
product of the uncertainty in the momentum (Δp) and the uncertainty in the position (Δx) has an order 
of magnitude that is equal to Planck’s quantum (h). His equation is the following: 

p ∙ 𝑎 ≈ ℏ ⇔ p ≈ ℏ/𝑎 

This allows him to write the kinetic energy of the electron as mv2/2 = p2/2m = ħ2/2ma2. The potential 
energy is just the electrostatic energy −e2/a.11 The idea is then that the configuration must minimize the 

                                                           
8 We argue its radius is the Compton radius. See: Jean Louis Van Belle, Einstein’s mass-energy equivalence relation: 
an explanation in terms of the Zitterbewegung, 24 November 2018 (http://vixra.org/pdf/1811.0364v1.pdf).   
9 No one should take offense here. It is an opinion which is rooted in our experience trying to submit articles to 
scientific journals as well as interactions with academics. In fact, we should tone down and not specifically 
associate the Copenhagen interpretation with Heisenberg and other founding fathers of the quantum-mechanical 
framework, as they were part of the group of ‘founding fathers’ who actually became quite skeptical about the 
theory they had created because of the divergences in perturbative quantum electrodynamics (QED). Todorov 
(2018) specifically Heisenberg, Dirac, and Pauli in this regard, and mentions that QED, as a theory, only survived 
because of the efforts of the second generation of quantum physicists (Feynman, Schwinger, Dyson, etcetera). See: 
Ivan Todorov, From Euler’s play with infinite series to the anomalous magnetic moment, 12 October 2018 
(https://arxiv.org/pdf/1804.09553.pdf).    
10 See: Jean Louis Van Belle, A Geometric Interpretation of Schrödinger’s Wave Equation, 12 December 2018 
(http://vixra.org/abs/1812.0202).  
11 The e2 in this formula is the squared charge of an electron (qe

2) divided by the electric constant (4πε0). The 
formula assumes the potential is zero when the distance between the positively charged nucleus and the electron 
is infinite, which explains the minus sign. We also get the minus sign, of course, by noting the two charges 
(electron and nucleus) have equal magnitude but opposite sign. One should note that the formulas are non-
relativistic. This is justified by the fact that the velocities in this model are non-relativistic (the electron velocity in 
the Bohr orbital is given by ve = α·c ≈ 0.0073·c. This is an enormous speed but still less than 1% of the speed of 
light. 
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total energy E = ħ2/2ma2  e2/a. The variable is the radius a and, hence, we get a by calculating the 
dE/da derivative and equating it to zero. We thus get the correct Bohr radius: 

𝑟୭୦୰ =
ℏଶ

meଶ
=

4πεℏଶ

mqୣ
ଶ

=
1

α
 ∙ 𝑟େ୭୫୮୲୭୬ ≈ 53 × 10ିଵଶ m 

We find it useful to write the Bohr radius as the Compton radius divided by the fine-structure constant:  

rB = rC/α = ħ/αmc ≈ (386/0.0073)×10−15 m ≈ 53×10−9 m. 

We can now calculate the Rydberg energy – which is the ionization energy of hydrogen – by using the 
Bohr radius to calculate the energy E = ħ2/2ma2  e2/a: 

Eୖ =
1

2

ℏଶ

m

mଶeସ

ℏସ
− eଶ

meଶ

ℏଶ
= −

1

2

meସ

ℏଶ
≈ −13.6 eV 

This amount equals the kinetic energy (ħ2/2ma2 = α2mc2/2). The electrostatic energy itself is twice that 
value (−e2/rBohr = −α2mc2).  

Feynman’s Uncertainty Principe is suspiciously certain. He basically equates the uncertainty in the 
momentum as the momentum itself (Δp = p) and the uncertainty in the position as a precise radius. We 
offer an alternative interpretation. If Planck’s constant is, effectively, a physical constant (h ≈ 
6.626×10−34 N·m·s), then we should interpret it as such. If physical action – some force over some 
distance over some time – comes in units of h, then the relevant distance here is the loop, so that is 
2π·rBohr. We would, therefore, like to re-write Feynman’s p·a ≈ ħ assumption as: 

S = h = p·2π·rBohr = p·λ  

The λ is, of course, the circumference of the loop. The equation resembles the de Broglie equation λ = 
h/p. How should we interpret this? We can associate Planck’s quantum of action with a cycle: let us 
refer to it as a Bohr loop and, yes, we think of it as a circular orbit. As such, we can write h either as the 
energy times the cycle time or, else, as the (linear) momentum times the loop: h = p·2π·rB. The latter 
expression not only reflects the second de Broglie relation but also the quantum-mechanical rule that 
angular momentum should come in units of ħ = h/2π. Indeed, the angular momentum can always be 
written in terms of the tangential velocity, the radius and the mass. As such, the two formulas below 
amount to the same: 

L = m ∙ 𝑣 ∙ 𝑟 = p ∙ 𝑟 = ℏ ⟺ 𝑆 = p ∙ 2π · 𝑟 = p ∙ λ = ℎ 

Let us continue our calculations. We get the velocity out of the expression for the kinetic energy: 

K. E. =
m𝑣ଶ

2
=

αଶm𝑐ଶ

2
⇔ 𝑣 = α ∙ 𝑐 ≈ 0.0073 ∙ 𝑐 

Of course, we should also be able to express the velocity as the product of the radius and an angular 
frequency, which we can do as follows: 

𝑣 = α ∙ 𝑐 = 𝑟 ∙ ω =
ℏ

αm𝑐
∙

αଶm𝑐ଶ

ℏ
= α ∙ 𝑐 ⇔ ω =

αଶm𝑐ଶ

ℏ
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We then calculate the cycle time T as T = 1/fB = 2π/ωB. Interestingly, the formula for fB (or, thinking in 
terms of angular frequencies, for ωB) reflects the first de Broglie relation: fB = E/h = α2mc2/h. However, 
we should note that α2mc2 is twice the Rydberg energy – and, unlike some physicists12, we do care about 
a 1/2 or π factor in our model of a Bohr electron. Hence, we should have a look at this energy concept. 
We will do so later. Let us – just for now – roll for a moment with this E = α2mc2 energy concept. It is, 
obviously, the energy that is associated with the loop. We wrote the quantum of action as the product 
of the (linear) momentum and the distance along the loop: h = p·λB = p·2π·λB. Likewise, we can write: 

