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Abstract
Cosmological observations of remote objects may be interpreted in

the model of low-energy quantum gravity by the author without dark
energy. The theoretical Hubble diagram of the model fits observations
very well. Additionally, this diagram should be the multivalued function
of the redshift for soft and hard radiations; perhaps, this feature may
be seen for the GRBs data set with the Yonetoku calibration. In the
model, the ratio H(z)/(1+z) should be equal to the Hubble constant; the
constancy of this ratio is verified up to z < 2 with high probability using
compilations of H(z) observations.

PACS : 98.80.Es, 04.50.Kd, 04.60.Bc

1 Introduction

In the model of low-energy quantum gravity by the author [1], it is suggested
that the background of super-strong interacting gravitons exists with the tem-
perature which is equal to the one of the CMB. If single gravitons are pairing,
the pressure of such graviton pairs leads to the attraction of bodies. The Newton
law of gravitation is the main consequence of the model. The Newton constant
G and the Hubble one H0 are computable in the model, both of them are sta-
tistical quantities. If T is the temperature of the graviton background, then
G ∼ T 6, H0 ∼ T 5. Given that deviations of T have the same order of mag-
nitude as for the CMB, we can estimate the precision with which the Newton
constant may be measured: ΔG/G ∼ 6ΔT/T . It may explain why the Newton
constant cannot be measured with a higher precision than 10−4 in ground-based
experiments. There are two small effects for photons in the model: the redshift
due to forehead collisions with gravitons, and an additional relaxation of a pho-
tonic flux due to non-forehead collisions with gravitons. Massive bodies should
move with the small anomalous deceleration due to interactions with gravitons.
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2 Magnitudes of additional effects of the model

Dealing here with a flat non-expanding universe, we have the geometrical dis-
tance/redshift relation:

r(z) = ln(1 + z) · c/H0, (1)

where c is the velocity of light, z is a redshift, and the luminosity distance/redshift
relation:

DL(z) = c/H0 · ln(1 + z) · (1 + z)(1+b)/2, (2)

the ”constant” b belongs to the range 0 - 2.137: b = 2.137 for very soft radiation
(this value is computed), and b → 0 for very hard one. To fit this model,
observations should be corrected for no time dilation as: μ(z) → μ(z) + 2.5 ·
lg(1 + z), where μ is the distance modulus, lg x ≡ log10 x. For a remote region
of the universe we may introduce the Hubble parameter H(z) as:

dz = H(z) · dr

c
, (3)

to imitate the local Hubble law; but it does not describe a rate of expansion
now. Taking a derivative dr

dz , we get in this model:

H(z) = H0 · (1 + z). (4)

Due to the interaction with gravitons, massive bodies should move with the
anomalous deceleration w:

w = −w0 · 4η2 · (1 − η2)0.5, (5)

where η ≡ v/c, v is a body velocity relatively to the background, w0 ≡ H0c =
6.419 · 10−10 m/s2, if we use the theoretical value of H0 in the model. This
deceleration is small enough to preserve the observed stability of an Earth’s-like
orbit. Initially, the value of it was found with an error, and this effect was
connected with the Pioneer anomaly [2].

3 Comparison of the model predictions with ob-
servations

The theoretical Hubble diagram of the model with b = 2.137 fits supernovae Ia
observations very well [3]. This diagram should be the multivalued function of
the redshift for soft and hard radiations; perhaps, this feature may be seen for
the 44 GRBs data set with the Yonetoku calibration in Fig. 1. GRB observa-
tional data with the Yonetoku calibration (44 points) are taken from Table 3
of [4] and corrected for no time dilation. Graphs of μ0(z) with b = 1.11 (the
best fitting value with 87.62% C.L.) and b = 2.137 are shown with the same
underestimated value of the Hubble constant (due to the overestimation of dis-
tance moduli of this data set on ∼ 1.18 for the Yonetoku calibration [3]). It is
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Figure 1: The theoretical Hubble diagram μ0(z) of this model with the best
fitting value of b = 1.11 (solid) and with b = 2.137 (dashed); GRB observational
data with the Yonetoku calibration (44 points) are taken from Table 3 of [4]
and corrected for no time dilation.

interesting, that the Einstein–de Sitter model with ΩM = 1 bests the LCDM
cosmological model in this case with 81.72% C.L.

