
Reversing Teerac

Jason Reaves

February 11, 2016

1

1 Introduction

2016 is filled with what seems like a new Ransomware every day, whether the
influx is due to the recent sale of the CryptoWall source code or the actors
involved in Dyre have since moved on to something profitable after the reported
takedown, it would appear that for the time being pushing Ransomware is the
new hip thing in the malware world. Most of the big names in Ransomware
have had plenty of papers and research done but lots of the newer variants
while possibly being based on either leaked or sold code will more often than
not make changes in order to make themselves unique. Teerac which is a variant
of TorrentLocker with a subdomain generation feature to the hardcoded domain
is no exception to this as the malware matches multiple reports on TorrentLocker
with the exception of an added subdomain generation.

2 Setup

Teerac, which is a TorrentLocker variant, will commonly run from an orphaned
explorer.exe process before doing some system setup, first it creates two Crypto-
graphic Service Provider handles, one will be used to create handles from three
different AES 256 bit keys in CBC mode all using an IV of 16 NULL bytes
and the other will be used with CryptGenRandom. Using one of the AES keys
stored in the binary the bot encrypts a copy of itself into a random named folder
in C:\ProgramData\ and sets up persistence in registry with a random named
run key. The location of the binary will either be under the C:\Windows\ direc-
tory as a random named executable or will be in C:\ProgramData\ as a random
named executable, the location depends on the privilege level of the malware
when it runs. From the samples analyzed it appears the encrypted file 00000000
contains some stats such as how many times the malware has ran, file 01000000
is the encrypted exe and the encrypted file 02000000 contains the location of
the non encrypted binary on disk. I’ve seen sandbox reports and portions of the
malware code that indicate this file count can go up to 5 but I’ve yet to analyze
a live sample with a working C2 so most of my research has been purely static
analysis.

3 Obfuscation

Teerac employs some basic string obfuscation using a xor key and a lookup table
of string addresses and sizes(Figure 3). This is easy to get around using a basic
ida python script once we’ve located the lookup table(Figure 1). Running the
script shows us some interesting strings(Figure 12). Some other obfuscation
techniques used will be a routine that looks up a corresponding function by
hash(Figure 2) and then calls it using a jump table and the occasional dead
code.

2

#ida python s c r i p t to decode the s t r i n g s in the f o l l ow i n g sample
#teerac unpacked . exe
#sha256 : a92f8b3647fe466ac32d7eee35580888418a47009037e99f9d6374d345f3cef f

xorkeyaddr = 0x413b20
str ingTableAddr = 0x413d48

def d e c o d e s t r i n g (addr , s l en , xor key) :
out = ””
for i in range (0 , s l e n) :

out += chr ((Byte (xor key) ˆ Byte (addr)) & 0xFF)
addr += 1
xor key += 1

return out

ptr = str ingTableAddr
s t r ingLoc = Dword(ptr)
ptr += 4
s l e n = Dword(ptr)
ptr += 4
while s l e n < 255 :

print (d e c o d e s t r i n g (st r ingLoc , s l en , xorkeyaddr))
s t r ingLoc = Dword(ptr)
ptr += 4
s l e n = Dword(ptr)
ptr += 4

Figure 1: Teerac String Decoding

Figure 2: Find By Hash

4 Interesting Routines

4.1 Pseudo Random 1

Teerac uses two variations of the same routine for generating random strings,
while the routine isn’t very complex one of the variations that is only used once

3

Figure 3: Encoded String Lookup Table

Figure 4: Teerac Rand Bytes

caught my attention because it led me to a similar routine that was used by
HesperBot. The routine from Teerac(Figure 4) matches with a routine that was
reversed and published by Vinnu on garage4hackers[3]. This routine is used in a
similar fashion as it was in HesperBot where it generates a long string of bytes
which then feed into another routine, like a stream of salt values, striking a
resemblance to the same report, this routine uses the byte stream to generate a
string of characters in a seemingly random fashion. One major difference I see
in Teerac is a separation of consonants and the vowels where the it will pull a

4

Figure 5: Teerac Random String Gen 1

Figure 6: Teerac Random String Gen 2

vowel every even iteration of the loop and vice-versa(Figure 5). In the samples
I looked at this routine was only used to generate the string for the mutexs,
folder names and part of the bot id.

4.2 Psuedo Random 2

The second random string generator is used for generating everything else from
filenames, subdomain names and exe names. The biggest difference between the
two is that instead of using the seed routine detailed earlier it uses CryptGen-
Random and GetTickCount to create bytes that will be used to index into the
character arrays in order to build the random strings along with an extra check
almost making it look like a generation algorithm with a slight bias(Figure 6).

4.3 AES Key Generation

As previously mentioned one of the routines matches the DGA routine that was
previously used by HesperBot but as it turns out it’s not the only piece of code
that shares a striking resemblance to anaysis reports on HesperBot. The first
half of the AES key the bot generates is based on various information about
the machine, specifically it uses the InstallDate value from HKLM\SOFTWARE\

Mirosoft\WindowsNT\CurrentVersion as the first dword of the key The second
is a hardcoded value depending on if the version is x86 x64 or IA64. The third is
the adler32 hash of the value of MachineGuid from HKLM\SOFTWARE\Microsoft\

Cryptography. The fourth is the adler32 hash of the value of DigitalProduc-
tId from HKLM\SOFTWARE\Microsoft\WindowsNT\CurrentVersion. This was
the same information was used to build an encryption key used by HesperBot

5

Figure 7: Teerac Turning Off SmartScreen

Figure 8: Teerac MAPI via COM

Figure 9: Teerac Outlook Harvest

to store it’s configuration data and plugin modules according to a report by
welivesecurity.com[4].
The other two AES keys used came hardcoded in the binary, one was used for
encrypting the files the malware used in the random folder in ProgramData and
the other key was used for C2 communication. As previously mentioned all keys
are used in CBC Mode with an IV of 16 NULL byte.