ℎ = E ∙ T = αଶm𝑐ଶ ∙
2π ∙ 𝑟

𝑣
= αଶm𝑐ଶ ∙

2π ∙ 𝑟େ

α ∙ 𝑐 ∙ α
= m𝑐ଶ

2π ∙ ℏ

𝑐 ∙ m ∙ 𝑐
= ℎ 

Let us now generalize our formulas for all of the Bohr orbitals:  

Table 2: Generalized formulas for the Bohr orbitals 

Orbital electron (Bohr orbitals) 

S = 𝑛h for 𝑛 = 1, 2, … 

E = −
1

2

αଶ

𝑛ଶ
m𝑐ଶ = −

1

𝑛ଶ
Eோ  

𝑟 = 𝑛ଶ𝑟 =
𝑛ଶ𝑟େ

α
=

𝑛ଶ

α

ℏ

m𝑐
 

𝑣 =
1

𝑛
α𝑐 

ω =
𝑣

𝑟

=
αଶ

𝑛ଷℏ
m𝑐ଶ =

1
𝑛ଶ αଶm𝑐ଶ

𝑛ℏ
 

L = 𝐼 ∙ ω = 𝑛ℏ 

μ = I ∙ π𝑟
ଶ =

qୣ

2m
𝑛ℏ 

g =
2m

qୣ

μ

L
= 1 

 

The reader can easily verify these formulas – by googling them, doing the calculations himself or, 
preferably, just doing some substitutions here and there. Let us substitute the equation for ωn in the Ln 
formula, for example: 

L = 𝐼 ∙ ω = m ∙ 𝑟
ଶ ∙

αଶ

𝑛ଷℏ
m𝑐ଶ = m ∙

𝑛ସ

αଶ

ℏଶ

mଶ𝑐ଶ
∙

αଶ

𝑛ଷℏ
m𝑐ଶ = 𝑛ℏ 

The reader should note that these formulas are not so obvious as they seem. The table below shows 
what happens with radii, velocities, frequencies and cycle times as we move out. The velocities go down, 
all the way to zero for n  , and the corresponding cycle times increases as the cube of n. Using totally 

                                                           
12 We are thinking of Richard Feynman’s rather shocking nonchalance when introducing the quantum-mechanical 
idea of an electron orbital using the Uncertainty Principle (Lectures, Vol. III, Chapter 2, Section 4), noting from the 
outset that we should not “trust” the model “within factors like 2, π, etcetera.”  
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non-scientific language, we might say the numbers suggest the electron starts to lose interest in the 
nucleus so as to get ready to just wander about as a free electron.  

Table 3: Functional behavior of radius, velocity and frequency of the Bohr orbitals 

n 1 2 3 4 5 6 7 8 9 

rn  n2 1 4 9 16 25 36 49 64 81 

vn  1/n 1 0.500 0.333 0.250 0.200 0.167 0.143 0.125 0.111 

ωn  1/n3 1 0.125 0.037 0.016 0.008 0.005 0.003 0.002 0.001 

Tn  n3 1 8 27 64 125 216 343 512 729 

 

The important thing is the energy formula, of course, because it should explain the Rydberg formula, 
and it does: 

Eమ
− Eభ

= −
1

𝑛2
2

E𝑅 +
1

𝑛1
2

E𝑅 = ൬
1

𝑛ଵ
ଶ

−
1

𝑛ଶ
ଶ

൰ ∙ Eோ = ൬
1

𝑛ଵ
ଶ

−
1

𝑛ଶ
ଶ

൰ ∙
αଶm𝑐ଶ

2
 

Let us know look at the energies once again and try to connect this model with the idea of a photon. 

III. The one-cycle photon 

The Bohr orbitals are separated by a amount of action that is equal to h. Hence, when an electron jumps 
from one level to the next – say from the second to the first – then the atom will lose one unit of h. Our 
photon will have to pack that, somehow. It will also have to pack the related energy, which is given by 
the Rydberg formula (see above). To focus our thinking, let us consider the transition from the second to 
the first level, for which the 1/12 – 1/22 is equal 0.75. Hence, the photon energy should be equal to 
(0.75)·ER ≈ 10.2 eV.13 Now, if the total action is equal to h, then the cycle time T can be calculated as: 

E ∙ T = ℎ ⇔ T =
ℎ

E
≈

4.135 × 10ିଵହeV ∙ s

10.2 eV
≈ 0.4 × 10ିଵହ s 

This corresponds to a wave train with a length of (3×108 m/s)·(0.4×1015 s) = 122 nm. That is the size of a 
large molecule and it is, therefore, much more reasonable than the length of the wave trains we get 
when thinking of transients using the supposed Q of an atomic oscillator.14 In fact, this length is exactly 
equal to the wavelength λ = c/f = c·T = hc/E. 

                                                           
13 This is short-wave ultraviolet light (UV-C). It is the light that is used to purify water, food or even air. It kills or 
inactivate microorganisms by destroying nucleic acids and disrupting their DNA. It is, therefore, harmful. The ozone 
layer of our atmosphere blocks most of it. 
14 In one of his famous Lectures (I-32-3), Feynman thinks about a sodium atom, which emits and absorbs sodium 
light, of course. Based on various assumptions – assumption that make sense in the context of the blackbody 
radiation model but not in the context of the Bohr model – he gets a Q of about 5×107. Now, the frequency of 
sodium light is about 500 THz (500×1012 oscillations per second). Hence, the decay time of the radiation is of the 
order of 108 seconds. So that means that, after 5×107 oscillations, the amplitude will have died by a factor 1/e ≈ 
0.37. That seems to be very short, but it still makes for 5 million oscillations and, because the wavelength of 
sodium light is about 600 nm (600×10–9 meter), we get a wave train with a considerable length: (5×106)·(600×10–

9 meter) = 3 meter. Surely you’re joking, Mr. Feynman! A photon with a length of 3 meter – or longer? While one 
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What picture of the photon are we getting here? Because of the angular momentum, we will probably 
want to think of it as a circularly polarized wave, which we may represent by the elementary 
wavefunction, as shown below.15 We will call this interpretation of the wavefunction the one-cycle 
photon: the wavefunction represents the rotating electric field vector itself or, remembering the F = qeE 
equation, the force field. 