In the model, we have for the Hubble parameter H(z): H(z)/(1 + z) = H0

(the same connection takes place in the constant expansion rate cosmology
Rh = ct [5]), that gives a possibility to evaluate the Hubble constant using
observed values of the Hubble parameter. The constancy of this ratio is verified
up to z < 2 with high probability using compilations of H(z) observations [3].
As an example, the comparison of the observed ratio H(z)/(1 + z) with the
evaluated constant value of H0 is shown in Fig. 2, where σ0i ≡ σi/(1 + zi), σi

is the standard deviation of H(zi); 51 Hubble parameter measurements H(z)
are taken from Table 1 of [6]. Taking into account only 48 points with z < 2,
we have 98.78% C.L. of the constancy of the ratio with the following estimate
of H0: < H0 > ±σ0 = (60.497 ± 2.54) km s−1 Mpc−1. The three points with
z = 2.33, 2.34, 2.36 have small estimated dispersions and the big influence on
the probability of fitting. For the full set of 51 points we have 51.12% C.L.
of the constancy of the ratio with the estimate: < H0 > ±σ0 = (61.239 ±
3.156) km s−1 Mpc−1. If we consider 49 points (without of two points with
z = 2.34, 2.36), we have 91.01% C.L. of the constancy of the ratio, and < H0 >
±σ0 = (60.751±2.804) km s−1 Mpc−1, that is similar to the result for 48 points
with z < 2. There is an essential difference between all estimated in such the
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Figure 2: The ratio H(zi)/(1 + zi) ± σ0i and the weighted value of the Hubble
constant < H0 > ±σ0 (horizontal lines); 51 H(z) observational data points are
taken from Table 1 of [6].

manner values of the Hubble constant and its theoretical value in the model:
H0 = 2.14 · 10−18 s−1 = 66.875 km · s−1 · Mpc−1.

In a frame of the flat LCDM model, authors of [7] have gotten the es-
timate: < H0 > ±σ = (68.00 ± 2.20) km s−1 Mpc−1 with statistical and
systematic errors, using a subset of 40 points of the considered here data set
(0.070 ≤ z ≤ 2.33). In the flat LCDM model, it should be: H(z)/s(z) =
H0, where s(z) ≡ (Ωm · (1 + z)3 + (1 − Ωm))0.5. To have the same con-
ditions for the comparison, I done calculations with the same definition of
χ2 as in [3], and given σ0i ≡ σi/s(zi), Ωm = 0.293 (the best fitting value
from [7]). The result is: < H0 > ±σ = (68.462 ± 3.065) km s−1 Mpc−1

for the full subset with 99.75% C.L. of the constancy of the ratio H(z)/s(z),
and < H0 > ±σ = (68.615 ± 3.162) km s−1 Mpc−1 with 99.73% C.L. by
z < 2. Returning to the full set of 51 points, we get in the flat LCDM model:
< H0 > ±σ = (68.641 ± 2.776) km s−1 Mpc−1 with 98.85% C.L. of the con-
stancy of the same ratio.

We get in my model the following smaller estimate for this subset of 40
points: < H0 > ±σ = (60.566 ± 3.513) km s−1 Mpc−1 with 79,33% C.L.
of the constancy of the ratio H(z)/(1 + z). For 39 points of this subset with
0.070 ≤ z < 2 the estimate is: < H0 > ±σ = (60.062 ± 3.041) km s−1 Mpc−1

with 98,20% C.L. The best fitting values of the Hubble constant in the model
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are more than on 10% smaller than in the case of LCDM due to the fact that
the average value of the function (1 + z)/s(z) in the range of z ∈ [0; 2] is equal
to ∼ 1.1 by Ωm � 0.3 (with the maximum value of this function of 1.153).
Probably, the situation will be clearer when H(z) is measured in the range of
z ∈ (2.1; 10) where the function (1 + z)/s(z) changes from 1 up to 0.55 by
Ωm = 0.3.

4 Conclusion

As it is shown here, the comparable probabilities of fitting may be achieved in the
considered model and in the flat LCDM one (with an additional free parameter)
to fit observational values of the Hubble parameter up to z < 2. It is necessary
to re-analyze the used methods of H(z) measurements to understand why mea-
sured values of it are noticeably smaller than expected ones in this model by
the high probability of the constancy of the observed ratio H(z)/(1 + z). For
example, the cosmic chronometers method is based on a Friedman-Robertson-
Walker metric and the derivative dz/dt, where t is the cosmic time, but in this
model we should deal with the derivative dz/dr to measure H(z).

The theoretical Hubble diagram of the model fits observations well enough
for SNe Ia data sets. The diagram for hard radiation of long GRBs should have
another value of the parameter b, that is, probably, confirmed by the comparison
with the long GRBs data set in the Yonetoku calibration.

The considered small local quantum effects of the interaction of photons with
gravitons of the background lead to another possibility to interpret cosmological
observations: not only without dark energy, but also without a cosmological
expansion and the Big Bang. The tentative existence of these tiny effects may
change the role of general relativity in cosmology.
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