6

Figure 10: Teerac Email Server Info

Figure 11: Hardcoded C2 AES Key

5 Worker Threads

Right before it begins trying to find a live C2 the bot spins up 5 threads. One of
these threads will delete shadow copies using vssadmin.exe. Another will disable
some security features in the registry, phishing filter and SmartScreen(Figure 7).
Another simply returns immediately. The other two will utilize COM through
CoInitialize, one thread enumerates the registry trying to find various out-
look(Figure 9) and account settings(Figure 10) while the other uses MAPI(Figure 8)
in an attempt to harvest your contacts.

6 C2 Communications

C2 subdomains are constructed by using a hardcoded domain and then gener-
ating a random subdomain to add to the beginning of it. From what I’ve seen
when you have a live C2 usually any subdomain will resolve to the same IP
of the hardcoded domain. First checkin to the C2 the bot will take the botid
which is generated based on the computer name and some hex data converted
to ascii which is comprised of random generated data that’s been encrypted and

7

a static string ’main-4’ which I’ve also seen ’main-5’ so this appears to be a
campaign designator. This data will be encrypted using one of the hardcoded
AES keys previously mentioned(Figure 11) and then POSTed up to the C2. The
information that follows is purely static for reasons I previously mentioned but
I can at least confirm a few things about what the bot expects as response from
the C2.
1. The data from the C2 is encrypted with the same key the bot used to encrypt
the data that is sent to the C2.
2. The decrypted response data will be parsed in the following structured for-
mat < c2DATA > %%1%% < c2DATA > %%2%% < c2DATA >. 3. The
bot performs validation on the data and will not continue execution until it has
gotten a proper response.

7 Conclusions

Sample SHA256: f5f7cb83a8f229b96a39f2be7a686fdecd717f2519ffe5b62bc98ff439b6f583

Other Samples:

89edb283b3a3c892cb8ed7fa893aff5f36982fc3f4657c3b0723351212ded3e6

c4928426873726e4eeb341aaea33d07f41cef58193eb1655bfe1ee6a97afd4c8

2c6b46b60b4ddb5e75a45a9ba2e57a60a1d95bd798bac6b3036ecde237dddb74

56cbf1281a50e0082a1db873bec0097b61c6074152d40598f73c094d37674ea6

6ef7c2cd280b17ea104f7c9c75711992176bb2b854424b779e6da7becda8d998

43d0b93f825a60c676eeab175cc11eea07f1b598bee08bf57d99c64f41a9b8c6

580c61c84d588f32b0cb6b4203cf5918a0c63a15b1529d5ea0ba105b59ab4373

7db8759c7260b71866d896c9a381f47b8d7e452aea3d1d8aab41e38085ccfb70

fe17addfb458cf66f4a922f342baf4337ec33e9e1aa3b715ec94e676ca74417b

c9e9f81c9438ea7a062b41bbb1c121f88b6a372c4eb15030c50a3f16b714b62d

3c38e1e5956c2a9f6fe4f33d52d5c1ddbdc2e43abeda25b16f7ae4aa7eaa610f

545f991909341b92702a0aa2aa18c4ccceefad207af2180aeed24f5c1b346037

C2 domains observed:

megezawone.net

vodleklina.org

pyjtoxoyr.org

ioytoxpaire.net

kdiertyjoxeg.com

vjivebilan.org

jgiwoxoqlwez.com

rygzatyee.com

asoijaisojais.net

nemexcikx.net

kheoyostowe.net

lderktdfphje.net

8

explorer.exe

svchost.exe

ntdll.dll

kernel32.dll

user32.dll

advapi32.dll

shlwapi.dll

wininet.dll

%ProgramFiles%

%ProgramW6432%

.encrypted

CryptoLocker

.exe

.html

.txt

Software\Microsoft\Internet Explorer\PhishingFilter

EnabledV8

EnabledV9

vssadmin.exe Delete Shadows /All /Quiet

UNKNOWN

Common Files\System\wab32.dll

Thunderbird\Profiles\

abook.mab

history.mab

DisplayName

PrimaryEmail

// <!-- <mdb:mork:z v="1.4"/> -->

@$${

{@

@$$}

}@

(^%X^

^%x)

(%X=

about:blank

Figure 12: Teerac Decoded Strings

C2 IPs observed:

31.170.104.60

188.225.34.221

80.78.253.130

91.214.114.122

9

References

[1] Hex-Rays Decompiler, http://www.hex-rays.com/products/decompiler/index.shtml.

[2] Python, https://www.python.org/

[3] Hesperbot DGA, http://garage4hackers.com/entry.php?b=3091

[4] Hesperbot Technical analysis part 1/2, http://www.welivesecurity.com/2013/09/06/hesperbot-
technical-analysis-part-12/

[5] Emerging Threats, http://www.emergingthreats.net/

[6] Update on the Torrentlocker ransomware, http://blog.fox-
it.com/2014/10/21/update-on-the-torrentlocker-ransomware/

10