 

 

Figure 3: The one-cycle photon 

It is a delightfully simple model: the photon is just one single cycle traveling through space and time, 
which packs one unit of angular momentum (ħ) or – which amounts to the same, one unit of physical 
action (h). This gives us an equally delightful interpretation of the Planck-Einstein relation (f = 1/T = E/h) 
and we can, of course, do what we did for the electron, which is to express h in two alternative ways: (1) 
the product of some momentum over a distance and (2) the product of energy over some time. We find, 
of course, that the distance and time correspond to the wavelength and the cycle time: 

ℎ = p ∙ λ =
E

𝑐
∙ λ ⟺ λ =

ℎ𝑐

E
 

ℎ = E ∙ T ⟺ T =
ℎ

E
=

1

𝑓
 

Needless to say, the E = mc2 mass-energy equivalence relation can be written as p = mc = E/c for the 
photon. The two equations are, therefore, wonderfully consistent: 

ℎ = p ∙ λ =
E

𝑐
∙ λ =

E

𝑓
= E ∙ T 

Let us now try something more adventurous: let us try to calculate the strength of the electric field. How 
can we do that? Energy is some force over a distance. What distance should we use? We could think of 
the wavelength, of course. 

                                                           
might argue that relativity theory saves us here (relativistic length contraction should cause this length to reduce 
to zero as the wave train zips by at the speed of light), this just doesn’t feel right – especially when one takes a 
closer look at the assumptions behind. 
15 Note that the wave could be either left- or right-handed. 
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However, the formulas above imply the following equation: E·λ = h·c. This suggest we should, perhaps, 
associate some radius with the wavelength of our photon. We write: 

E ∙
λ

2π
= E ∙ 𝑟 = ℏ ∙ 𝑐 ⟺ 𝑟 =

λ

2π
=

ℏ ∙ 𝑐

E
 

A strange formula? The reader can check the physical dimensions. They all work out: we do get a 
distance – something that is expressed in meter. But why the 2π factor? We do not want to confuse the 
reader too much but let us quickly insert a graph here from an article on the presumed Zitterbewegung 
of a free electron – which is interpreted as an oscillation of a pointlike charge (with zero rest mass) 
moving about a center at the speed of light. Now, as the electron starts moving along some trajectory at 
a relativistic velocity (i.e. a velocity that is a substantial fraction of c), the radius of the oscillation will 
have to diminish – because the tangential velocity remains what it is: c. The geometry of the situation 
(see below) shows the radius becomes a wavelength in this process. The radius is, of course, a 
circumference divided by 2π.    

 

We have probably confused the reader now, but he or she should just hang on for a while. Let us just jot 
down the following expression and then we can think about it: 

Eஓ = Fஓ ∙ 𝑟ஓ = Fஓ ∙
λஓ

2π
 

We use the γ subscript to denote we’re talking the energy, force and radius in the context of a photon 
because – in order to justify the formula above – we will remind ourselves of one of the many meanings 
of the fine-structure constant here: as a coupling constant, it is defined as the ratio between (1) k·qe

2 
and (2) E·λ. We should probably interpret this as follows: 

1. The k·qe
2 in this ratio is just the product of the electric potential between two elementary charges (we 

should think of the proton and the electron in our hydrogen atom here) and the distance between them: 

U(𝑟) =
𝑘 · qୣ

ଶ 

𝑟
=

qୣ
ଶ 

4πε𝑟
⟺ 𝑘 · qୣ

ଶ = U(𝑟) · 𝑟 

2. The fine-structure constant can then effectively be written as: 

α =
𝑘 · qୣ

ଶ

ℏ ∙ 𝑐
=

𝑘 · qୣ
ଶ

ℏ ∙ 𝑐
=

U(𝑟) · 𝑟

E௧ ∙ 𝑟௧
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We can also write this in terms of forces times the squared distance: 

α =
𝑘 · qୣ

ଶ

ℏ ∙ 𝑐
=

F · 𝑟
ଶ

Fஓ ∙ 𝑟ஓ ∙ 𝑟ஓ
=

F · 𝑟
ଶ

Fஓ ∙ 𝑟ஓ
ଶ

=
E · 𝑟

Eஓ ∙ 𝑟ஓ
 

This doesn’t look too bad. We use B as a subscript in the denominator to remind ourselves we are 
talking the Bohr energies and radii. Let us write it all out – using the generalized formulas (n = 1, 2,…) 
above – to demonstrate the consistency of this formula: 

α =
E · 𝑟

Eஓ ∙ 𝑟ஓ
=

1

𝑛2 α2m𝑐2 ∙
𝑛2

α
ℏ

m𝑐

Eஓ ∙
ℏ ∙ 𝑐
Eஓ

= α 

Onwards! We think the following formula for the force may make sense now: 

Fஓ =
Eஓ

𝑟ஓ
=

2π ∙ Eஓ

λஓ
=

2π ∙ ℎ ∙ 𝑓ஓ

λஓ
=

2π ∙ ℎ ∙ 𝑐

λஓ
ଶ  

The electric field (E) is the force per unit charge which, we should remind the reader, is the coulomb – 
not the electron charge. Dropping the subscript, we get a delightfully simple formula for the strength of 
the electric field vector for a photon16: 

𝐸 =

2πℎ𝑐
λଶ

1
=

2πℎ𝑐

λଶ
=

2πE

λ
(
𝑁

𝐶
) 

Let us calculate its value for our 10.2 eV photon. We should, of course, express the photon energy in SI 
units here: 

𝐸 ≈
2π ∙ 1.634 × 10ିଵ  𝐽

122 × 10ିଽ 𝑚 ∙ 𝐶
≈ 84 × 10ିଵଶ

N

C
 

This seems pretty reasonable!17 Let us make a final check on the logical consistency of this model. The 
energy of any oscillation will always be proportional to (1) its amplitude (a) and (2) its frequency (f). Do 
we get any meaningful result when we apply that principle here? If we write the proportionality 
coefficient as k, we could write something like this: 

E = 𝑘 ∙ 𝑎ଶ ∙ ωଶ 

It would be wonderful if this would give some meaningful result – and even more so if we could 
interpret the proportionality coefficient k as the mass m. Why? Because we have used the E = m·a2·ω2 
equation before: it gave us this wonderful interpretation of the Zitterbewegung as what we referred to 
as the rest matter oscillation. We will show, in the next section, that the idea of a two-dimensional 

                                                           
16 The E and E symbols should not be confused. E is the magnitude of the electric field vector and E is the energy of 
the photon. We hope the italics (E) – and the context of the formula, of course ! – will be sufficient to distinguish 
the electric field vector (E) from the energy (E). 
17 We got a rather non-sensical value in another paper (http://vixra.org/abs/1812.0028) but that’s because we 
used the electron charge instead of the unit charge to calculate the field. 
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oscillation can also be applied to the Rutherford-Bohr model. Hence, can we repeat the trick here? We 
can, but the amplitude of the oscillation here is the wavelength. We can then write: 

E = 𝑘𝑎ଶωଶ = 𝑘λଶ
Eଶ

ℎଶ
= 𝑘

ℎଶ𝑐ଶ

Eଶ

Eଶ

ℎଶ
= 𝑘𝑐ଶ ⟺ 𝑘 = m and E = m𝑐ଶ 

Sometimes physics can be just nice. I think we have a pretty good photon model here.  

Before we move on, we need to answer an obvious question: what happens when an electron jumps 
several Bohr orbitals? The angular momentum between the orbitals will then differ by several units of ħ. 
What happens to the photon picture in that case? It will pack the energy difference, but should it also 
pack several units of ħ. In other words, should we still think of the photon as a one-cycle oscillation, or 
will the energy be spread over several cycles? 

We will let the reader think about this, but our intuitive answer is: the photon is a spin-one particle and, 
hence, its energy should, therefore, be packed in one cycle only. This is also necessary for the 
consistency of the interpretation here: when everything is said and done, we do interpret the 
wavelength as a physical distance. To put it differently, the equation below needs to make sense:  

ℎ = p ∙ λ =
E

𝑐
∙ λ =

E

𝑓
= E ∙ T 

IV.  Bohr’s orbital as a two-dimensional oscillation 

In previous papers, we explained the rest mass of the electron in terms of its Zitterbewegung. This 
interpretation of an electron, which goes back to Schrödinger and Dirac18, combines the idea of motion 
with the idea of a pointlike charge, which has no inertia and can, therefore, move at the speed of light. 
The illustration below described the presumed circular oscillatory motion of the charge (the 
Zitterbewegung). We got wonderful results. The most spectacular result is the explanation for the rest 
mass of an electron: it is the equivalent mass of what we referred to as the rest matter oscillation. 

 

Figure 4: The Zitterbewegung model of an electron 

                                                           
18 Erwin Schrödinger derived the Zitterbewegung as he was exploring solutions to Dirac’s wave equation for free 
electrons. In 1933, he shared the Nobel Prize for Physics with Paul Dirac for “the discovery of new productive 
forms of atomic theory”, and it is worth quoting Dirac’s summary of Schrödinger’s discovery: “The variables give 
rise to some rather unexpected phenomena concerning the motion of the electron. These have been fully worked 
out by Schrödinger. It is found that an electron which seems to us to be moving slowly, must actually have a very 



12 
 

The table summarizes the properties – angular momentum, magnetic moment, g-factor, etc. – we 
calculated:  

Table 4: The properties of the free electron (spin-only) 

Spin-only electron (Zitterbewegung) 

S = h 

E = m𝑐ଶ 

𝑟 = 𝑟େ =
ℏ

m𝑐
 

𝑣 = 𝑐 

L = 𝐼 ∙ ω =
ℏ

2
 

μ = I ∙ π𝑟େ
ଶ =

qୣ

2m
ℏ 

g =
2m

qୣ

μ

L
= 2 

 

The reader should keep his wits about him19 here: the Zitterbewegung model should not be confused 
with our Bohr atom. We do not have any centripetal force here. There is no nucleus or other charge at 
the center of the Zitterbewegung. Instead of a tangential momentum vector, we have a tangential force 
vector (F), which we thought of as being the resultant force of two perpendicular oscillations.20 This led 
us to boldly equate the E = mc2, E = m·a2·ω2 and E = ħ·ω equations – which gave us all the results we 
wanted. The zbw model – which, as we have mentioned in the footnote above, is inspired by the 
solution(s) for Dirac’s wave equation for free electrons – tells us the velocity of the pointlike charge is 
equal to c. Hence, if the zbw frequency would be given by Planck’s energy-frequency relation (ω = 
E/ħ), then we can easily combine Einstein’s E = mc2 formula with the radial velocity formula (c = a·ω) 
and find the zbw radius, which is nothing but the (reduced) Compton wavelength: 

𝑟େ୭୫୮୲୭୬ =
ℏ

m𝑐
=

λୣ

2π
≈ 0.386 × 10ିଵଶ m 

The calculations relate the Bohr radius to the Compton radius through the fine-structure constant: 

                                                           
high frequency oscillatory motion of small amplitude superposed on the regular motion which appears to us. As a 
result of this oscillatory motion, the velocity of the electron at any time equals the velocity of light. This is a 
prediction which cannot be directly verified by experiment, since the frequency of the oscillatory motion is so high 
and its amplitude is so small. But one must believe in this consequence of the theory, since other consequences of 
the theory which are inseparably bound up with this one, such as the law of scattering of light by an electron, are 
confirmed by experiment.” (Paul A.M. Dirac, Theory of Electrons and Positrons, Nobel Lecture, December 12, 1933) 
19 The him could be a her, of course. 
20 A metaphor for such oscillation is the idea of two springs in a 90-degree angle working in tandem to drive a 
crankshaft. The 90-degree ensures the independence of both motions. See: Jean Louis Van Belle, Einstein’s mass-
energy equivalence relation: an explanation in terms of the Zitterbewegung, 24 November 2018 
(http://vixra.org/pdf/1811.0364v1.pdf).  
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𝑟୭୦୰ =
ℏଶ

meଶ
=

4πεℏଶ

mqୣ
ଶ

=
1

α
 ∙ 𝑟େ୭୫୮୲୭୬ =

ℏ

αm𝑐
≈ 53 × 10ିଵଶ m 

The fine-structure constant also relates the respective velocities, frequencies and energies of the two 
oscillations. We wrote: 

𝑣 = α ∙ 𝑐 = 𝑟 ∙ ω =
ℏ

αm𝑐
∙

αଶm𝑐ଶ

ℏ
= α ∙ 𝑐 ⇔ ω =

αଶm𝑐ଶ

ℏ
 

As we mentioned before, the formula for the frequency of the motion of the electron in the Bohr 
orbitals reflects the first de Broglie relation: fB = E/h = α2mc2/h. However, we noted that the α2mc2 is 
twice the Rydberg energy – and, unlike some physicists21, we do care about a 1/2 or π factor in our 
model of a Bohr electron. Hence, we should have a look at this energy concept. 

𝑣 = α ∙ 𝑐 = 𝑟 ∙ ω =
𝑟

α
∙ ω =

ℏ

αm𝑐
∙

αଶm𝑐ଶ

ℏ
= α ∙ 𝑐 

The cycle time T is given as a function of the Bohr loop frequency by T = 1/fB = 2π/ωB. Importantly, the 
formula for fB resembles the first de Broglie relation: fB = E/h = α2mc2/h.22 Having said this, we noted that 
α2mc2 is twice the Rydberg energy – and, unlike some physicists23, we do care about a 1/2 or π factor in 
our model of a Bohr electron. We said we would come back to this in a next section. This is where we 
are going to do this.  

The E = α2mc2 energy concept is the energy that is associated with the loop. It is twice the kinetic energy, 
but it is a different energy concept altogether. In line with our interpretation of the elementary 
wavefunction in the context of our one-cycle photon and our free (spin-only) electron, we are thinking 
of the orbital motion as being driven by a two-dimensional oscillation, as illustrated below.  

 

Figure 5: The oscillator model of the Bohr orbital 

We look at the centripetal force as a resultant force here – a vector sum of two perpendicular 
components: F = Fx + Fy. Needless to say, the boldface here indicates vectors: these force components 
have a magnitude as well as a direction. We can now develop yet another interpretation of the 
elementary wavefunction and think of a dual view of what is going on. Let us start with the description 

                                                           
21 We are thinking of Richard Feynman’s rather shocking nonchalance when introducing the quantum-mechanical 
idea of an electron orbital using the Uncertainty Principle (Lectures, Vol. III, Chapter 2, Section 4), noting from the 
outset that we should not “trust” the model “within factors like 2, π, etcetera.”  
22 In this section, we will just use the formulas for the first Bohr orbital (n = 1). It is easy generalize for n = 2, 3, 4, 
etc. 
23 We are thinking of Richard Feynman’s rather shocking nonchalance when introducing the quantum-mechanical 
idea of an electron orbital using the Uncertainty Principle (Lectures, Vol. III, Chapter 2, Section 4), noting from the 
outset that we should not “trust” the model “within factors like 2, π, etcetera.”  
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of the physical position (i.e. the x- and y-coordinates) of the electron. This is the green dot in the 
illustration of Euler’s function above. Its motion is described by:  

r = a·ei = x + i·y = a·cos() + i·a·sin() = (x, y) 

We can now think of this motion being driven by two perpendicular oscillations. These oscillations are 
associated with a kinetic and a potential energy. We illustrate this below for one oscillator only.  

 

Figure 6: Kinetic (K) and potential energy (U) of an oscillator 

Now, if the amplitude of the oscillation is equal to a, then we know that the sum of the kinetic and 
potential energy of the oscillator will be equal to (1/2)·m·a2·ω2. In this case (the Bohr orbital), we have 
two oscillators, and we can add their kinetic and potential energies because of the 90-degree phase 
difference. Indeed, it is easy to see that the total kinetic energy – added over the two oscillators – will 
effectively be constant over the cycle and will be equal to: 

K. E. =
1

2
m ∙ 𝑟

ଶ ∙ ωଶ =
1

2
m ∙ 𝑣ଶ =

1

2
αଶ ∙ m ∙ 𝑐ଶ 

The potential energy will be equal to the kinetic energy and we, therefore, get the desired result: the 
total energy of the loop is equal to E = α2mc2. We can now re-write the quantum of action as the 
product of the energy and the cycle time: 

ℎ = E ∙ T = αଶm𝑐ଶ ∙
2π ∙ 𝑟

𝑣
= αଶm𝑐ଶ ∙

2π ∙ 𝑟େ

α ∙ 𝑐 ∙ α
= m𝑐ଶ

2π ∙ ℏ

𝑐 ∙ m ∙ 𝑐
= ℎ 

Of course, we can also write it as the product of the (linear) momentum and the distance along the loop: 

ℎ = p ∙ λ = m ∙ 𝑣 ∙ 2π ∙ 𝑟 = m ∙ α ∙ 𝑐 ∙ 2π ∙
ℏ

αm𝑐
= ℎ 

All makes sense. Now, we said we have a dual view of the meaning of the wavefunction here. What is 
the dual view? It is that of the force vector: we will want to write the energy as the product of a force 
over a distance. Hence, what is the force and what is the distance here? The Bohr model implies the 
circular motion of the electron is driven by (1) its inertia24 and (2) a centripetal force (because of the 

                                                           
24 Note the difference with the Zitterbewegung model, which assumes a pointlike charge with no inertia to motion. 
Its orbital velocity is, therefore, effectively equal to the speed of light (c). This is very different from the Bohr 
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presence of a nucleus with the opposite charge). The geometry of the situation shows we can write F = 
Fx + Fy as: 

F = F·cos(ωt)  i·F·sin(ωt) = F·ei 

The nature of this force is electric, of course. Hence, we should write in in terms of the electric field 
vector E25: F = qeE. The electric field is, of course, the force on the unit charge which, in this case, is a 
force between qe (the electron) and qe (the proton or hydrogen nucleus).26 Let us calculate the 
magnitude of the force by using the fine-structure constant to check the consistency of the model: 

𝐹 = qୣ𝐸 =
qୣ

ଶ

4πε𝑟
ଶ

=
αℏ𝑐

𝑟
ଶ

=
ℏ𝑣

𝑟
ଶ

=
ℏ𝑟ω

𝑟
ଶ

=
ℏ

𝑟

αଶm𝑐ଶ

ℏ
=

E

𝑟
 

This F = qeE = E/rB is confusing (E is the electric field, but E is the energy) but very interesting because it 
allows us to write the quantum of action in its usual dimensions – which is the product of a force, a 
distance (the radius of the oscillation, in this particular case), and a time: 

ℎ = 𝐹 ∙ 𝑟 ∙ T =  
E

𝑟
∙ 𝑟 ∙

1

𝑓
=

E

𝑟
∙ 𝑟 ∙

ℎ

E
= ℎ 

Hence, we have a bunch of equivalent expressions for Planck’s quantum of action – all of which help us 
to understand the complementarity of the various viewpoints: 

h = p·2π·r = p·λ 

 h = E·T = E/f 

h = r·T·F = r·T·qeE = r·T·E/r = E·T   

We could also combine these formulas with the classical formulas for a centripetal force – think of the F 
= m·r·ω2 and F = m·v2/r = p·v/r formulas here – but we will let the reader play with that. 

The point is: there is an energy in this oscillation, and the energy makes sense if we think of it as a two-
dimensional oscillation. We can write this two-dimensional oscillation – using Euler’s formula - in various 
but complementary ways. We can use the position vector, the force vector, or the electric field vector: 

F = Fx·cos(ωt)  i·Fx·sin(ωt) = F·ei 

E = (E/qe)·cos(ωt)  i·(E/qe)·sin(ωt) = F·ei 

                                                           
model, in which the electron moves at a non-relativistic speed v = αc with α ≈ 0.0073. However, the two models 
are obviously complementary: the Zitterbewegung model – Dirac’s electron, we might say – effectively explains the 
(rest) mass of the Bohr electron.  
25 Symbols may be confusing. We use E for the energy, but E for the electric field vector. Likewise, I is a moment of 
inertia, and I is an electric current. The context is usually clear enough to make out what is what. 
26 The concepts of potential, potential energy and the electric field can be quite confusing. The potential and the 
potential energy of a charge in a field vary with 1/r. The electric field is the electric force – generally defined as the 
Lorentz force F = qE + q(vB) – on the unit charge. Hence, the F = qE formula here is nothing but the E = F/q 
formula. The electric field varies with 1/r2 and is, therefore, associated with the inverse-square law. It is also quite 
confusing that qe is actually the (supposedly negative) electron charge and that we have to, therefore, use a minus 
sign for the charge of the (supposedly positive) proton charge – but then the signs always work out, of course. 
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r = a·ei = x + i·y = a·cos() + i·a·sin() = (x, y) 

The various viewpoints of the oscillation are complementary. They pack the same energy (E = α2mc2), 
and they pack one unit of physical action (h). We will leave it to the reader to generalize for the n = 2, 3, 
etc. orbitals. It is an easy exercise: the energy for the higher loops is equal to En = α2mc2/n2 and the 
associated action is equal to S = n·h. One obvious way to relate both is through the frequency of the 
loop. We write: 

𝑓 =
E

S

=

1
𝑛ଶ αଶm𝑐ଶ

𝑛ℎ
=

αଶ

𝑛ଷℎ
m𝑐ଶ 

V. The fine-structure constant as a scaling constant 
The fine-structure constant pops up as a scaling constant in all of the calculations above. It relates the 
Bohr radius to the Compton radius, for example: 

𝑟୭୦୰ =
ℏଶ

meଶ
=

4πεℏଶ

mqୣ
ଶ

=
1

α
 ∙ 𝑟େ୭୫୮୲୭୬ =

ℏ

αm𝑐
≈ 53 × 10ିଵଶ m 

But it also relates the respective velocities, frequencies and energies of the two oscillations. We may 
summarize these relations in the following equations: 

𝑣 = α ∙ 𝑐 = 𝑟 ∙ ω =
ℏ

αm𝑐
∙

αଶm𝑐ଶ

ℏ
= α ∙ 𝑐 

But this is not the only meaning of the fine-structure constant. We know it pops up in many other 
formulas as well. To name just a few: 

1. It is the mysterious quantum-mechanical coupling constant.  
2. It explains the so-called anomalous magnetic moment – which, as we will explain in a moment, 

might not be anomalous at all! 
3. Last but not least, it explains the fine structure of the hydrogen spectrum – which is where it got 

its name from, of course! 

Can we make some more sense of this as a result of the interpretations we have offered above? Let us 
start with the coupling constant because there is a lot of nonsensical writing on that.27 We basically 
showed that, as a coupling constant, the fine-structure continues to act as a dimensional scaling 
constant. We wrote: 

α =
𝑘 · qୣ

ଶ

ℏ ∙ 𝑐
=

F · 𝑟
ଶ

Fஓ ∙ 𝑟ஓ ∙ 𝑟ஓ
=

F · 𝑟
ଶ

Fஓ ∙ 𝑟ஓ
ଶ

=
E · 𝑟

Eஓ ∙ 𝑟ஓ
 

                                                           
27 Feynman’s QED: The Strange Theory of Light and Matter (1985) refers to its (negative) square root as the 
coupling constant, and states that is “the amplitude for a real electron to emit or absorb a real photon.” We take it 
to be just one example of an ambiguous remark by a famous physicist that is being explained by an amateur 
physicist. The book was not written by Richard Feynman: it is a transcription of a short series of lectures by 
Feynman for a popular audience. We are not impressed by the transcription. 
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We use B as a subscript in the denominator to remind ourselves we are talking the Bohr energies and 
radii. Let us use the generalized formulas (n = 1, 2,…) for the Bohr orbitals once again and write it all out: 

α =
E · 𝑟

Eஓ ∙ 𝑟ஓ
=

1

𝑛2 α2m𝑐2 ∙
𝑛2

α
ℏ

m𝑐

Eஓ ∙
ℏ ∙ 𝑐
Eஓ

= α 

While the formula is obvious, its interpretation is not necessarily as obvious: what is this product of an 
energy and a radius? How should we interpret this? The physical dimension of this product (in the 
denominator and the numerator, of course) is J·m = N·m·m = N·m2. We get the same physical dimension 
if we multiply action or angular momentum with a velocity, so let us try this to check if it makes us any 
wiser: 

α =
E · 𝑟

Eஓ ∙ 𝑟ஓ
=

L · 𝑣

Lஓ ∙ 𝑣ஓ
=

𝑛ℏ ∙
1
𝑛

α𝑐

ℏ ∙ 𝑐
= α =

S · 𝑣

Sஓ ∙ 𝑣ஓ
=

𝑛ℎ ∙
1
𝑛

α𝑐

ℎ ∙ 𝑐
= α 

The formulas show we should, most probably, just think of them as yet another expression of the idea of 
a scaling constant.  

Let us think of the fine-structure constant in yet one more way. We know the Compton and Bohr radius 
are related through the fine-structure constant. We used this formula many times already: 

𝑟େ = α ∙ 𝑟 

Let us write it out: 

𝑟େ =
ℏ

m𝑐
=

ℏ𝑐

m𝑐ଶ
= α ∙

ℏ𝑐

αm𝑐ଶ
= α ∙ 𝑟 

The numerator in these ratios is an energy. We write: 

𝑟େ =
ℏ𝑐

mୣ𝑐ଶ
=

ℏ𝑐

Eୣ
 

𝑟 =
ℏ𝑐

αm𝑐ଶ
=

ℏ𝑐

E
 

The Ee is just the (rest) energy of the electron, and EB is the energy in the (first) Bohr orbital. Hence, we 
can also write the fine-structure constant as the ratio between these two energies: 

α =
𝑟େ

𝑟
=

ℏ𝑐
Eୣ

ℏ𝑐
E

=
E

Eୣ
 

Because 𝑟 = 𝑛ଶ𝑟 and E =
ా

మ, we know that 𝑟 =
మℏ

୫మ =
ℏ


 and, hence, we can easily generalize for 

the n = 2, 3,… orbitals: 
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α =
𝑟େ

𝑟
=

ℏ𝑐
Eୣ

ℏ𝑐
E

=
E

Eୣ
 

The explorations above – and the interpretation of the fine-structure constant as a scaling constant – 
raise an interesting question. We know there is also the idea of a classical electron radius, which is 
related to the Compton radius in the same way as the Compton radius to the Bohr radius: 

𝑟 = α ∙ 𝑟େ = αଶ ∙ 𝑟 

We have already explained the second identity (α𝑟େ = αଶ𝑟 ⟺ 𝑟େ = α𝑟) but what about 𝑟 = α𝑟େ? Let 
us think about that in a separate section. 

VI. The fine-structure constant and the classical electron radius 
Let us write it all out and see if there is something triggering some idea: 

𝑟 =
eଶ

m𝑐ଶ
= α ∙

ℏ𝑐

m𝑐ଶ
 

We, once again, have two energies in the numerator – but they are exactly the same! Hence, when 
writing the fine-structure constant as the ratio between the two radii, we get: 

α =
𝑟

𝑟େ
=

eଶ

m𝑐ଶ

ℏ𝑐
m𝑐ଶ

=
eଶ

ℏ𝑐
= 𝑘qୣ

ଶ =
1

4πε

qୣ
ଶ

ℏ𝑐
 

We just get the usual formula for the fine-structure constant here. What does it mean in terms of 
interpretation? Here we should probably think of the meaning of e2. There is something interesting 
here: the elementary charge e2 has the same physical dimension – the joule-meter (J·m) – as the h·c = 
E·λ product: 

[eଶ] = 
1

4πε
qୣ

ଶ൨ =
N ∙ mଶ

Cଶ
∙ Cଶ = N ∙ mଶ = J ∙ m 

What was that h·c = E·λ product again? We got it in the context of our photon model. To be precise, we 
got it by applying the second de Broglie equation to a photon: 

ℎ = p ∙ λ =
E

𝑐
∙ λ ⟺ λ =

ℎ𝑐

E
 

In fact, it appears we may apply this relation to any particle that is traveling at the speed of light. Huh? 
What other particle do we have here? It is our pointlike charge: this charge has, effectively, no rest mass 
in the Zitterbewegung model and, therefore, does make us think of a photon. But we should be precise 
here: it is the square of the elementary charge that has that joule-meter dimension. We write: 

[e2] = [E]·[λ] = [h]·[c] 

This is strange: what energy and what wavelength would we associate with this pointlike charge. I am 
not sure – but if we try the energy and circumference of the loop of the Zitterbewegung, we get a 
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sensible relation on the right-hand side: 

E ∙ λ = m𝑐ଶ ∙
ℎ

m𝑐
= ℎ ∙ 𝑐 

Obvious, you’ll say. But, no, this is not obvious: we are not talking the energy and mass of a photon here, 
but the energy and mass of… Well… Our pointlike charge? Yes: our pointlike charge in its Zitter motion, 
that is. But what about the suggestion that we should be able to write something like e2 = E·λ? Well… 
We can start by re-writing the formula for the classical electron radius so it gives a product of an energy 
and a distance:  

eଶ = 𝑟 m𝑐ଶ = 𝑟 E 

Does this make sense? Yes. It gives us the formula for the fine-structure constant: 

eଶ = 𝑟 m𝑐ଶ = α𝑟େE = α
ℏ𝑐

m𝑐ଶ
E = α

ℏ𝑐

m𝑐ଶ
m𝑐ଶ = αℏ𝑐 ⟺ α =

eଶ

ℏ𝑐
 

By now, the reader is probably tired of these gymnastics and, hence, we will stop here. What was the 
use? Interpretation. The formulas are not presenting anything new: we have just been substituting and 
re-arranging equations but we have, hopefully, succeeded in presenting a coherent picture while doing 
so. 

VII. The fine-structure constant and the anomalous magnetic moment 
We mentioned other meanings of the fine-structure constant. It pops up in the explanation of the 
electron’s anomalous magnetic moment and, naturally, in the context of where physicists noted it first: 
the fine structure of the hydrogen spectrum. So, what can we say about these? Let us first discuss the 
so-called anomalous magnetic moment. Such discussion is simple and complicated at the same time. We 
have, therefore, opted to write a separate paper on that.28 Hence, we refer the interested reader to that 
paper and will just summarize the basic ideas here.  

The reader will know that most of the anomalous magnetic moment – about 99.85% of the so-called 
anomaly, to be precise – is explained by Schwinger’s α/2π factor: he got a Nobel Prize for that, and he 
has the factor engraved on his tomb. Hence, the suggestion that the anomalous magnetic moment 
might have a classical explanation may sound somewhat disrespectful. We ensure no disrespect is 
intended here. Having said that, in the mentioned paper, we argue we would expect to see an α/2π 
factor – or a similar factor – in a classical analysis too! Why is that so? 

The Zitterbewegung model or – if the reader would prefer a much more sophisticated model, the Dirac-
Kerr-Newman electron29 – comes with a form factor: we should not think of the electron as a pointlike 
particle. In other words, we should not think of it as an infinitesimally small but perfect sphere. The 
models above show that we should think of the electron as a disk-like structure, and the fine-structure 

                                                           
28 See: Jean Louis Van Belle, The Not-So-Anomalous Magnetic Moment, 21 December 2018 
(http://vixra.org/pdf/1812.0233v3.pdf).  
29 See: Alexander Burinskii, The Dirac–Kerr–Newman electron, 19 March 2008 (https://arxiv.org/abs/hep-
th/0507109). For the (much simpler) Zitterbewegung model, see: Jean Louis Van Belle, A geometric interpretation 
of Schrödinger’s equation, 12 December 2018 (http://vixra.org/pdf/1812.0202v1.pdf).  
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constant relates the radius of the disk (the Compton radius) to its thickness (the classical electron radius 
– aka Thomson or Lorentz radius). To be precise, Dirac-Kerr-Newman geometries which – as mentioned, 
are far more sophisticated than our simple Zitterbewegung model – yield a "highly oblate ellipsoid" 
(Burinskii, 2008), with a thickness that is effectively of the order of the classical electron radius, and a 
radius of the disk itself that is of the order of the Compton radius. The ratio between these two is, 
obviously, the fine-structure constant and the fine-structure constant is, therefore, a form factor that 
should pop up when calculating the various angular momenta that we can associate with the various 
layers in the motion. 

We, therefore, claim that this form factor – and the equations of motion which, as shown below, are 
rather complicated – should explain why the measured gyromagnetic ratio of the system as a while is 
not exactly equal to 2. Indeed, the complicated motions in the Penning traps30 that are used to measure 
the magnetic moment are illustrated below, and the reader will now understand why, in the mentioned 
paper, we argue that what is surprising is not that the measured g-factor is not equal to 2 but that it is so 
nearly equal to 2. 

 

 Figure 7: The three principal motions and frequencies in a Penning trap (purple is combined motion) 

Hence, while our models give us a perfect number for the gyromagnetic ratio for the spin and orbital 
angular momentum (2 and 1 respectively), we would expect a rather classical coupling to take place 
when combining these motions and, hence, the form factor will have an impact on the system as a 
whole. The idea of a coupling between these motions is illustrated below. In a magnetic field, we will 
see a precession: the orbital plane is wobbling around the central axis. This is the axial oscillation. It is 
the ωz oscillation in the illustration above. It is defined by (1) a frequency () but also by (2) a precession 
angle (). This precession angle is the angle between the original orbital momentum vector L now and 
the actual angular momentum vector J, as shown below. 

                                                           
30 These Penning traps combine a cyclotron and a magnetron. Indeed, to trap the electron, there is a magnetic and 
an electric field. We refer to the above-mentioned paper for a more detailed description of the geometry of the 
situation and, importantly, a more accurate description of what is actually being measured in those experiments. 
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Figure 8: The classical coupling between the precession and the orbital angular momentum 

To be precise, we can write the orbital angular momentum vector L as a vector dot product of the 
angular precession vector ωp and the new angular momentum vector J: 

𝐋 = 𝛚𝒑 ∙ 𝐉 = ห𝛚𝒑ห ∙ |𝐉| · 𝑐𝑜𝑠θ = ω ∙ J · 𝑐𝑜𝑠θ 

The illustration on the right-hand side takes a sideway view of the rotation and shows that, as a result of 
the precession, we now have a smaller effective radius of the rotational motion. Hence, this reduces the 
electric current of the loop (I) and, therefore, it also reduces the magnetic moment. The reader can 
easily verify this for himself by checking the usual formulas here:  

I =
q

T
= q ∙ 𝑓 = q

𝑣

2π ∙ 𝑟
 

μ = I ∙ π ∙ 𝑟ଶ = q
𝑣

2π ∙ 𝑟
∙ π ∙ 𝑟ଶ =

q ∙ 𝑣 ∙ 𝑟

2
 

Of course, the reader will note that the magnetic moment and the angular momentum have the same 
direction and that, therefore, their magnitudes may change but that this should not have any impact on 
the gyromagnetic ratio. However, the formula for the angular momentum is quite different: it does not 
depend on the current, but on the moment of inertia I.31 

𝐉 = 𝐼 ∙ 𝛚 

To make a long story short: we should analyze the motions in the system, and we should analyze them 
in terms of vector dot and cross products. We think32 the sine and cosine factors, combined with the 
form factor (the α-ratio between the Compton and Thomson radius), may yield Schwinger’s α/2π factor. 

What about the second- and higher-order corrections? As mentioned, while the velocities are non-

                                                           
31 We apologize for the possible confusion: I is a current, I (italicized) is the moment of inertia of the system. Note 
that we should write the angular momentum as a vector (dot) product. 
32 We admit we have not come up with a proof, yet. The reason is quite simple: lack of time and lack of 
mathematical skills. We hope more advanced readers of this paper will be encouraged to go through the motions – 
literally – themselves. If this would yield any result, the author of this paper would appreciate feedback.  
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relativistic (v is a relatively small fraction of c, that is), we do think that relativistic corrections might go a 
long way in explaining the remaining differences. For example, if we would equate v with the typical 
Bohr velocity (v = α·c), we get a Lorentz factor that is equal to 1.000026627, and the table below shows 
this explains most of the remaining difference after applying Schwinger’s α/2π factor. 

Table 5: Example of a possible relativistic correction to Schwinger’s α/2π factor 

α 0.00729735256640 
α/2π 0.00116140973243 

ae 0.00115965218073 
First-order difference -0.00000175755170 

% -0.152% 
Lorentz factor (γ) 1.00002662674068 

γα/2π 0.00116144065698 
Remaining difference -0.00000003092538 

% -0.003% 
 

To sum it all up, we dare argue that the so-called anomaly in the anomalous magnetic moment may not 
be an anomaly: it might be a simple form factor. The basic idea here is to not think of the electron as a 
perfect sphere. In fact, the Dirac-Kerr-Newman models suggest we should probably also not think of it as 
a perfect disk!  

VIII. The fine-structure constant and the fine structure 

We should now explain the final and last meaning of the fine-structure constant – the one that gave it its 
name! Why is that the fine-structure constant explains the fine structure of the hydrogen spectrum? 
However, as this paper has exceeded the usual length of a paper – and because this is actually a topic 
that is well covered in standard physics textbooks – we will, effectively, refer the reader to such physics 
textbooks – and conclude here.33  

Jean Louis Van Belle, 23 December 2018 
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33 We would warmly recommend Feynman’s Lectures here, because Feynman treats the topic in these lectures 
both from a classical as well as quantum-mechanical perspective (see the lectures in Volume II versus the lectures 
in Volume III here). 


